42 Pedersen 2016 1009442354143586260262610686867790188411850707175706370741375191323460876670071617419036048354139550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*180974667089424411101141499552992121012464800511 1009443109998989972846561862043211346557910209289693928678797787009196887135006133114724472722596450=2*5^2*29*31*149*4327*192469592033043102079426538768757180943871*180974282150793851651156027711574902853179167487 42 Pedersen 2016 1044850891951051679901934378279356593072970831953354784581442647397942076345153824752722743174805150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*187322774354317172964306894867099145244271060863 1044851674319841252979618139215231861679149604641567820048471006927956409678007550818396531022186850=2*5^2*29*31*149*4327*192469578159389392483438317994189391482367*187322389415700487168031019013902701652774889343 42 Pedersen 2016 1057534982196283210232586911287843288011035818362989186056977273847963576839365562114198748983634496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*104966949385183803933354653210106205326239530399285199 1057538201783458097014442687190407299444832569324527039195445730907721351447020719387028634414765504=2^6*151*1451*1811*396735172784552916210421056660281999*104966949385183803139885515468265593868792424779807199 42 Pedersen 2016 1069743953792168886163177475376753282693681418882930530387266683197312998306547122199947479117505950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*191785647901320960942977127529964206021628409599 1069744754800512496502488179344648761413970755660932695739043498033787606009626363381511046271294050=2*5^2*29*31*149*4327*192469568955682497741369726691305895054847*191785262962713478853595993745359065313628665599 42 Pedersen 2016 1072206973857784654688877236435066409233837659114839058423576912100664673812287738703737299936786496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*106423236157763414260026728163612977626845051737098199 1072210238112754913414578438571603392096307759264354925017461197626536269864213637571534465157613504=2^6*151*1451*1811*396735172784552916169382827487695199*106423236157763413466557590421772366210436175290206999 42 Pedersen 2016 1081725024985221169278139223095116936239237533502823978496744677905931647399603117028323498421763136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*107367962155256503727727044942276317855971841266540359 1081728318217195362350834497389841267866272233041104803042068510680863773636717348639535100879356864=2^6*151*1451*1811*396735172784552916143355747929067359*107367962155256502934257907200435706465590044378276999 42 Pedersen 2016 1094120950548275502310533481605296464922544148938982779262508963204232173117391644474488620688690496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*108598335157629798891785254725134416937749484567561699 1094124281518729873860682405141052233397722982065716967709751658501531021567477718427545616597709504=2^6*151*1451*1811*396735172784552916110138040208433699*108598335157629798098316116983293805580585395399931999 42 Pedersen 2016 1103168876423757202138038368968129704717935500612101817369873510054170166471095995022272218112856896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*109496398288780488078422768363645599363479514413708299 1103172234939953888073747358476257649172386725091556346486486489425068675289475213923148812440743104=2^6*151*1451*1811*396735172784552916086363364044340299*109496398288780487284953630621804988030090101410171999 42 Pedersen 2016 1137037472550524446116656087502332716030365846559697653290518661356851080221706761125799698197013150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*203850152728742772378064960935895270211908132223 1137038323947252870654186113554450675178993086280239428322508853984474402739612239964834505070058850=2*5^2*29*31*149*4327*192469546092476409161061474425924191903103*203849767790158153494772407459542394885611539967 42 Pedersen 2016 1140538489985360968830452718632823944794720136210527038810263499100244669881839614978861711003621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*113205565740734047705473387113384704215172627093384499 1140541962270587123224625475212970194264478090746540754191782473856079171198475097465775429220378304=2^6*151*1451*1811*396735172784552915992165821924347999*113205565740734046912004249371544092975980756209840499 42 Pedersen 2016 1187991937373215682214525976969965086950768708057776707020618621313482245021825424979272945489333150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*212985362154178316316277142007786781036152666623 1187992826923888630101786056372404488681681039147622161359116923515863943611814461030629483620938850=2*5^2*29*31*149*4327*192469530503688269925512688383934528403967*212984977215609286221123824080219947699519573503 42 Pedersen 2016 1199770502938234588963145334411461455997804451356368561309208582102595606137948175994990582945563550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*215097044879962820263638645037800563784822830591 1199771401308522043570548234982195187877012302582427503007160378914167281204352391673024679389412450=2*5^2*29*31*149*4327*192469527088622697131717868730572824268287*215096659941397205234058120905053383809893873151 42 Pedersen 2016 1229662255009881057781880742781216998121103084848945859692025157572416431415037721876121939919259550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*220456092732155820798585553765934432889014310911 1229663175762667361429047687380713982310865705007167361313689760104917443385265229001894221528676450=2*5^2*29*31*149*4327*192469518715535275433905854494856383551487*220455707793598578856426727445201488630526070271 42 Pedersen 2016 1346284059667320972317452200649962360297655557425483160510249360764387195103793124318221668182444096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*133627098042370665491189747987989366144264464605832599 1346288158329743710895917733604393458602834217893379411281146604428052413436000356158045419996755904=2^6*151*1451*1811*396735172784552915567197308762011999*133627098042370664697720610246148755330041106884624599 42 Pedersen 2016 1348699314405798152984796686089686240966424533498729901212842046392939047628409535080594879961947550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*241797273936858705695444651768460832076408623871 1348700324291762014645792559971040344793241207723415634086942655607182739752716065784096269640868450=2*5^2*29*31*149*4327*192469489053608472082290001577446140089087*241796888998331125680089177063580805228163845631 42 Pedersen 2016 1399384090545201391439153203395087462203925332691039269226620530214323311142201465113480817305221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*138897607621103124409406012685421510248130489249721999 1399388350866747732214382653509168634278366906976947967650816840740069157650492396965919119718778304=2^6*151*1451*1811*396735172784552915477806256690987999*138897607621103123615936874943580899523298183599537999 42 Pedersen 2016 1547060162479522766192443867719419130369330984246807153532632534813896335301776902550493126460329950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*277359768710692932705984848095791278378267227679 1547061320895135979389199868240688455476343051917572710821982939627163469955841216770552349850710050=2*5^2*29*31*149*4327*192469449766367426479400456994534681300479*277359383772204639931674976280455834441481238047 42 Pedersen 2016 1584400643264124640582158285464519723338064278276134580241432177636342852300857619177500753980953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*284054238237569095072602517088363754659581121759 1584401829639733848015314273513267372394882194394862419472308767985372990043861930827476220580326050=2*5^2*29*31*149*4327*192469443470936648772484709674092731125247*284053853299087097729070352188775631164745307359 42 Pedersen 2016 1609267619523571903917902070308053960212241348994404213346320746093480382267966273216325001639041950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*288512435113895083844348245943076960444651102719 1609268824519202653484778280064209645727155480426348879472338024894693197613768013348747603381118050=2*5^2*29*31*149*4327*192469439440543402553158422280458933723647*288512050175417116894062300369776230583612689919 42 Pedersen 2016 1666462393101949881636861426268633401719946834576657256795668398583473709324490913283385263256199950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*298766418479179586993812337017684641652717153079 1666463640924175429687302742351524970248107562701045079078140747237597804875760148952611410546040050=2*5^2*29*31*149*4327*192469430627006304646614328168008574914047*298766033540710433580624297988478024242037549879 42 Pedersen 2016 1687882713683511007042309594722370524930146394164914072037447198505010334021899079223418773206190656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*167532897122130274268713877583458392681738347029436239 1687887852317815474809278689030990001952874850458043501130315573886984493367180437367704444119889344=2^6*151*1451*1811*396735172784552915090426021842038239*167532897122130273475244739841617782344286276228201999 42 Pedersen 2016 1690045852072202975285168230991413195603765856706460872321496744498033063293065832970013157951157150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*302994504033980429505301345186554177961283464703 1690047117553371431495207053485925209394697999592658140109180806377059013247799223296906043521354850=2*5^2*29*31*149*4327*192469427166567776601792202248190981344767*302994119095514736530641350979473480368197430783 42 Pedersen 2016 1789720448980120019601891561742575248189119648617141821329858593768852298976852081686711472264520896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*177640928143648641007483107776955328118018080887830549 1789725897651890859920656991801067776555999149602116581203868411660359009903579633320995170961079104=2^6*151*1451*1811*396735172784552914983507196706865749*177640928143648640214013970035114717887484835221768799 42 Pedersen 2016 1930718267806350453751901195662685957552033879508789638131062704539035071144904324296882324669115550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*346142693860082576865259133575530620819402658431 1930719713499440086533582388668666091192153241115648682027144303521200853977446810152563357613380450=2*5^2*29*31*149*4327*192469396685761579458900289802886653234687*346142308921647364696796282260362368530644734591 42 Pedersen 2016 2032368461510263293552008643978655433604729812973925843370629886303904969786630196645366716065096768=2^6*151*1451*1811*328481*9085995379*132928044795118424699*201725258287291723677393437965901958887342120283456167 2032374648905993440984567341873454450986040215618921812340193870239099096074248258937494757976759232=2^6*151*1451*1811*396735172784552914771933340274176999*201725258287291722883924300224061348868382731050083167 42 Pedersen 2016 2047477339332021463763217511109050681301253693949597278860496907487275389685942103777952684828449216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*203224908738844407889767682191669314266572092548724129 2047483572725614642487287127142250470353963600696565207461476136873519428775906156469911092620510784=2^6*151*1451*1811*396735172784552914760417819864033249*203224908738844407096298544449828704259128223725494879 42 Pedersen 2016 2076263245302370015001015704573207669744144319691788361674641356788911220297652690903548448199861150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*372236262988382923390860224665229860297328592383 2076264799977371563819168588319552008573416288800261208477720470617837578723122280780322840783690850=2*5^2*29*31*149*4327*192469381681546767051948839689996212653567*372235878049962715437209780301511720899011249663 42 Pedersen 2016 2172192951673632844715616619867448712504551588183969069789627474079088149134642452982582567248155550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*389434715780919568784728665006892600356348575231 2172194578179370086011555376232332238942338164349669207770626141735848918462358023895152968064740450=2*5^2*29*31*149*4327*192469372891532294125941711644426226482687*389434330842508150845551146650302506528017403391 42 Pedersen 2016 2186250512211392239091415950670346276140970307463036146628876855632370194354703702712224990159541150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*391954980883693888233298194616804234323105897983 2186252149243221487391465016409737576148380136074394142067337161421479793445887160713997252500810850=2*5^2*29*31*149*4327*192469371668243787607521647642787742539263*391954595945283693582627194680278142133258669567 42 Pedersen 2016 2242324889920299023920476253065087350793727006044481582136590928616198278931131833768645367400373150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*402008097633214145716881827786778537128394023423 2242326568939787326864080747694107539870657105908705363069617730706447211290533272219536475060298850=2*5^2*29*31*149*4327*192469366941269522343967357389401951522303*402007712694808678040476091404542698324337811967 42 Pedersen 2016 2259641679036066620492555792493332395263429062719191510802177267779668407525209368039133905889973150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*405112683182274665005542135454729156800972455423 2259643371022108758210540476724024685427130852678045451602719362915790343761451334995871979066698850=2*5^2*29*31*149*4327*192469365528906072161016820758220787731967*405112298243870609692586582023029949178080034303 42 Pedersen 2016 2317241758121384878202808640813265427069388668828746099938868355491525569511949610310380238493569950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*415439330458367881881096035256818383112759508479 2317243493237508542812132675554165261695679314446664846820552478992019356325556134885864231839870050=2*5^2*29*31*149*4327*192469360982906892070645371326874301890047*415438945519968372567320572196568606836352929279 42 Pedersen 2016 2394303473250359695883228477728541242317284435214583588675516081484694291248855190142391927124946496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*237649567835093770866662286318845271569999215836763199 2394310762530511218068748603032487920948314886242757857822741137252892878886906145197062501649453504=2^6*151*1451*1811*396735172784552914536036640537735199*237649567835093770073193148577004661786936526339831999 42 Pedersen 2016 2434359840032691846468608578401356457862216528645374888724732172774419177989587671693155218259814450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*436436473878244452981498692562580656683478232169 2434361662845091303090543209168203741427080659753638713643438025992846997810284809067722847649945550=2*5^2*29*31*149*4327*192469352402952447150375777848147083611647*436436088939853523622168149771924359134289931369 42 Pedersen 2016 2499469280684601647125993491129985070615564234838015271208980317172649863867292739930848647904392256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*248087930794091552851938282682420229521989421456481639 2499476890134289451426160595095970080154218217360643860905053518919836775576541090754646123418487744=2^6*151*1451*1811*396735172784552914480302607281833639*248087930794091552058469144940579619794660765215451999 42 Pedersen 2016 2584735024876964096152678144576392983315316006731892515069496178719298843294461281435389195452829150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*463396011393183924624334053284630989811016262943 2584736960288062807129667076275265204339846808002561329102155434751537680440929748223286205218402850=2*5^2*29*31*149*4327*192469342526693668161936058036336739214623*463395626454802871523782498933694504072172359167 42 Pedersen 2016 2628669662632927169658773601879890685780735625015839670887203395824662641199928420543535889783135296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*260911875326263232206348277517363670524240691872595399 2628677665423638877881486037252931837024264702889280980240849302529022043283111975522932969813664704=2^6*151*1451*1811*396735172784552914417935889043291999*260911875326263231412879139775523060859278753870107399 42 Pedersen 2016 2746173010012199015795569230342615191190542963286748413268976419583243180820243230894837134215195550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*492338907929582657923757339795879332056521452031 2746175066305657108715106501360477021223069820820560488374061532720103190791484023606683801008100450=2*5^2*29*31*149*4327*192469333127754682597740479756392654130687*492338522991211003762191349640521126261762632191 42 Pedersen 2016 2862365778060627937699852202135992001059293121674251290018192666654896681050190532801211916831469150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*513170159391785572759735329828940690911050811743 2862367921357500580466356872599186185902537831894878053719567626129172879875654367489502204966162850=2*5^2*29*31*149*4327*192469327019135605143282829157293176867167*513169774453420027217246794131233084215769255423 42 Pedersen 2016 3049898248639258620448762123913207987905992234842036259711244150507489995636339704179660365552181150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*546791322890734051335076550528404639884078326783 3049900532357652786044658218997243059551689698672866599527039101903594049270758221888131334874570850=2*5^2*29*31*149*4327*192469318141794359966550976040046737837567*546790937952377383133833191562550150435235800063 42 Pedersen 2016 3103131407817728582335956512224907230952117648733848243131943212944385007430160434705657085705601950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*556335060798001997412950928082875070754117137919 3103133731396319674060910450088000278717741835562341070753414769088758985149150356047366351340158050=2*5^2*29*31*149*4327*192469315817379699199473010075599890757119*556334675859647653626368336194986545752121691647 42 Pedersen 2016 3287647453758136739134564393722439653362189455224371536323037034367173860691689968248462652636315550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*589415434184011536363855807508883904155758482431 3287649915499595500565603338084203418514431552053251360740411506709000886779094255262014277518180450=2*5^2*29*31*149*4327*192469308343164779228077237820246893874687*589415049245664666792193187016767634506759918591 42 Pedersen 2016 3290547479056335250212498749960871501421144681741148311473253154450485275591403516440619205713179550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*589935356010887576742427796910559665819658317311 3290549942969289772197631994665637002634116687980436265455253188716069816990799386654860621193956450=2*5^2*29*31*149*4327*192469308232383797738828960063153434332671*589934971072540817951746665666721153264119295487 42 Pedersen 2016 3373612359455273116642292705036589508023588174331576934381105365343286530162012594812330797290353150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*604827379329816342047212736719112299972147455023 3373614885565973206321270503830749738958139750028902662923944206254908559620255805046777560575118850=2*5^2*29*31*149*4327*192469305140160010634088229081204236307967*604826994391472675480318710216004769365806457903 42 Pedersen 2016 3503938911425972317915859959122161031243430800450687707672014699710232604683419391170051989604891550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*628192561362246633514931444285151545457535652351 3503941535123253899765718105636164019337467119852149997532387205582503465693820165789399024891364450=2*5^2*29*31*149*4327*192469300584010283833423454706802493133311*628192176423907523097764218446818389252937829887 42 Pedersen 2016 3520246930562798118585850141033264450057244631826934967842318435215050032906194573211600288955061150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*631116292788870727850520836405792574807239376383 3520249566471281596036623013056955928861390787038754627323824405007503156546464690318292578780490850=2*5^2*29*31*149*4327*192469300037638418242997545746550398893567*631115907850532163805219200993368378854735793663 42 Pedersen 2016 3579689550248500975786836534146728599800908150884390566430671687704324493108600713525801204653089950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*641773274105718806536968973684465051513737866879 3579692230666732945403151075650441961769550941588496162718289061685547118254187500268563923395550050=2*5^2*29*31*149*4327*192469298088259746523249131587475906391679*641772889167382191870339058020455014635726786047 42 Pedersen 2016 3590259628824900541210752221395202049988059912564617707732767836122763759701751764986064459720766050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*643668297079166252354817158837931997051324560641 3590262317157849955407149728011980705463527080829759399717450216926833090369637750500683462940609950=2*5^2*29*31*149*4327*192469297748381201731560306130979323475201*643667912140829977566732034862747416669896396287 42 Pedersen 2016 3890297850337291518582867023655559769785677153707988556475825676758354022626238775291036841804639296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*386136349552786475840831789314503921474525827185771399 3890309694061873965385191543097147009128030470087382377470975719303377695478007014979149350784160704=2^6*151*1451*1811*396735172784552914026657890584883399*386136349552786475047362651572663312200841887641691999 42 Pedersen 2016 4018119165757137099028614010369730336605153300565282236876345495007399000385959159794280301978245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*398823413122218628735677926253335619434202205064777999 4018131398624277221063216284218179146145045085269114635214770827541001772960457812139014544997754304=2^6*151*1451*1811*396735172784552914000723829602475999*398823413122218627942208788511495010186452326503105999 42 Pedersen 2016 4129704413067122308856734468590434313987841601815472508716243024550061571726727566936309058636497950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*740380942274432010788243337663037558889440242239 4129707505328293577764150772962732851941036086970674422566322720289374350742660255305571907794222050=2*5^2*29*31*149*4327*192469282712846517707149125795737062952447*740380557336110771534842238099033313750272600639 42 Pedersen 2016 4511040011267351663709724912516326181500391447783510340879972939780363595531421783414892318113985950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*808747484108495496151035340073499746347623571199 4511043389066940599025724901185537428304384835185875788381097277472251561019402462379928112119614050=2*5^2*29*31*149*4327*192469274253665382392730285777064109203199*808747099170182716078769554928335519881409678847 42 Pedersen 2016 4788423076228052768099813108728766937222926100915762990641388574506227121310272397536262091043717550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*858477226110549988912262737830718651821104827271 4788426661727950382044649649601684690331477574548081411989391565597077677422665041862810672434298450=2*5^2*29*31*149*4327*192469268946931321734474240541240392158087*858476841172242515574057610941599661178607980031 42 Pedersen 2016 4886704952071568608714973699428972433774642599163429724438214749736328410817490537789038884204452416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*485035975168544325615035531768800814717491260504433679 4886719829284006981936836530444518935689223731331858580454260973072264806959124206690562942038107584=2^6*151*1451*1811*396735172784552913860427374286251999*485035975168544324821566394026960205610037837258985679 42 Pedersen 2016 5063173665900089412300183138098580117699065651741493602932898818096474340466483996561496168875569950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*907735013139612115176837456437431726612395948479 5063177457129137407513722595707738860309193841426497374027116239164207857000013855625815109777870050=2*5^2*29*31*149*4327*192469264263762258450269763454261540769279*907734628201309325007695613752789822948750490047 42 Pedersen 2016 5142925015194909083777618338332112817523641028223736277574108786203630267148355418452459592193025950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*922032980556292751746571765054427208104799487999 5142928866140579895953654341987721121699109947466876445011196278761349429233047700124888131070974050=2*5^2*29*31*149*4327*192469262998089172246685972341417983167999*922032595617991227250516125953576417284711630847 42 Pedersen 2016 5459487214644252614482211495139982387656672687029361961275567969968366618405354807240336645687135950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*978786829276109638097785046181606946940670994199 5459491302626984614692973256746856617899021079042021518778817500251666122804098208457103899490464050=2*5^2*29*31*149*4327*192469258338866024868243078603278489773847*978786444337812772824876785523649894260076531199 42 Pedersen 2016 5513173799600779889290507248600452513435553815949701163048202762901148233524911972873424197714488950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*988411858184192884991927625462277108230087836459 5513177927783227286517127546950749506016864630011414709795726273283668415869394831723336875048391050=2*5^2*29*31*149*4327*192469257601762096643488472733002819240747*988411473245896756822947589558925925825163906559 42 Pedersen 2016 5529592870185800303546540150735554616538531570247498574025346966189246583439670741854690506363772992=2^6*151*1451*1811*328481*9085995379*132928044795118424699*548846614719111732859085955257898452860076053809012023 5529609704623040594548939680798389978608979566609548670306400732531038424260588250981039535381635008=2^6*151*1451*1811*396735172784552913784970484496764023*548846614719111732065616817516057843828079520353051999 42 Pedersen 2016 5573484465287616530033096177763374879829976252721456246354244844395510862737332150157847190080623550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*999224464371969598210517847690483745817710635791 5573488638629792339462120279356104384324491202474884059906555900076301143067874977660986042839952450=2*5^2*29*31*149*4327*192469256790647677760917229988460820516351*999224079433674281155956694358375307954785430287 42 Pedersen 2016 5662517384771729346945767737118293422082082963781947308152691599756187287788692007692432603853845150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1015186448627432019196939344506053244046618977663 5662521624780429524146344603346085707600841501872977176259359783349632986111943633003623179373546850=2*5^2*29*31*149*4327*192469255624829714462154105214647543850367*1015186063689137867960341489937069579996970438143 42 Pedersen 2016 5700094397202425395339234950443772234630577130824550183753788972287576088919412578978963491932853150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1021923323979397939784946231417755435549962305023 5700098665348232941304373481266912572674437934415966961321339326104008589332649954832676526732618850=2*5^2*29*31*149*4327*192469255143716685513133655704002252307967*1021922939041104269661377325869221282145605307903 42 Pedersen 2016 5724669018332661163441690024276363684033956448270925016699387976962229483233267141245748408279827650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1026329106894724814304117974520368941598428075313 5724673304879579084091984656971880427809825396334913149640619525856510743359138420546967528086764350=2*5^2*29*31*149*4327*192469254832494273589727784662870762540543*1026328721956431455402960992377705829325560845617 42 Pedersen 2016 5783073257792439758859827503302870140377803601387304421061541373527465669686421986833278529455665216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*574006125717779109425721037906527847043578625522821879 5783090863932005516949751053431069535965233342467985441266472195815576749635847187364316797561294784=2^6*151*1451*1811*396735172784552913759830475828251999*574006125717779108632251900164687238036722100735373879 42 Pedersen 2016 6137978332083498016452045283706317666784877921664442935230146122070516459750577465534616384922293150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1100427954792260710613742514830895947013867789823 6137982928110275704183957019732715758947068331463087355043409824651480616368382084667499108277578850=2*5^2*29*31*149*4327*192469249971603027675025930466497214995967*1100427569853972212603831447390087031114548104703 42 Pedersen 2016 6222368940596490961575924557153656959122800039768041923143740997822627324959699949148042320455349150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1115557657066413976940283350894778314740882681343 6222373599813699688092671005783217088583264469672975132246407340308577158317038567558469265611082850=2*5^2*29*31*149*4327*192469249058479704585000536989404658503167*1115557272128126392053695373479362875934119489023 42 Pedersen 2016 6240528365033873428899496892042295517924690362610956862749235015532275842938239271814689272859931550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1118813311813414401416174207560197536199733489151 6240533037848588771780660715525003560894902594649952750796380134266781559687609798711773632426724450=2*5^2*29*31*149*4327*192469248865219968371453110397902314597887*1118812926875127009789322443692208688895314202111 42 Pedersen 2016 6308755131905610998883769153862998283330337439885753804460939016597162897868320325959624798704043550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1131045131065417132129343385723600688072774032191 6308759855807513446761451917079451471289612992755467735744196801557611161018373358276901045595732450=2*5^2*29*31*149*4327*192469248149066370183060287505834780564287*1131044746127130456656089810248434732835888778751 42 Pedersen 2016 6327987513537254206825768203600443735622721695649045002226969026709989466014761002373427638824227550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1134493147535932993633676380347853850944131821471 6327992251840077641294416413859882822099061946537149196846745199559067723636931655260692837831388450=2*5^2*29*31*149*4327*192469247949980608999045431435825220505087*1134492762597646517246183988887543965716806627231 42 Pedersen 2016 6391866402275405798747222324861449817269259380261215899419955348582349965517916474473075882246245150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1145945471262964730817381221248885407003006985663 6391871188409789933727996061689720608787866712892185244193620963215680689660827124785984906805146850=2*5^2*29*31*149*4327*192469247297330427448837806444782046930367*1145945086324678907080070379996200512818855366143 42 Pedersen 2016 6612910862597454011714048288263249941076552748421552670826835036806719534311505343236883118505407296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*656372688836655604297607248750133514762736583335125899 6612930995116340215871019553213306517321978281576031675200855814547189694386452465530196864547392704=2^6*151*1451*1811*396735172784552913691010477197437899*656372688836655603504138111008292905824700057178491999 42 Pedersen 2016 7246744340314526712311809814172737294664710411514848561940332850001706230596156810234616919099748416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*719284618649124390370149847101969227291520600696082679 7246766402492639539588079118966039133117988018512647598801882638622867916700186151517222940550811584=2^6*151*1451*1811*396735172784552913649062359676259679*719284618649124389576680709360128618395432192060626999 42 Pedersen 2016 7297468809193893455880537735577421549837420395226891076876405583199263584238765937238828123715765150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1308303523146472658532387898787353557205195544063 7297474273429875046811871965680492252528938095068379115694324577063264829331031990692167748650826850=2*5^2*29*31*149*4327*192469239274012241118637419014520554540543*1308303138208194858113263387735056093282536314367 42 Pedersen 2016 7572075174896548112999602457501371615507208283731186688548942523241402948069869339339078027459223616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*751575735086795518952863451437573074867959361687591479 7572098227520367464508250339101986251154486338432335041354629530019455302186382138859615782040936384=2^6*151*1451*1811*396735172784552913630258790974768479*751575735086795518159394313695732465990674521753626999 42 Pedersen 2016 7620830173168699561312907257589520776644955893354326054631475381097446383991692942230472855941493150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1366276338488237713017787395414458548437241453823 7620835879532855494196402144735121787317090139705396753671560743540730148916143255840558152650378850=2*5^2*29*31*149*4327*192469236871144064011482080130679005928703*1366275953549962315466839991517499968356130835967 42 Pedersen 2016 7771142753149176446561806526844009190462899376098714404338410334267532744549671965958776392285087936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*771334435047036128164132526471841721812207927302450309 7771166411819540515563562968355907245238064218523566718487978079982960844805125864070979511566432064=2^6*151*1451*1811*396735172784552913619529435352602309*771334435047036127370663388730001112945652442990651999 42 Pedersen 2016 7781072423407279376062996368876548107360189537866451272983865845942899016825885015242214297658013150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1395004861490614330363136240636843890234979752223 7781078249758446205327169246775378161202224188874087326329400881930453266979866259329509584969058850=2*5^2*29*31*149*4327*192469235754405199529867083982293278739967*1395004476552340049551053318354881458539596323103 42 Pedersen 2016 7881491193195114502394300249279598797908665209122234556647608937363541666501267906111720989852981150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1413008121763263828459591917252963403476499062783 7881497094738360866205720940137809219381171422462016423063311425273018015783516591096278318381770850=2*5^2*29*31*149*4327*192469235077725145661904176931746903576063*1413007736824990224327562862933908022327490797567 42 Pedersen 2016 7938774721876372971270831898665985944064841472194863395484069397728927829298397165116377282428673950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1423278017305336189800003079884460092574108124159 7938780666312672632997616888265445349231109714947439488530101152838695001232416548448861910679806050=2*5^2*29*31*149*4327*192469234699383440166592024869187590901247*1423277632367062964009679520877556773984412533759 42 Pedersen 2016 8237972829716925275643983650444599073484602681307884043946676836467014440092430067592824958249571550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1476918799998834681138035624502791311747850657951 8237978998188312888211328661996540516798143035555809070472845381193584892236157884011161355523484450=2*5^2*29*31*149*4327*192469232808776147314544866167024385482911*1476918415060563345955004917543046695321360485887 42 Pedersen 2016 8619034852589077409025788033630359269313723340528797626209173426354853622082329071440708926608611550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1545236294748912216837304863873097768493664174751 8619041306394033556002449223345735396377213088825575568850220280391521829334729642248852052994844450=2*5^2*29*31*149*4327*192469230590922000662475766389039217331711*1545235909810643099508420808982452930052342153887 42 Pedersen 2016 8704575973971177426509616596911085212499613583653907364420210643983773130791510741581131336232811150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1560572263069476226469399172661439541385845531383 8704582491828051516982217727942026818610046862432591024701201197186400391623885707354660447342740850=2*5^2*29*31*149*4327*192469230119744028495155052769409521148663*1560571878131207580318487285091508322574219693567 42 Pedersen 2016 9434584229219401497255767504546952380913266068984817981812756467335577037689204520359515209850139550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1691449475050703182642105994316913915703221120511 9434591293695586952266589940734552769989042201286458790186374477956796872398438564211109352186596450=2*5^2*29*31*149*4327*192469226446297964830630775146353730063871*1691449090112438209937257771271260319947386367487 42 Pedersen 2016 9608918724976777249609436647191877473802533513072448066977902351588343528734070122577426921627863650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1722704481542540912384473153144776273958974898433 9608925919992037205329574283100416190580757556490981722381364581333746787822264500484104871010088350=2*5^2*29*31*149*4327*192469225651599614973985948815532439981567*1722704096604276734377974786743949009024430227713 42 Pedersen 2016 9867954809460171839202423207878469861267865955941138188080175892642955994789211974097224693055889650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1769144943408540781006845424784758952200945137353 9867962198437794687289261145264572842784487437045399601094268738669318447410077093422090111155822350=2*5^2*29*31*149*4327*192469224522649230798986949420644896995017*1769144558470277731950731233382931082153943453183 42 Pedersen 2016 9909695318317547557157748060238476915570795099298556292430541009605115616443695877262862827002139550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1776628257996638835309815559283201888443160960511 9909702738549841901892197583028251449350437840146982692469262507825638945322965885058247218554596450=2*5^2*29*31*149*4327*192469224346254120688863494265231743503871*1776627873058375962648811478004829173809312767487 42 Pedersen 2016 10502962407315928785995216201178262860513399098005493175616522351373601016884898486421375324948533150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1882990264193301595691150726184960886132991130623 10502970271777785347489648151294777380054524682252790136297311098267448274388526974943666593953738850=2*5^2*29*31*149*4327*192469221990692922737793378904118098197503*1882989879255041078591344595976703532612788243967 42 Pedersen 2016 10623496265082981542652111291269660293720515438043879318630405843212318991217149344036758561458037950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1904599794141054881526381572914818090742553009039 10623504219798795994436934044450784393205712202320488112700084639501402295837438504293048174803082050=2*5^2*29*31*149*4327*192469221544270485162308323733911291645439*1904599409202794810849013018191615907429156674447 42 Pedersen 2016 10637808686239994241823355089727670596657598264314907813653539923819609462745413836003128067441333150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1907165751120670154944943421973885558814508506623 10637816651672736537314999398132962955652472265222822576431885761344514580248043699315098693188938850=2*5^2*29*31*149*4327*192469221491933379836210856437647805013503*1907165366182410136604680193348150671764598803967 42 Pedersen 2016 10649890954524250184292844209214239771126935812547452706103174527290709183680462743848145990436571950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1909331882224098477700749587405065915153031605319 10649898929004015060393382093639521740833696409272215726854044572479212036477190689087667644676388050=2*5^2*29*31*149*4327*192469221447860911467213974765768037608519*1909331497285838503432954727776212699982889307647 42 Pedersen 2016 11166144746486899601804424736600768618598606104242032721940166991021506273962679366113706010902811550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2001886804008967265769162308241379674288563338751 11166153107529816638425013410164119417563469040038873916013001462474422510888079746398074548092644450=2*5^2*29*31*149*4327*192469219653825254573105735158294450355711*2001886419070709085537024342720766066592008293887 42 Pedersen 2016 11267255008518911078425197014045613957899754749748460036236299916190562789558334619973908409471215550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2020014036272856328294503614357040385907557340431 11267263445271686745388423479489378866470323522845930256557673946772891204366489745734447075307280450=2*5^2*29*31*149*4327*192469219321709037983806564890503811896591*2020013651334598480178582238135597046001640754687 42 Pedersen 2016 11506765183780160350146733378298622994066213911971788038711212011946532909919887003491478765199385950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2062953857506341755221621386766266246484336639199 11506773799874588833881216855593950001665777398651905412183235403265395845981489440257337334538214050=2*5^2*29*31*149*4327*192469218558279756293757667752551051251199*2062953472568084670534981700593720044531180698847 42 Pedersen 2016 12294284381932119049233329205148119517382225144576716089631055075295242345495052570059712253343621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1220284480580712488741542060086738788201723309076821999 12294321810973225826374252977905163661978159185239652036670833515755607437155060254929425206880378304=2^6*151*1451*1811*396735172784552913469379566943597999*1220284480580712487948072922344898179485317693174027999 42 Pedersen 2016 13044650144924695117622219433944634096275718484133738531891686476715998807624927118760712408415323550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2338668679380534400038626209018411052902135809791 13044659912564482677965963503423338740014985169752326891490465985392187321924664107743055509177252450=2*5^2*29*31*149*4327*192469214324245515458872228080160386500351*2338668294442281549386227357731304523339644620287 42 Pedersen 2016 13249034088488165931774276542319384294894552479176594339144609920086869197082963253574937425856117150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2375311005703570280047909829210592020551452827903 13249044009167607059658752950848174652947950507739891157913407435727024228220477829951735606425994850=2*5^2*29*31*149*4327*192469213835541049781724550889338228416767*2375310620765317918099976655071162681811119721983 42 Pedersen 2016 14353717785125571343525219935049298048466332009972474123423356197806690619545421334402881189286300736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1424696103301899566013819878810366955024328061605994759 14353761483959625002514762788490804995367902283678931337628752282268991738721363633277502215339619264=2^6*151*1451*1811*396735172784552913432366676169276999*1424696103301899565220350741068526346344935336477521759 42 Pedersen 2016 14480958788006002221250030506058969207413917187218463609494711625236289174937612007169337884625853150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2596172713615191072956982375198282179876367365023 14480969631132314411478625373919367895134108298384545006169017943662309566125624548302999037719618850=2*5^2*29*31*149*4327*192469211182042812947731808389226405907967*2596172328676941364507286035051595341247856767903 42 Pedersen 2016 16385207023714306430556157992672344052897105050554604660340623950746959668031004926827023600748953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2937569811823252003879913333747768420585047681759 16385219292713342369743148931046735720502706730867479683772184147994727854009368870414512549492326050=2*5^2*29*31*149*4327*192469207865462893883142139697328389967359*2937569426885005612010136058190750273854553025247 42 Pedersen 2016 16510921122238413412620438082292081278651398711616622065197528329246928714990499909402802714423001550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2960108064785848794546510657119343058403195238551 16510933485370294384765352640623224972981415655512822140940941112483724835591411941395048204226854450=2*5^2*29*31*149*4327*192469207673429439841674422748249610341887*2960107679847602594710187423030041860751480207511 42 Pedersen 2016 16812467404080173567338867622631874021799184238322088727520301220733970061162051248761028804520210496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1668742353448304193096872225046089512500666674372254199 16812518588395911249453030830110271280703769855348610747980551900541446893266319329190675649726189504=2^6*151*1451*1811*396735172784552913400052628745126199*1668742353448304192303403087304248903853587996667931999 42 Pedersen 2016 17060227306698715728801978036362557967738573123209436833328099535926920979394881501821761693340748096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1693334070597772107418959717642466133498423441799146099 17060279245301184678404863245065313011484239730648879368377654350097394736836163800065560654230451904=2^6*151*1451*1811*396735172784552913397313025551224499*1693334070597772106625490579900625524854084367288725599 42 Pedersen 2016 18253904863501959213855231142809594376376818744306256597944714164202963421003480412774506146627995550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3272593370185052461058982343180677633149965228031 18253918531754111798687048068981254503795319652387667151927447349349811470758650931989550849523300450=2*5^2*29*31*149*4327*192469205283514822462241183243302839048191*3272592985246808651137276488524615940445021490687 42 Pedersen 2016 18361214812129068005839562508686629795575994271310882014806360558848882202607382344926303481805877150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3291832093573720412096634105709709862074207407103 18361228560733312227181514951626135586322410050853080432315949606602436296352894614543470890533834850=2*5^2*29*31*149*4327*192469205151202918469373248771460558048767*3291831708635476734486832243921582641211544669183 42 Pedersen 2016 19451975795735512029368149930395405393598267731037822107736418176012505974865871393985871802236312950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3487385712928026316264621411892212621776963834539 19451990361085338832546636347626011125755359378081954187535263785796104341994819834133164948488807050=2*5^2*29*31*149*4327*192469203889141226705764786694041743200939*3487385327989783900716511313712547478333115944447 42 Pedersen 2016 19539586757866724370150892865383174790303596288004220634487828396273348019421592600039362457568696896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1939425975262657934474431396390208786381190799142230799 19539646244695989880948506342427220713401559732239611026616757924535971369204661159994803621304903104=2^6*151*1451*1811*396735172784552913373723879616171999*1939425975262657933680962258648368177760440870566862799 42 Pedersen 2016 20525914949053595117773362621199216372423649366748607690684623175301050949246962364685524222004931150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3679923483854955968217481695510969142982687981783 20525930318553068467807009752209103212756682564518572452189950445385617200376150875734088442261820850=2*5^2*29*31*149*4327*192469202777589841767908503686994720280063*3679923098916714664220756535187587006585863012567 42 Pedersen 2016 20633249850234834948319362737305936154487960576026099268592418892552826892691145823356807665813567296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2047978865137406260029296922847254228937836025917915899 20633312666640639405085119090700603832219337405048953409018400960084390360511205715394644740919232704=2^6*151*1451*1811*396735172784552913365120413444227899*2047978865137406259235827785105413620325689563514491999 42 Pedersen 2016 21470660147871593182978064722633054540063730838977746998871658797125641017665145453774094753657729950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3849299126890535651590804647344823261124643335679 21470676224782203708784305006432565447683779381491963457384823193712014874000490256581244765277310050=2*5^2*29*31*149*4327*192469201891693562511067706038864440258047*3849298741952295233490358743862238772858098388479 42 Pedersen 2016 21538901290315831319846505889077326434399832438480231305084528506235352303583121822902157082214766784=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2137870424728346169795865676338898123193992136135623621 21538966863910580341786756274881133844490042927638128414039548917876285829848462585752315973991057216=2^6*151*1451*1811*396735172784552913358657284659375621*2137870424728346169002396538597057514588308802517051999 42 Pedersen 2016 21581055201969837403937438511139454702372797986008080366969348427166522750285496540196793809362154048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2142054463635299613467035320182019138233637342042541487 21581120903899058209203090001027617261698013869387804613234926528653437564021873696265946454885141952=2^6*151*1451*1811*396735172784552913358369667647301999*2142054463635299612673566182440178529628241625436043487 42 Pedersen 2016 22603402190552869141804019888347891877046331182872444979614901323629937393733010281042706851623583550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4052379187114835480700607554957887559116691958991 22603419115643854167020052963698642176866942976585309002634768613695102184952393073690506638986592450=2*5^2*29*31*149*4327*192469200927136533353778104892626185047551*4052378802176596027157190808764904217088402222287 42 Pedersen 2016 22950822837472337850634853190264610099654225397251326186626888358403352910121523167777598129648213696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2278012453191968095816740952954396829706468248369088749 22950892709557994218909498896624957443126938520617286333037578152304401310710006385529030869391786304=2^6*151*1451*1811*396735172784552913349598672408232749*2278012453191968095023271815212556221109843527001659999 42 Pedersen 2016 22966111018621499935510034932433431699342235423777438829916051557079981301166269932921029917163577150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4117406287613115877019152783653920254319196241103 22966128215303454513937819242555463565606183822852546924197666647630687902519454887362619704328134850=2*5^2*29*31*149*4327*192469200638392545700025127336720943938767*4117405902674876712219723691213914468196147613183 42 Pedersen 2016 23161788374392638066968159431302230929701315478878659688135435375138063364875625548212201812354549150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4152487680990615646339731714092888529888865945343 23161805717594882919214027383916330041531382967511924192731829012509531051755269387263184277903882850=2*5^2*29*31*149*4327*192469200486373809828487353777351676743167*4152487296052376633559038493190656303135084513023 42 Pedersen 2016 25993553690324461271556350257696684443566411830886885410145326328002375894639190836230701760332177950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4660171733698041463727057725243902688953554667839 25993573153910408379754022990195055047245907616245969022515700512922428415189542145620146623135342050=2*5^2*29*31*149*4327*192469198542645326470178023498974055976447*4660171348759804394674847862651000740577394002239 42 Pedersen 2016 25999305609001287289624024985604934499491969510605712760574596955063978737179056898585492416074677150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4661202948173430875559742135682881015424238703103 25999325076894185454261977208961852520790837919958332583058150269716551660000134296608497571753034850=2*5^2*29*31*149*4327*192469198539128091264518429698954538208767*4661202563235193810024767478749572867067595805183 42 Pedersen 2016 26508665663302377387483175185001309785338420999198157690855794830317219072989581098231602639312821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4752521948091952986037935245795419353200989315583 26508685512596499602652856831227440322134007129834555498869950145601744640406020097830525310560330850=2*5^2*29*31*149*4327*192469198233712399506132187889339365805567*4752521563153716225918652347248353014459518820863 42 Pedersen 2016 26993109454084267198438347009810785555837517056944368562535067084532366065476579777720625748421976896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2679234636693749503577026104941650532670352989149988299 26993191632613083519507179395037280636885143396916164949183774000432781740486364766184791943891623104=2^6*151*1451*1811*396735172784552913328904463055432799*2679234636693749502783556967199809924094422477135359499 42 Pedersen 2016 27107744231551247874433521973381890323469246263536791686603763634439748701655373688290742152128795550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4859925846892326319198639536856639376464089964031 27107764529426481433477620873844849573912848594425033532088426310427619931807637326659090963830500450=2*5^2*29*31*149*4327*192469197889189087059454664291232134450687*4859925461954089903602669084987096635829850824191 42 Pedersen 2016 27364671406147185761388560338467296833804745330307241304334551913142030441156657173660821941769077150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4905988219545764988070228824676151424837929551103 27364691896405661891729191747223832647001171331437023094343972991541500091851138842195469799402634850=2*5^2*29*31*149*4327*192469197746055188468109389072370900288767*4905987834607528715608156964151883903064924573183 42 Pedersen 2016 28540361400898682170392207022656959313204638016104509089078527012719482235135959466093885273807621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2832809052218144629500586943804032651396417957274071999 28540448289921816075845787757853981589499950743930378122657413469119601739322846456260327258416378304=2^6*151*1451*1811*396735172784552913322534725122227999*2832809052218144628707117806062192042826857183192647999 42 Pedersen 2016 29357178145665026289720881754425457641756869464416959916113800109161736025848087986987258702917414950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5263208463354143720979964900423053376559091733379 29357200127882879611081215499305950305796902133157866509346363125159933696346229253241246470443225050=2*5^2*29*31*149*4327*192469196721084783788905645462356420546047*5263208078415908473488297719102529464800566498179 42 Pedersen 2016 29409714711707955223268680429526546495537438612020367551594174659139090411092534466298376378634193950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5272627314773061106015635406745891869216533802559 29409736733264406903463476114231215399162816696181714449036729409086305164974236977910297561149486050=2*5^2*29*31*149*4327*192469196695938568387301566567457901596159*5272626929834825883670183627029446852356527517247 42 Pedersen 2016 29978463209024091921646981900077616675026557698700994703968798011197379485134844868523798508709537950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5374593583116064749201724176244118123682425639039 29978485656450949460267681382915627825112222779794416045601354893262639891753111389823144212191582050=2*5^2*29*31*149*4327*192469196429353296237885356328665405624447*5374593198177829793441544545943883345614915325439 42 Pedersen 2016 30769949997609457535394565986401039704463301009399458420812601314900713404081884276818762213802933150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5516492778728318015278336168795177193736089178623 30769973037689836757207098516376582222784328202174716381296291877375560750480568249212952300043338850=2*5^2*29*31*149*4327*192469196074765667409296254987651375123967*5516492393790083414105785367084043756682609365503 42 Pedersen 2016 30805564843364002826898991921608282057077815968780452773323759653627030869037463955655738483274821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3057644636000535268293272194367940467379580596852746999 30805658628631776058257728907898611649766610099263354036157192765491505389524631047543221914549178304=2^6*151*1451*1811*396735172784552913314363419028507999*3057644636000535267499803056626099858818191128865042999 42 Pedersen 2016 30849625874028225155911648819996724320598434377666657242806459673012818353860466240606975518466843550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5530777215230071479631122326984746707565604808191 30849648973768714228925427202125805992576456397995332503413752490677276192854928890439019122760932450=2*5^2*29*31*149*4327*192469196040078708834846609727898649994751*5530776830291836913145530099723258530264850124287 42 Pedersen 2016 31128836158021274672525987855900317998264626363684629621629875065529975154376103274109499924014261150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5580834544394207421077699579300083864952229840383 31128859466830266827442642744203774855884471042508092617897212550883212687624986777118771089513290850=2*5^2*29*31*149*4327*192469195919925689402087066872647029933567*5580834159455972974745126784798138542903095217663 42 Pedersen 2016 33057047020289194593705875201532367169927037350485197069760105508697900162397417598167935042233936576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3281118298513465665632470467786453549588452692326385469 33057147660028227262893865719287122590635297781143769509561431176036905539952713201166658736080303424=2^6*151*1451*1811*396735172784552913307351317552570749*3281118298513465664839001330044612941034075325814618719 42 Pedersen 2016 34404646671332141924117774334338158502418914239379072852287978922899095731894336687095429690730653150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6168127830297033178445964475955028464601617781023 34404672433019268091145467972378575073729349129235573189587232961268321517798101901603583406462818850=2*5^2*29*31*149*4327*192469194655903069364673743435287882223903*6168127445358799996136011718866406579911630867967 42 Pedersen 2016 34698251015811718311509221890605155497896301037761318507363691926197098037629497471315011475263170150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6220765752888739626854128957271607237730303744163 34698276997345405718438915789343975051658362117210528433990274107705508570716625708217334548476221850=2*5^2*29*31*149*4327*192469194554265599448344779839192298952867*6220765367950506546181646116511948949135900102143 42 Pedersen 2016 34854068470807772646387239605459372546197197912901247404682122903955094108369553364162720910707909150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6248700990526510854569824371389294516520294836543 34854094569015250159371149305684563058855002375751112552916429474171427902368776481288122322744122850=2*5^2*29*31*149*4327*192469194501021547790171998321278876412223*6248700605588277827141393188802417745839313735167 42 Pedersen 2016 35581678423602020760355188612614112191747342745923860305140568497255810894246748619867290559063901950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6379148230467822483084997837375592936583677023919 35581705066632996472188589754107091106416688679624755668591842797998957633567859775946113336989858050=2*5^2*29*31*149*4327*192469194258564521836929552430226243931647*6379147845529589698113592608031162056955328403119 42 Pedersen 2016 35605608691093230468807856220770128714465977154250014655188919695413151504744174090175020343493045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3534078955520511860720092783738064129217302385416759249 35605717089740108141802140867329286173087121212718758143423760735571902030969911685142770173882954304=2^6*151*1451*1811*396735172784552913300484024385567249*3534078955520511859926623645996223520669792312071995999 42 Pedersen 2016 37247971406345673531490519492311750945155039288818238176907360920367731967406290210646382366843265950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6677884276748858738903254516846499561441696908799 37247999297072022837681182798106705468734683278645645336611752176335074781507477879969374672363134050=2*5^2*29*31*149*4327*192469193739001349036584210853051841676799*6677883891810626473495022087847410258987750542847 42 Pedersen 2016 38538871160000626358399062823676290114878240714202540702586521794281232846643030335208473736337137950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6909319139972652303351801253926951338426926031039 38538900017333489098588280691789855542788024771337851375578798028880985080403025783127133533939982050=2*5^2*29*31*149*4327*192469193367374613441027425493194730037439*6909318755034420409570304420484647395830091304447 42 Pedersen 2016 40452416328642722564620133672738589142549194261330134997260934892913394323280853599425165677863370304=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4015154873135833543843816649224243466364503737214794751 40452539483037610189819502472267837657475104564088739200734793302963577297390699348978250312015413696=2^6*151*1451*1811*396735172784552913289811533033546751*4015154873135833543050347511482402857827666155222051999 42 Pedersen 2016 42285170876924314812831534753473708197089912682499093870845001307271967753617890927678439238092213150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7580962588758466433562051858473839602879977716223 42285202539430621425486943345530742764802980360882694148402530829824853249201878377070295750326858850=2*5^2*29*31*149*4327*192469192417357381396653178982505262447103*7580962203820235489797787069405782170972610579967 42 Pedersen 2016 42389126296169966372897450809727517320874915236779799820961547505140950460391446304952429996043340608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4207385428680218872550373706739061899555916584740067627 42389255346735361735296802339192606794129074567839661195411634150557711388910946850673177442470835392=2^6*151*1451*1811*396735172784552913286229425945132127*4207385428680218871756904568997221291022661109835739499 42 Pedersen 2016 44967684293583946800469557865757848993600542239416771059278353702188093265665790718559710748574597150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8061888488637873497191089128494386364549607229503 44967717964716355924846947410129604145890713469147978869582100284457803220679168646421315195272314850=2*5^2*29*31*149*4327*192469191834356344242545532510858800352767*8061888103699643136427861493533975404288702187583 42 Pedersen 2016 45183158032017549438277886082429863304643272874178335985685054792928963023081126819737150794324251550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8100519013619776662451715088390403722486226263551 45183191864493485396703418621897933530742546193155425618001528088825508453268964780106469135525604450=2*5^2*29*31*149*4327*192469191790530198680592488673847114341887*8100518628681546345514633015383036599237007232511 42 Pedersen 2016 45488240548264681614935874559957997630941044452616991511445851711356637320914423648913616707409691550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8155214763789156915649650054900279500916300068351 45488274609181862917447712135965373774634511269097655910978441105801586668079432955413446673934564450=2*5^2*29*31*149*4327*192469191729188240754366358262691853389311*8155214378850926660054525908119042788822341989887 42 Pedersen 2016 47033660957325738001394515502554810005648229230546098895580351477470172071427536270884095951088821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8432280554515076794631177378228144306019903235583 47033696175430709574053013361709562962845636804004532454446293279413431616658006499151353972544330850=2*5^2*29*31*149*4327*192469191430681079661277543737015417005567*8432280169576846837543214324535722119602381540863 42 Pedersen 2016 50735680116742704394903668641082537835052018582515634802397346642794877540597709056331711331438067650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9095985304156340021745574595568557468898842856113 50735718106864497737266005897391679498697417569594101473471970208887693352383466186600377678950924350=2*5^2*29*31*149*4327*192469190789571269834167180662644672122367*9095984919218110705767421368986498356852066044593 42 Pedersen 2016 50972107023453584762568542491564562805822032866463472569810371228635865127693792956217647839968251150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9138372351378352839252030845386480248345692336183 50972145190608325342500827498623995532848162652079482599560042046159356854314940634782803139101700850=2*5^2*29*31*149*4327*192469190751790843367243578307228621950463*9138371966440123561054304085728023491714965696567 42 Pedersen 2016 53318284359399985157501854143121098385049907353138491726021838511494327974062458265909229415545179550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9558999305025332681240860364214753451396763757311 53318324283337379213088997407906435530378722788244612070604174076146023041769274545512887651681956450=2*5^2*29*31*149*4327*192469190395037452559130583732941297372671*9558998920087103759796524412669291269053361695487 42 Pedersen 2016 55942069032164570819415372590362722708591715981555707353846785974272864243015518641447210493356232256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5552599608957233282461381766281675467754311257891816639 55942239343663504439343332076273583493726398717871624125948571086073266678865610320819316334286647744=2^6*151*1451*1811*396735172784552913268102943942168639*5552599608957233281667912628539834859239182264990451999 42 Pedersen 2016 61317402343832449074233251942314496412438549447314840665064738958593727152167183266534382349701867550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10993095772544642067955463501663118039549737950271 61317448257390279254064534572458947885517497715793544854788987686944113796330515749493833818320148450=2*5^2*29*31*149*4327*192469189383927906743782632757971618713087*10993095387606414157620673365465606832176014548031 42 Pedersen 2016 61593272526833482950030055809989648858153474422180637535331310795826069371377575139848429741557733550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11042554282308547944771997860471108512829429001991 61593318646958798324613352907692217819795087762952496998884948108094279008201977047441737447356442450=2*5^2*29*31*149*4327*192469189353742032759716192195269741260551*11042553897370320064623081708340037868157583052287 42 Pedersen 2016 64042667633537342956583533652811831966174686102190605814483163718080848600152075602629698447931061150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11481686306229096578889782182160481744111577296383 64042715587733241588986438669980733196532118347535211087206931890767423508819567024922313065564490850=2*5^2*29*31*149*4327*192469189097132863333242131989926770093567*11481685921290868955350035456503471304782702513663 42 Pedersen 2016 64286277247165701722050538932627278780515874943182432591133002789334914274784362124398893206667521950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11525361082252913425609043163607759352884955704319 64286325383772851577956156746799730130310166951016561338507416221923521292617426665716931055517438050=2*5^2*29*31*149*4327*192469189072680392504391042526378045467647*11525360697314685826521767266801838377104805547519 42 Pedersen 2016 64407662997015088876880538622060607582751338157101655752093208221249056247415179525096238489259352050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11547123340967558391211591357908633735892651314761 64407711224514080729255857548494273477322161812258673990810017264639285303772891923982925706441383950=2*5^2*29*31*149*4327*192469189060565267367264997507910307778121*11547122956029330804239440598228757778580238847487 42 Pedersen 2016 69206340422586733962296522782703910530098923681856525897844403216321937827145166821932026742736153450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12407438985538615443145093795463185688569031396549 69206392243263927525027063537195776549911562436689807474840854881372904904141069587460898545302246550=2*5^2*29*31*149*4327*192469188615673728207499091755569547660799*12407438600600388301064482195549215483597379046597 42 Pedersen 2016 71109908587747182144841999158511250586477512074904694971407593633420947699923870737542903310379189150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12748714159457993257981383919684293667740719814143 71109961833787872756865788691917480957677268263513203469431007829200329060022544256207310405965642850=2*5^2*29*31*149*4327*192469188455825273738741272578663202573823*12748713774519766275749226788528142639675412551167 42 Pedersen 2016 71737231389052784170617089142733463653945077670100328943363739855095605740789037176008002654991073950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12861181735895486057322340922405741450675107532159 71737285104823447269517663404178523620051705725278242531452579269579121943108199476129632443141406050=2*5^2*29*31*149*4327*192469188405005543673206104494541394021759*12861181350957259125909913856784758506731608821247 42 Pedersen 2016 72473332230479373727922081705630452311478573837392022737840761665187254388770280648745766891834589650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12993151237843363733833188899241076888269148791353 72473386497431386000255022314142645652624496394477051883778786293826746027673759650872811490489122350=2*5^2*29*31*149*4327*192469188346495491568403183942945071517183*12993150852905136860930813938423014495921972585017 42 Pedersen 2016 73224104265997287385775359538284667691568018288219234594790149491914727717381308878654309329095883550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13127751018237140697161629253845264527476031724991 73224159095116220506162590594330726960441051000001300329533095611481883325225627902584846333162292450=2*5^2*29*31*149*4327*192469188288031050520384152311706941103551*13127750633298913882723695341046233766366985932287 42 Pedersen 2016 73942235397589207597527712196298390424869367468401107845722697420332552472086305030077816059828507550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13256498877818147509239976846690831747330510659071 73942290764434038744555057528341036527549926288662443288811213175191370207524814838026132929799908450=2*5^2*29*31*149*4327*192469188233219369442782319780773947448831*13256498492879920749613724011493633517154458521087 42 Pedersen 2016 74594552602563699400434653002167613328501658403119015894970936752140963680269447083420173353910915450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13373447496550436470264345073149468771770512512589 74594608457853940323209161024150769105091143673394854464808943062299163284281232484751854751284604550=2*5^2*29*31*149*4327*192469188184345676598265703641528408806989*13373447111612209759511785082468886680839999016447 42 Pedersen 2016 75225996949817216705314358044473285845025193661257925476939691752233718423748625628223036705368347550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13486653991265685262482182805707105536642794511871 75226053277923582349012230869045964752972772875990361060690855913945053619726140025580725866698468450=2*5^2*29*31*149*4327*192469188137843206184113519276172411653631*13486653606327458598232093229178707811068278169087 42 Pedersen 2016 75310783833262245345542596473935824632506573713403196622914079112340478487011456559853151735784291950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13501854738432701071740600141013861326142856607719 75310840224855766796414021224072953131547579127927062816765766608974566425422143807622207061875868050=2*5^2*29*31*149*4327*192469188131658493015928729761916548369919*13501854353494474413675223732670253114824203548647 42 Pedersen 2016 76704017823520060274159795158724134302611455939346980186275079366438815535516718628038005941545115550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13751636270314721978021514397921257972958258578431 76704075258346447722469893506681270534267241461803835475142371713955375404859744625780293490497380450=2*5^2*29*31*149*4327*192469188031988416742748905818800649454591*13751635885376495419626214262757473704755504434687 42 Pedersen 2016 77780617837347695228156979818723923304974092126255671645901920337119495404916922428809650190850485150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13944651085168836646945972207877565686509337086463 77780676078316141951413608543079034115538313900826196743286458627176046530654961785902586465183306850=2*5^2*29*31*149*4327*192469187957415541350181217470388921338367*13944650700230610163123547465281469766718311058943 42 Pedersen 2016 78262405763200633995490158881615551192308719351786743753723421908257979071367912640304481739288990950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14031026903590794306541282609237156785726872163299 78262464364924705549228136233445250000328479955621674952508800698679170324244671070728051311693409050=2*5^2*29*31*149*4327*192469187924708042191527079861162302051299*14031026518652567855426357025295198475162465422847 42 Pedersen 2016 81656228344680595700877277273700230553351108098694360667227710178756575705097146031220294443679233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14639477608400968995603264047502749053349303439359 81656289487648480656695469269042029391012618094707666897080811881811774082601516012965088257294846050=2*5^2*29*31*149*4327*192469187705244374190928289784661973749247*14639477223462742763952006464159580819285225000959 42 Pedersen 2016 83814649501804751478408661793815222163752465263636783834506547123953524475577212664086900770855093150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15026443291726904965851054543415860601607549965823 83814712260966258985354884406733226151519563387797432083958932676509040972135488766030297138472778850=2*5^2*29*31*149*4327*192469187574914808714278158538549089555967*15026442906788678864529362436722823613656355720703 42 Pedersen 2016 84395560520232555325774862793570286127157836858779073000224661239117440491940033251110652963637653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8376786279980707661190359327299879955188852950571323749 84395817456285586893217695586036833570660121486061322585528070373381167325404500524828565416522346304=2^6*151*1451*1811*396735172784552913248988998160443999*8376786279980707660396890189558039346692837903451683749 42 Pedersen 2016 96593761647790181292168044308639396793777106606477886184287757643196798019683733022884158897906327616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9587533897697796003942962505113773944899374884652167479 96594055720365945574979380588858453849596988505865275522287377704957969551688538785280421793385832384=2^6*151*1451*1811*396735172784552913244243301013626999*9587533897697796003149493367371933336408105534679344479 42 Pedersen 2016 101503718844551359745453367813070789841841279959048881228423960173862442350718145326971931297908107550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18197771919146427416100161926075470841999536891071 101503794849024592561465497508596546524817274234142418588991813257766977165875049030442308332616308450=2*5^2*29*31*149*4327*192469186715665678422977704204970082641087*18197771534208202174027600110682888187627349560831 42 Pedersen 2016 103219781121862719078860217287954650727111818419845240858597124026992306708814424200153731879608843550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18505430695367112125083156618948057440959840448191 103219858411297832173387817803559628252866422684584116198927837231646208251958645140038944187538932450=2*5^2*29*31*149*4327*192469186647978851124428467532824483524287*18505430310428886950697422102104711458733252234751 42 Pedersen 2016 104259203540233755801656666641732239156334535365712579144273043486004016768530093653561886905264955550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18691780243073157314806068740918383706711418031231 104259281607972898285064590017981459243229332215492410920883927523984276895590163568060948746015940450=2*5^2*29*31*149*4327*192469186608064346532429118627698930699391*18691779858134932180334838816074386629610382642687 42 Pedersen 2016 109350076576354128646083223177631521863050130218642609678743039399611775773207635863129699846495201856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10853677794580739612135224019959811077748056466473529039 109350409484588886948339625764094336139589889595492628237739600086281022673357673948312123845608478144=2^6*151*1451*1811*396735172784552913240413025864131039*10853677794580739611341754882217970469260617391650201999 42 Pedersen 2016 109990299786096578822467233032355281936675760225609337523358677462139621109301605916848428235696529216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10917223945189100896258899164389575067110035794681900379 109990634643443631141551477151899340067413226070982906581969239355131074605772675462015370825592430784=2^6*151*1451*1811*396735172784552913240244203161689499*10917223945189100895465430026647734458622765542561014879 42 Pedersen 2016 113036036866337233291554924094338753677462888771391189023130595328356196992352182395525936003521057950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*20265306936074395882337552111733001591673173837439 113036121506038479196236081594651094449915465575293110606802839836533076175694685659197399098615262050=2*5^2*29*31*149*4327*192469186300297010687085383779178954360447*20265306551136171055633658032232739363092114787839 42 Pedersen 2016 114230432171406400905494789011260901941185573921702042171538269347924234499280690278298603978624120896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11338083556424814221903089357260019925303764587311011799 114230779937523448912368815587697914314118263227360846761166793897541386436652510899204079845401479104=2^6*151*1451*1811*396735172784552913239173877047646999*11338083556424814221109620219518179316817564661304168799 42 Pedersen 2016 117869291179240466513251698506331667969745816768124961907169194632189406488047174774634053662291064896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11699263031076221122570564675388604700852349252268547799 117869650023595104838745801648289092846412477376821502947155273828852487245563808993915555563846535104=2^6*151*1451*1811*396735172784552913238316729379979799*11699263031076221121777095537646764092367006473929371999 42 Pedersen 2016 120702123222937090649887946446086816520249776656575372804210693815481351034580481609738836978522969550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21639696885703054105401926484327559603624204649111 120702213602889648754904795899110004053288332876906322813701000849690385718417399273401669858534566450=2*5^2*29*31*149*4327*192469186068099332577791987421984401998487*21639696500764829510895710514120693732237697961471 42 Pedersen 2016 131507506788229739592991285614016250608129936342970696660865099093987171939059645413346348886783003550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*23576905766899075709500206473876013407284548475391 131507605259092614159577311790473911716198345341676805896976509778202356227505347048074329646566372450=2*5^2*29*31*149*4327*192469185786785731683986235443223693629951*23576905381960851396307591397474899514658750156287 42 Pedersen 2016 144668864940916016802992791211441279374025816622062002195500700972367507254917135186754469704597069376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14359288042016406890041080092088709260416768750589409919 144669305374594344761569728976265328519365631804933778273797691414993861323814459673453041330651570624=2^6*151*1451*1811*396735172784552913233332189767361919*14359288042016406889247610954346868651936410511862851999 42 Pedersen 2016 147960485438483532430976799471562498610862236159014324232133195146634595441296797251424250995474427550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*26526625799585110877274550853352756382471828505471 147960596229091827738209696386647678633240845417570949022848080347672780305818255234638019495133188450=2*5^2*29*31*149*4327*192469185437352474748134614831308147871231*26526625414646886913515192712803263101761575945087 42 Pedersen 2016 151031998846653559117530851815824196094637692489155662241849434113575498524662746420063798871225093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14990868808477265991818437742628329170959749211198839999 151032458652423269295189459853495364044157985896020385565326211848028814437003994876561261194054906304=2^6*151*1451*1811*396735172784552913232408555729319999*14990868808477265991024968604886488562480314606510323999 42 Pedersen 2016 151909907141159201426865548565101752476555307279897572940564353303307089205280652219840754629352577950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27234685328594936133399284136118136481917310435839 151910020889035658956005188383294583758984329693373361532959885154934800848705898737137362409218942050=2*5^2*29*31*149*4327*192469185364738927199098505982470575050239*27234684943656712242253473544604752050044630696447 42 Pedersen 2016 154601126446859946240845655808075697068648435951677730524448092873376526116064221818699321825134520896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15345127005574514767500835812445348960933748592265486799 154601597118575124524181238248756561121542123354286112910605036197861756362615428967530896578091079104=2^6*151*1451*1811*396735172784552913231923766054521999*15345127005574514766707366674703508352454798777251768799 42 Pedersen 2016 160554207145702171863079475556753629785931553465091990922308052529812699312825045683125748633010161150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28784451205885189909069369149166799300883834318383 160554327366301755112307629636868063113692810056315796857584977813147767480184217136845270966501390850=2*5^2*29*31*149*4327*192469185218272518201449756486199250865663*28784450820946966164389967555302164365282478763567 42 Pedersen 2016 165732074881336479104480358932808382060480376256375300658074731218378487649576902166372238009810939150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*29712748781118693319773576812046107588706002649143 165732198979046321917408618565542392747532787812770502567440696256394467254703263192665142805413892850=2*5^2*29*31*149*4327*192469185137857218387452115622607246151167*29712748396180469655509475032179113516696651808823 42 Pedersen 2016 168296904125912236866217296807839082098291212677316551404460408999117240778753908489289540224862249150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*30172576047899192193481813155346390077902957779343 168297030144128026506984759134034976677858090684094835414456975500567095437453205410813779098548182850=2*5^2*29*31*149*4327*192469185099856504742335982622791226183167*30172575662960968567218425020595529005709626907023 42 Pedersen 2016 171391797123693053906247237358933660958891505667538673877549804112113371606851237656340607354804737950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*30727434111513891772675368273521291849170699223039 171391925459318635876889977246086558282386950383108725529014699108661318327895349956420212663248382050=2*5^2*29*31*149*4327*192469185055516527201848894314783615549439*30727433726575668190751957679257519084984978984447 42 Pedersen 2016 177229811862736728884187729195190827285135536325519984358913483552229978605713560167673490983644407616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17591165308504833863178658604075738324853559078819249979 177230351425813967077363067022541251460795984720679041886384497749838694796483032882382672751487752384=2^6*151*1451*1811*396735172784552913229304480755801979*17591165308504833862385189466333897716377228549104251999 42 Pedersen 2016 179069252232681421984188669217227954324839475032638751381647859267828926915742653863590783480030389150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*32103862271814300912827154147812147732004894918143 179069386317071068657628334955349510344760248070652536524847793475840634926380405525266585680026442850=2*5^2*29*31*149*4327*192469184952139932370462560339604929037823*32103861886876077434280338384934708942997861191167 42 Pedersen 2016 180402128334045452501688837012000431598817878689990439089759499308885546707295128215401619105145371550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*32342822731245839576398312782982428187221471293951 180402263416472876726177983646947749913519067378581799802320446733797558185944473992660506643635684450=2*5^2*29*31*149*4327*192469184935089197821318309753951663845887*32342822346307616114902231569249239983867702758911 42 Pedersen 2016 185548998769608946802783558224306254895531811388980488741337989013483048196542952886651633168172273216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18416896547358039692967744335931625643391022860915698879 185549563659836512662883203156103799030038106818617861607691781524788284325866164215065995877628686784=2^6*151*1451*1811*396735172784552913228502140835751999*18416896547358039692174275198189785034915494671120750879 42 Pedersen 2016 191726505527735208374502258472231481168726670213445951862129907275393379874658209556023164176280941950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34373077737101832328170941860730471491439454900719 191726649089687649945752784856483429132691660258449341532736835783486031452024710552795590559683218050=2*5^2*29*31*149*4327*192469184799786485894744541501313414417919*34373077352163609001977572573571051540723935793647 42 Pedersen 2016 202346130787234153736428099583393196119599988551197634874069743063748993846560778789447139700452353950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*36276983530298705902126176567550883451860984309759 202346282301003858419226003070308639909008153694760861455980842816179937000902236543783035390972926050=2*5^2*29*31*149*4327*192469184686664214045396768885666495375359*36276983145360482689055079129739236116792384245247 42 Pedersen 2016 203156451828972915854716345725040175095865827987793120676272582499924502856706470258291877497920978496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20164546190347554697595541535195610962554596288173171199 203157070323791352664921428824846662855635455480714907522701002062861455719514648109306062346789421504=2^6*151*1451*1811*396735172784552913227020713972131999*20164546190347554696802072397453770354080549525241843199 42 Pedersen 2016 242331913261206445428748334319567567492710668928605677849261349425846144861786899937216993169385756096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24052955317730205840930661642410929678248429243212716849 242332651022824866053351723598040298122409050911261229461236703021722373558926361466944620340169443904=2^6*151*1451*1811*396735172784552913224496967057211999*24052955317730205840137192504669089069776906227196308849 42 Pedersen 2016 254994988640885532991162091485807821200530438532127687845447347118299511168220380294713851834855799150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*45715966829931166034417409284875652862354588970343 254995179577336032299657003799556526741451853140618378467062170068082420372886161900597267042602632850=2*5^2*29*31*149*4327*192469184264988692848747452348222460743167*45715966444992943243021833043713322064730023538023 42 Pedersen 2016 255532765152165951528619267341312442916477952295047996117000596218262728968376923260277304689856689550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*45812380384105892266064750761217085804653491771511 255532956491295494739393846529148170929173453236380173655556598371551429203284797007816307773108046450=2*5^2*29*31*149*4327*192469184261578023847821534367158870202487*45812379999167669478079843520980672988092516879871 42 Pedersen 2016 257784875239108282071093323004978823976867752690149949308619466903382244921348369308054823737493431550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*46216142789715384061305816900297927825211782559151 257785068264584323408735290405042463742314325311725686420044629297366449294172061139857831080753224450=2*5^2*29*31*149*4327*192469184247449344370561321195956406547887*46216142404777161287449589137321728179853271322111 42 Pedersen 2016 267043198700877162174814624885440539852058364414159799299347005354784516326868970250312671437135233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*47875991912770407867951844700502789788464762959359 267043398658847950906019674574806951382723604158217262354950126017905234909598248638722073634398846050=2*5^2*29*31*149*4327*192469184191870516971500642920298559720959*47875991527832185149674444336587268418764098549247 42 Pedersen 2016 270936093259238259638812201243078579857619262518607738466726544557295574313243850216786376252632347550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*48573917152207526837489477440722254773727397391871 270936296132150526644865804916940165919266064954729556772788037226953394812815860379446250176074468450=2*5^2*29*31*149*4327*192469184169635357989374989911380098969087*48573916767269304141447236058932386412945193733631 42 Pedersen 2016 276119893986738653520859127221133683141102779234523239442746047276179131357848180391589894257335379550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49503278405048178247056058399306954401820739241311 276120100741203716054906749420739206879195843349355358939127920230615654186343542362333843390243756450=2*5^2*29*31*149*4327*192469184141000191013807061781575758335487*49503278020109955579648983993085014170842876216671 42 Pedersen 2016 285849052955770648853032532422041225397415897592959826956690936062766329514365963460618492785974401950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*51247539776936484225141399241528587003533868433919 285849266995285075657714768209629390622899431061291643144957506086171318147039682576044822426559358050=2*5^2*29*31*149*4327*192469184090060438876431974354289658331647*51247539391998261608674076972681734199842105413119 42 Pedersen 2016 286402939434028334276731525209391804911247366648642038261757091669270419052483865028135981953967669150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*51346841555385300888202543164796722635419299615743 286403153888284708371306179926732803280618734997262781965184959529629224217485066755078086165141962850=2*5^2*29*31*149*4327*192469184087264533187402997452495072007167*51346841170447078274531126584978846733522122919423 42 Pedersen 2016 297169675835181534956999251282396411204529701031373851080922707085628931762005263412185640525718737550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*53277121702478402020027762076520193830527638695671 297169898351409804479925762248622723778011547388535581649767201744982351373548277181344538976754478450=2*5^2*29*31*149*4327*192469184034986636979365229992628438429431*53277121317540179458634241704740085388497095577087 42 Pedersen 2016 305440766894883798151204115593172664815026066388340945864140518591794548352158224725465715129742178550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*54759977999176860006213644942738354195916031478891 305440995604381892753740374675474380202407532645978322897548172536286474026689207049222813389655197450=2*5^2*29*31*149*4327*192469183997329500440595060892223023303787*54759977614238637482477261109728414854290903485951 42 Pedersen 2016 319765971776814120568996020179319772670625134589233683738921053749986034097441792403154800615921333150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*57328226868320676589808572554869737790837510106623 319766211212812321741009875375098598796826300249715054089325215899430429776604705974818878509508938850=2*5^2*29*31*149*4327*192469183936717645228693865778037910613503*57328226483382454126684043933760993563397494803967 42 Pedersen 2016 365671799134607173916489155006593469133822978654278045177213474912654876165853566714853086079175711296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36295209026217602509170771886488843973276571833822064399 365672912395401882116761909680735235085081696677491468393369265840706865280362819080081056139269088704=2^6*151*1451*1811*396735172784552913220082539711976399*36295209026217602508377302748747003364809463245150891999 42 Pedersen 2016 369860348505990092950170567428840685272452020971752951302713674597106991606816697897742346359560248896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36710948701278007823942280185003427689533214808510268799 369861474518514119341061797070492478963092490424405118786796486886578551393832875736526521624209351104=2^6*151*1451*1811*396735172784552913219984318043600799*36710948701278007823148811047261587081066204441507471999 42 Pedersen 2016 392419780167174955939995204128279172713485168407718029123203611616192400666604766965836735027265409950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70353734201406185635816592295772756798255376801279 392420074005263030528907266961878732808027939487425234448313196325463355655285064946909586249826430050=2*5^2*29*31*149*4327*192469183697446003416538291114080097390079*70353733816467963411963705486819587234773174722047 42 Pedersen 2016 397617361863965449978502032276376879990006821275601310133398614956886291559172710840414068419783733150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*71285566131566059874385418545728383965823055514623 397617659593925304694738399722369383114780286174189746794437463093981698269296202554072038098670538850=2*5^2*29*31*149*4327*192469183683680215464501831097327307541503*71285565746627837664298319688811674419093643283967 42 Pedersen 2016 419930519135771274619084332567927264576494259045083829256933972443326486319165043924416610034512769950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*75285909680064158837581549533738676386182633172479 419930833573491041085729708805470138593539843133570355061562169823691946416757181499737701951212670050=2*5^2*29*31*149*4327*192469183628455405688894791309664218050047*75285909295125936682719260452429006627116310433279 42 Pedersen 2016 421226961028531045133223745331177889035127337674716772730272998302324529628391288934395814036352507550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*75518338148098906266136557047614891624342082739071 421227276437007196270504342075066298900112538928812955590131451065946040195089724034792468787515908450=2*5^2*29*31*149*4327*192469183625426571933149952073991021321087*75518337763160684114303101722050061100948956728831 42 Pedersen 2016 423278942130012265559471243078935967506257659135034894298003835727835829047037594747170123582218881950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*75886221064037592293243983603180374619960371755519 423279259074981310524804248547656090250507101848933402404456686062752691775132933416269930195639678050=2*5^2*29*31*149*4327*192469183620670520824671685806841584990719*75886220679099370146166579386093810363716682075647 42 Pedersen 2016 423605481264020109413039814904170382801929313847157848817280291835916560839194998424288224204764981150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*75944763595789071172985141378212420842487178102783 423605798453496795602577317755967071726872160238189562709955306374182030203181237088394085124589770850=2*5^2*29*31*149*4327*192469183619917922958460890535217865197567*75944763210850849026660335027336651857867208216063 42 Pedersen 2016 435668048187701820079412883050620832270505100548547054639879576574334761497296605648336009970217909150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*78107362603346347139446893921139851472906469036543 435668374409449001442359086733133309500969719202718829238254101308838600039100225679718089480834122850=2*5^2*29*31*149*4327*192469183592907061532652122736127185735167*78107362218408125020132948996072850287377178612223 42 Pedersen 2016 438400540620043716191886290465190352124456597912086408536893872380130289672986771066420583758810395550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*78597248832349479768184657924533776809924765036031 438400868887840542798447620881331768999433208677359741684649446789010187686033470387092922633564900450=2*5^2*29*31*149*4327*192469183586994874606209447810731723976191*78597248447411257654782899925909450549790936370687 42 Pedersen 2016 443279507778993983892218626330771838425120440367408947447453736592905829691705659972310442746627159550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*79471958966818102604053185910977234161452473828911 443279839700088769011257781591031017062711914708678497706968676164599616946121404994265640149924776450=2*5^2*29*31*149*4327*192469183576619706581356980946925629558271*79471958581879880501026595937205374765124739581487 42 Pedersen 2016 470196348153352297535714969827546717873519205137049028425127483430332830335759062790776661843677437950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*84297659221867802546327270233607580096276434357039 470196700229376350595706375914387583636724518697692268477593284336373191888193760676356083829927682050=2*5^2*29*31*149*4327*192469183523251433240699978475319393094447*84297658836929580496668953600492723171554936573439 42 Pedersen 2016 481094455452326482569869499493507519005401276664455771006155102817643564976445335658109271905381247450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*86251491783222896920360264399170663579354608028029 481094815688691003172277601935279336536587914722523797234249225459380087563075387735122735209534592550=2*5^2*29*31*149*4327*192469183503342066095688372684999254460797*86251491398284674890611314911067412444953248878079 42 Pedersen 2016 489265911287582741196836779637449654472266732422412551879477194500445013459904784543548022708674443550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*87716485295087253417244945813412962815640828800191 489266277642611714428912442218134053919335329884346584887502421881162470303364404108100984462729332450=2*5^2*29*31*149*4327*192469183488995759522508315265600765644287*87716484910149031401842302898489769100637958466751 42 Pedersen 2016 501371450524418386545563053479679820082686380252488249980539923191339650975051395573243182443052225950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*89886788457354476903813211224237464709684825951999 501371825943894883162814625855282877731565518391600913262068396382881134671773389236265661634003774050=2*5^2*29*31*149*4327*192469183468602081403742502263212520590847*89886788072416254908804246428080083997070200671999 42 Pedersen 2016 508126767890003723220346019436163891527878783458211563743708982578294883102022309418862232295438619550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*91097894080475889654455032846871248945483440922111 508127148367761273343733775978327318172550921677832190376911403156986193288198286604582120589362916450=2*5^2*29*31*149*4327*192469183457644112547009648191311176703487*91097893695537667670404036907446722304770159529471 42 Pedersen 2016 532122649959746689085801829610525206306152110695002848101472863958531634080995705107915746883549787550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*95399919601064566964875077039734265470571936636671 532123048405263423093404416044026672954369331034557717928056335925676808221397414415795678316971428450=2*5^2*29*31*149*4327*192469183420969217584134298210592394137087*95399919216126345017498976063185088810577437810431 42 Pedersen 2016 557223265261378303424375290986302364446902017409842351176294635327811307588475693205747085429228339550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*99900003711173487018157017642581443105890367564511 557223682501862015358413309975496689759320249209186925755167073273818493754402464036383662492040396450=2*5^2*29*31*149*4327*192469183385986031490341904959138820607487*99900003326235265105764102759824659697349442267871 42 Pedersen 2016 560209510040331126153121275700046100417544674493447304734251490331869120688873561273720105863225525150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*100435383123876082767487931871483454389899125323263 560209929516870461981572368436806994058626031712933973711787276509998009028139650699145545294798666850=2*5^2*29*31*149*4327*192469183382032714270930658209285599327743*100435382738937860859048334208137917731211421306367 42 Pedersen 2016 591942706565204037585847698217639794252417174712518750424359974467093109385641245212243629997045804550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*106124568497561389738175522745553660759883630269811 591943149803088409058382618847101452895780322067483919927899788660373822787250061873774354103781331450=2*5^2*29*31*149*4327*192469183342486979543845328775854813695487*106124568112623167869281659809293453534626711885171 42 Pedersen 2016 605840059936071066086791079159325386864393464276933195882320210260952993691667969752322831035112945950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*108616111367139655227088492005965250768744104414399 605840513580086703554293148350765737094470974534532504126360017428678222829715428928381337143370254050=2*5^2*29*31*149*4327*192469183326472588902579479561564304526847*108616110982201433374209019710970892757777695198399 42 Pedersen 2016 665127301177676560040368136328236779658742537146025700234717484367233909662741946145754904739104630650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*119245236153024903677433499502749714106828743946573 665127799215095624391219345354322933660134421582290120833388459484332305175010381799164463910959241350=2*5^2*29*31*149*4327*192469183265671065765595151170887365512703*119245235768086681885355550344739684486539273744717 42 Pedersen 2016 723639342093020909040423804515363397152659621764891948962170731328881306315500732578569374636737368896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*71825722527737290569722650304353346365933522974868236299 723641545159571206639654905532253536112129882943602153056660524287580898834363537327918713272792231104=2^6*151*1451*1811*396735172784552913215792088942971999*71825722527737290568929181166611505757470704836966068299 42 Pedersen 2016 736818104896439828731499547633053354323510639379128689534161038803531280228228141841826671411967233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*132098094251478496282568039278915338018513168399359 736818656614865207998249709597608052768054912243523386654429750095011880978064712388861917299886846050=2*5^2*29*31*149*4327*192469183205218552134897893679305179560959*132098093866540274550942603751602565889805884149247 42 Pedersen 2016 758780340124531671344566261399109606307311103868110972901612390894220035156657300458737854670571061150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*136035523855683700279920719062855209957972606096383 758780908287951761422527029869119644174675956442221943477560173331267530890223548815072715409324490850=2*5^2*29*31*149*4327*192469183188984902910008124742692938093567*136035523470745478564528932760432206765877563313663 42 Pedersen 2016 784148846735581807177772680150419721118818673004459507020048795097728213009467189447555363673207067550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*140583636008542321270222431636952454007881903734271 784149433894561898647505769216724915653775428514629575194221907909745109863887166353228810713566948450=2*5^2*29*31*149*4327*192469183171365292506439694216164064153087*140583635623604099572450255738097881342315734892031 42 Pedersen 2016 795900178797509064979965327227853568971242521080480023796054184642373690665848602085449568737597365150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*142690436262202033708564855687427695485578494616063 795900774755711621574449450898410006159152816711432099135822025657378781193528373225611298683185226850=2*5^2*29*31*149*4327*192469183163584103487167016104071966892543*142690435877263812018573868807845800932104423034367 42 Pedersen 2016 816237448607376286391624763549645789173598163944214191489718407046087879438594196517954272848223393950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*146336539101299858817400929531812975472783566866559 816238059793823645127992634974828796000480054665812180467572707387237876465509508967362230450152286050=2*5^2*29*31*149*4327*192469183150647105547010539430505093877247*146336538716361637140346940592387557592876368300159 42 Pedersen 2016 844548454496213182772231656813467530344417428307277030007488547270520675458454865565594240155954321984=2^6*151*1451*1811*328481*9085995379*132928044795118424699*83826706793502024357065866160137913180241802208319558671 844551025661629403286664397582198265901584988808868542824482046751072999924400528908281821109941102016=2^6*151*1451*1811*396735172784552913215164630160801999*83826706793502024356272397022396072571779611529199560671 42 Pedersen 2016 870790420829265245798550768896755437540856239873734649826267748909331985064180159263434483396381949150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*156116895499135972552731195309086868583470050653343 870791072864165884940845301043825848135350240588239316158347981328156677789904052160864963597300482850=2*5^2*29*31*149*4327*192469183118929219449611881587390501441023*156116895114197750907395092467060108546677444523167 42 Pedersen 2016 875441646933537822421683145608213090114988558239810634133896757966065159705971568531318109431789119550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*156950775801783384781990997304154831019305517132111 875442302451207309504926811223890602647810966486132541411174020660577579747716132891879968503892416450=2*5^2*29*31*149*4327*192469183116407814607814619472437502889471*156950775416845163139176299303925333097465909553487 42 Pedersen 2016 880210473337409676202037139758804811498302947317898843393095393566624266643012840848816508678339777950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*157805739700717632068859407147320771071014854659839 880211132425905364442547068222547359456100667845756902958427844781300735217681181392367307563303742050=2*5^2*29*31*149*4327*192469183113850325721439131407593018314239*157805739315779410428602198033466761214019731656447 42 Pedersen 2016 932139073767982008578315804264483514876957870538066874649347539231029368111448195354271315079211243550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*167115593935351620718477371985284940778874916656191 932139771739840458013799762341570177220764755885515343122910466637094590161641530201518350403360532450=2*5^2*29*31*149*4327*192469183087695288083466783085381901962751*167115593550413399104375200509403279244090910004287 42 Pedersen 2016 951518809020482976647747953494187336418951575163752014276987380110743766937288553254367493024991895550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*170590028231877744089983642557874523587849328266031 951519521503598609807957163437184407579291176976426980394315982922940313232293208723345624308823400450=2*5^2*29*31*149*4327*192469183078665746018645624194843107920687*170590027846939522484911013146814020943604115656191 42 Pedersen 2016 969178216891194599598131661467006185995550025248228454638409686209216313858913652800784426353199387550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*173756039096470217396994169624559282256756482268671 969178942597411889480841126150543687431554899440502326631269151290226488993753942139488537411417828450=2*5^2*29*31*149*4327*192469183070752200735326519070659066322431*173756038711531995799835085496817884736695311257087 42 Pedersen 2016 1004036866673417433801923391684689212517777382236979522805419302647246131375594557450113417792194037150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*180005561432866326874755253594760423525298117314303 1004037618481272618967339019938527342487338742272536567095367302035682471061029367998966633974987274850=2*5^2*29*31*149*4327*192469183055948399909393911778573249760767*180005561047928105292399970292951633297322762864383 42 Pedersen 2016 1011883671125058300290664931525141297180569984721225910298460691834185234647385323558276514553723465950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*181412350852313971382635455918330558037052230192799 1011884428808483816245922671613007023322041481909989782567223791052053615153669303910052599744234934050=2*5^2*29*31*149*4327*192469183052756652175482795308459996302847*181412350467375749803471920350432884279190129200799 42 Pedersen 2016 1021456856653341960026731609255102648400166653219493780019577116622354730831772972775317720638794667550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*183128649021154223992984488978482438448599627326271 1021457621505026250337962555508352018574915402291138522996772952565584713061920699539167779186955348450=2*5^2*29*31*149*4327*192469183048929093683644625027422718873087*183128648636216002417648511902422934971774803764031 42 Pedersen 2016 1035902254715659656609125550977368582795259294839658753385050063682646154788422807055313323591247621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*102819766125291762576160523995498760712990826075884071999 1035905408443592885218227271346219005656966461551399730768300818228911399229749421333503614060976378304=2^6*151*1451*1811*396735172784552913214470938214227999*102819766125291762575367054857756920104529329088710647999 42 Pedersen 2016 1057281510200112676740311938258508580781321459825541203314090873694798128688676096208597717320482779550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*189551358275038557368592594187110325157367314349311 1057282301876764096978544037594006488869335882505121873114848011632758466626700495385802442241720356450=2*5^2*29*31*149*4327*192469183035220676583786174048609703644671*189551357890100335806965034210909272659355506015487 42 Pedersen 2016 1066230740171819883745194116585856874302092628992152487680125813211890981728288051903145579396126593950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*191155792553220267298505014792762535485667143810559 1066231538549521448565856201617446363883418157074406843340985776903855200250801023044167267165481086050=2*5^2*29*31*149*4327*192469183031940027276239354905797896437247*191155792168282045740158104124108302130467142684159 42 Pedersen 2016 1082301304353800127583906714119778128943579790570792407484216864008028512271810652540904131691847051650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*194036952622276977165656752121100664750494720341393 1082302114764900853632786773597597732859447522323592293522572279176095763384889487781259017921585780350=2*5^2*29*31*149*4327*192469183026184995597472083312472195741073*194036952237338755613064873131213702988620419911167 42 Pedersen 2016 1085119163558725277928398609280771122481614064352874717885102352208822614565440099990383985285854997550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*194542143562029898178646110593272650353228008604871 1085119976079797017379949404620553488666922650185534073816901419805834424206746408876860594126915818450=2*5^2*29*31*149*4327*192469183025193456940479628788321947174087*194542143177091676627045770260378143115503956741631 42 Pedersen 2016 1099084629200032572072865072851066959808916712599695952430709077040166262040089166652569618024402451150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*197045897723731020783312831651357179792385170300183 1099085452178237031401398926474757403644188897792705488352305167729526431391609231278273185500459500850=2*5^2*29*31*149*4327*192469183020354376636732337609093045374463*197045897338792799236551571622209963733890020236567 42 Pedersen 2016 1274517232575694513470457725954877740253984930710093329520612507066208217799197170726492271579204379550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*228497774952993183845100733193671946259518566221311 1274518186915220106743500054638496047915565720677651163827597725545422441456168969468598746769814756450=2*5^2*29*31*149*4327*192469182968599719235544873910779899135487*228497774568054962350094130565712193899336562396671 42 Pedersen 2016 1341377351873037451927926253220306956919261921214014352804553042198205366519976229768915121677313489950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*240484579134259684063270237044732684750976542434879 1341378356276424796514197983751348302763001072703595732249674766564933530459777702248147889232239150050=2*5^2*29*31*149*4327*192469182952438041537728340078602681706047*240484578749321462584425312114589466222971756039679 42 Pedersen 2016 1394888394956862341932772627801193639597089954995065285409350598610881784872559437615510561957109019550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*250078136575109400018988298718919379275617809690111 1394889439428521943156179835318738836224084917909065037315608029892313614921896428475259086846796516450=2*5^2*29*31*149*4327*192469182940619361865745817480395439017471*250078136190171178551962053460758683345820265983487 42 Pedersen 2016 1400426761264720579441506576518844221143508615168814864366767080022063991966609320443418184786078495296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*139001099199617044553464204292889957053805393326039060399 1400431024760600944820077367629200534009439843314433901079018381857802830654662948861600005322798304704=2^6*151*1451*1811*396735172784552913213674007689291999*139001099199617044552670735155148116445344693269390572399 42 Pedersen 2016 1447855138628692865010587174795027905903556978988848230035157831029955132121543788385098083724270097950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*259574111024242643537063936526398166382728011154239 1447856222761061428043296844024043303780975901350919206069670502719158511082965927830072439970096622050=2*5^2*29*31*149*4327*192469182929781223865801327229672443432447*259574110639304422080875829268181960703653463032639 42 Pedersen 2016 1513452964558970239696135653374309498229583745558410122204444409990872198831576191598571596005598075550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*271334608947468593435198878152576299035181474101631 1513454097810014076923696515612084136713869456304464959571114779374224511269545283566467067581734020450=2*5^2*29*31*149*4327*192469182917410036591225431917061678386687*271334608562530371991381958168935988668717691025791 42 Pedersen 2016 1748192545855997236507439282664764214127506660772832445933866605900127839258391948288321864384182765150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*313419149390575041374527820685466669528669997684063 1748193854876544166478398246093187942138089889860641222093282110887026594053833938820037515826103826850=2*5^2*29*31*149*4327*192469182880745676601250829337189440214367*313419149005636819967375260691800961742078452780543 42 Pedersen 2016 1809964754719625877640931247682336756262171828569016565131967048698052319585742359129821758224919775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*179650301877540397083380477686127090225611935265386005399 1809970265023690893267217708947905260880962878843615715806517312993494759808579547820386384521397024704=2^6*151*1451*1811*396735172784552913213161575279517399*179650301877540397082587008548385249617151747641147291999 42 Pedersen 2016 1876899217494913862453165035764425270053583728206409884272005046695810789387838124589041377519214257950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*336493916321473583251392943292838392678053442581439 1876900622889100012934159149848709522249832822703118655164898671646075254410956230593785293076554062050=2*5^2*29*31*149*4327*192469182864535534673179875247859772771839*336493915936535361860450525227243638980791565120447 42 Pedersen 2016 1910567799901444492801330893881219414282463575685275010452628305301815900325456829666270667821365531550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*342530081207346820807841499934906064303712806641151 1910569230506163808308135623969192269381977852642708169370173443813371782338252659612878365522577124450=2*5^2*29*31*149*4327*192469182860655483987549238219716438117887*342530080822408599420779132554941947634594263834111 42 Pedersen 2016 1980966245170646390378853086799276857715880717707384225897332053093965687547995369373137564943334790464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*196623267401277325880830404493214343914310536552043524291 1980972276076123946743976837328605286975824823657369593219189483568949124754099080799578632598743673536=2^6*151*1451*1811*396735172784552913213010314751114499*196623267401277325880036935355472503305850500188333213791 42 Pedersen 2016 2051918485995918139837381086195821243638149361307454254041093364520549544104515033475285970910442769150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*367871690120232195758659625626754778598796670957743 2051920022441926424869383772587299402753006861154170460428942267029143771992457160569290107959642862850=2*5^2*29*31*149*4327*192469182845755310066904893861969318727167*367871689735293974386497432167435006287425247541423 42 Pedersen 2016 2053631432134355606816046171687987240321632188856926075906524693323890294597456616536532616605254145950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*368178790229389831054656895089718207018575305318399 2053632969862992453738563194897405568100547047994174639781279473379159210455542721838581780399341054050=2*5^2*29*31*149*4327*192469182845587322525006676647079549542399*368178789844451609682662689172296651922093651086847 42 Pedersen 2016 2161489451453128905571523718589614514230215721654570886666452328216723697464178367925135484701981563550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*387515772731674631607630616013882971421133465950591 2161491069944244561892886777122845049419707789010364544694568365458385694556746603092687051791713412450=2*5^2*29*31*149*4327*192469182835545956634030364756793481468287*387515772346736410245677775987437728214937879793151 42 Pedersen 2016 2286191051438635629512873496194495252556632097772127301550287626666174255819021591434117977275680865950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*409872503108856261166104384816412654738324085500799 2286192763304452489666440399862111399579790984642935661113811154136767870379883110476793286322501534050=2*5^2*29*31*149*4327*192469182825117444287826066633282401422847*409872502723918039814580057136171709655639579388799 42 Pedersen 2016 2287945038441867490448931835419232845846720654781088937462054170258284407236546454944747217115142293150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*410186961099137805628327641227289316895484520189823 2287946751621043700933328211932865621693105749711882756428780190924053544307368726530740144125257578850=2*5^2*29*31*149*4327*192469182824978869495073302770121456504703*410186960714199584276941888339801135675960958995967 42 Pedersen 2016 2310627947804982354598231028448037877265710124728989070680936554317849925084793581080299621990776257950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*414253594477219133643824175277639915093661614621439 2310629677968783337023172909364912315177054973203312048302966340093974100955194589012583114530112062050=2*5^2*29*31*149*4327*192469182823205745435838524043738631720447*414253594092280912294211546449386512600520878211839 42 Pedersen 2016 2324057069736555483972370324613080765512005002485743881239670390750416860585965621589057942323221377950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*416661191960021046348386526807301541836019173731839 2324058809955883002834763336628704091041585444698054603212181700072194282891402099419246468026838142050=2*5^2*29*31*149*4327*192469182822172301832503085533879850536447*416661191575082824999807341582383577852737218506239 42 Pedersen 2016 2399139589775207823111378737525350056962606703586835176249547689908243226205404064095019523215173505950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*430122123148863692804095875661056690708575779929599 2399141386215208332975714576595081117146601997298638399974271308243421113437109724907066029456775294050=2*5^2*29*31*149*4327*192469182816607464041550395844921527385599*430122122763925471461081528227091416414252147854847 42 Pedersen 2016 2519375832238609425035942743665038817960102862859892098260276428841993157672424417873056745088741889950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*451678296081946555615925942167064220497659453562879 2519377718709717917448152931239367710509758518706763703150087336300284134837365807763974848697994750050=2*5^2*29*31*149*4327*192469182808386875830323471886385113026047*451678295697008334281132182944325870161872235847679 42 Pedersen 2016 2541778440812089663309603246878367830690573357542651285926754544432212569519639951125725738774858410688=2^6*151*1451*1811*328481*9085995379*132928044795118424699*252287379081285318836476900309735994344134202253895022397 2541786179068891766367731798848806069471706894899991037802581531031275825501235933061385927121035605312=2^6*151*1451*1811*396735172784552913212657070101051999*252287379081285318835683431171994153735674519134834774397 42 Pedersen 2016 2651248062021572261955916418973431941017054423956761593392559935837521461434120690329272381805541143150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*475320590052818585816668463537287300480254517006823 2651250047236642776494390542689198121102475783256798967246241025582776025265145153097992359606634728850=2*5^2*29*31*149*4327*192469182800228081203341766917558149140967*475320589667880364490033498941530655113294263176703 42 Pedersen 2016 2815542606964908198696891785980209525468140869810847464178960159225651669898803009363888265035014597150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*504775615843721115105888759817383557086545832029503 2815544715201287543968540153309635005808857859109119943160873569055517533725412087953652874163232314850=2*5^2*29*31*149*4327*192469182791132579687888969097582718987583*504775615458782893788349296737079709539561008352767 42 Pedersen 2016 2940529090682430718016914433942815034690965215343197568910427037122514759513083769483681020364825083550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*527183420696180228191136857431518580795091363588991 2940531292506827963601799427599379032012342360148869610393522042366373232145367508134790445782425092450=2*5^2*29*31*149*4327*192469182784893917922676948065754295127551*527183420311242006879836056116426754279934963772287 42 Pedersen 2016 3177363693825559506630924253882416795318230816004781493622421806010000816059880634700141808821654401950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*569643560478453509039045825849519498923791094033919 3177366072988181007462267886876496330835837194965232404785322270451031526063491357678628481827679358050=2*5^2*29*31*149*4327*192469182774418563602374484198579027013119*569643560093515287738220378854730136275809962331647 42 Pedersen 2016 3215744673298676923997113864490061373362096112174085291665843229244884532148991599128908122482023087296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*319182735361435482273936088811912898666301283395194452149 3215754463395914521828946604062964868436475659559115145606093306818639440669492438995338829885669712704=2^6*151*1451*1811*396735172784552913212395557995170399*319182735361435482273142619674171058057841861788240085749 42 Pedersen 2016 3533646492219918493785912564644230226304196106244874763757208894773180542306119087225291189009090941248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*350736475613945031249318663346866048561206055183448840787 3533657250145772925061588127492228918354697395516376024987010208256570370640896017966065112794381954752=2^6*151*1451*1811*396735172784552913212306829878280287*350736475613945031248525194209124207952746722304611364499 42 Pedersen 2016 3768778838014630204654631854841007232473243024579404222980678261668880404624336518398970008927012289950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*675673546630626153473594197452658523275926794330879 3768781660020105225361100184993303586542300287908863256190966772515058741832121627035133808394828350050=2*5^2*29*31*149*4327*192469182754008665609109190253983538695679*675673546245687932193178648451134454572541150946047 42 Pedersen 2016 3925757324991712893033420532192428807648374108608484304937920760098824324393449591378403530920474239950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*703816936200386648043504235968131171540726313449879 3925760264540341478877354699855333597215024052050602198060557147246586591305233839505990017542998400050=2*5^2*29*31*149*4327*192469182749624045101287680465568237681047*703816935815448426767473307474428612625755971079679 42 Pedersen 2016 3992935279975679734863656681804284219563767087959490376530153882538373901715615661784342903880775222976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*396323755230377993304472233573054723775462049084976437069 3992947436172338935876034522968752257990343915500156723990093203087362718267972395710191353736566217024=2^6*151*1451*1811*396735172784552913212203590974820749*396323755230377993303678764435312883167002819445042420319 42 Pedersen 2016 4098609730712364284492897481252376792160218535090079203605168333521943267680786886133421643763294808896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*406812604212704973683688277980201738763233708142578096299 4098622208627086748481817270585639836563657294483313806650062763998476606435867816155815590391354791104=2^6*151*1451*1811*396735172784552913212183111723659499*406812604212704973682894808842459898154774498981895240799 42 Pedersen 2016 4182607926977298797241477067550680290340537746631363374384714923844026260397448576486929013721375423808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*415149949609522906397315217591185569937642011045982203427 4182620660618328155172141757807542464995284657000065481404046416360644027458363550207546088873772352192=2^6*151*1451*1811*396735172784552913212167571432614499*415149949609522906396521748453443729329182817425590392927 42 Pedersen 2016 4242356628248376779390759458523130836832047404564424595618020267119816915464666621422761794231740326450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*760577436958479903736950643451480652940371181263209 4242359804861849331697807107978762421498858698404689006195307104298172381738989379347202345760446553550=2*5^2*29*31*149*4327*192469182741768156702580563427353450600809*760577436573541682468775603356485211063615625973247 42 Pedersen 2016 4260086782846314169475077954462777936965517182835209583978718059147405152792932911529364140403853755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*763756131425414594927832439918552062270456223727231 4260089972735862474399328052919535167883853975181412306188759042119221645365741574789274591426115140450=2*5^2*29*31*149*4327*192469182741362738843145026512603683835391*763756131040476373660062817682992157308450435202687 42 Pedersen 2016 4274623014414207949237308670403133425779481342112442468363412978077343196761015251213415537595588370496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*424283021506212784786814481585663676309248295185676294199 4274636028188377482547172230056328824449637798311044653880706946287850438765552177225452991762338029504=2^6*151*1451*1811*396735172784552913212151248921306999*424283021506212784786021012447921835700789117887795791199 42 Pedersen 2016 4352570122221419499183911803616812367101396841846980184818593472613495970647921632890923841702992513950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*780336713254604614783523601898450212705006334056959 4352573381361115207884307454970551697535200348697660216922399266091721946779325987850760728266794366050=2*5^2*29*31*149*4327*192469182739301562002001684337309833973247*780336712869666393517815156504033649918294395394559 42 Pedersen 2016 4385851535931269322279285923947481542695914655501319191049930109598271860934653138516455200441724376896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*435323146688665820260595510910360085314345489307624338299 4385864888332460549215218728243544194609240065517482522205278770519981318531813507789143756245789223104=2^6*151*1451*1811*396735172784552913212132432486970299*435323146688665820259802041772618244705886330826178171999 42 Pedersen 2016 4461905927833426296237156973529978035086923978903040545581230283010889296840983253256544485953069621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*442872019907720173003572986897554474552998758141602853249 4461919511776598530237220867379890177026309902373046785898338032335785024727101934348501183555154378304=2^6*151*1451*1811*396735172784552913212120106466829249*442872019907720173002779517759812633944539611986176827999 42 Pedersen 2016 4507021729861130758319021968033138511476556061905583194417256099994083775176434013025286933599782149950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*808027079286191980743357856081365788502115475152079 4507025104651890410751726722990138856074859594217097957826083523166475351707981384384742517080292090050=2*5^2*29*31*149*4327*192469182736047895929177432118051137474047*808027078901253759480903076759773477934662232988879 42 Pedersen 2016 4617632799612693678276513185710750772890173828683371151944861266945086244976388776004662439895721269550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*827857633693310514226650795134851930832049297335111 4617636257227375309968666226432658773114056475438569958759855943927831731674966729054541492878744266450=2*5^2*29*31*149*4327*192469182733851525841180734157042279337471*827857633308372292966392385901256318225604913308487 42 Pedersen 2016 5005648247793796600893171500415803974560030705290487674582424036378116674539879602858476165386675221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*496841839855737020201118981152278651713845785201432065749 5005663487120317149199198415948581697626938822061849307350073321148434620424604930390481438310348778304=2^6*151*1451*1811*396735172784552913212042894376681749*496841839855737020200325512014536811105386716258096187999 42 Pedersen 2016 5273042009873353694590178877450576532006208233573187187715987849457371670366143362021492131160657281950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*945360592775007319912765837334465036422409607083519 5273045958248692618903232681592047300428764765215146919309947926373446659440990234770301060911985278050=2*5^2*29*31*149*4327*192469182722727861162808483766680152798719*945360592390069098663631092779241674206327349595647 42 Pedersen 2016 5300282107935651998870332552610940385396994749205145760892106125863304700747511509701611709623086773050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*950244247258170094867690882928765760343859213409581 5300286076707970734395205732997912345649789190663665248767406351916897710847882715900018878825582922950=2*5^2*29*31*149*4327*192469182722325084384429560245077291867437*950244246873231873618958915151921321649379816852991 42 Pedersen 2016 5515248025291487221293011544549278569527735959447298961493828272021450304731732406125150258803937120832=2^6*151*1451*1811*328481*9085995379*132928044795118424699*547422799305618203093254277137193262896551729107437511983 5515264816056906319624464441413008273639330639175585510063848293947804433214394268643424596788072607168=2^6*151*1451*1811*396735172784552913211984351135263983*547422799305618203092460807999451422288092718707343051999 42 Pedersen 2016 5589936082722054805350591296167273712681977791554811447855954598778857002303057169252763251504775357950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1002173940363400539477551297973036985691392578043439 5589940268382956777386744722251093164002783459988681782409426519463859714365023678886721160161328962050=2*5^2*29*31*149*4327*192469182718285007416597530827608365350447*1002173939978462318232859407164024576414382108003839 42 Pedersen 2016 5624940953569247882223956960546032409629721403985433415533462887046509544923338632105277102534279041950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1008449677479120923952529406990361618168835879902719 5624945165441275905692291674517739331311165539418498328563302036328063389247047008032537914237141118050=2*5^2*29*31*149*4327*192469182717824941941260713319203849489919*1008449677094182702708297581656686026400229925723647 42 Pedersen 2016 5637974796257143701985364758590917559622079636657155074232018724230873294817285078223859107063946221550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1010786408577885927960922530650567971677477432950951 5637979017888719050118925761557904761913529977953292834052682442617400746455526704476247415540130834450=2*5^2*29*31*149*4327*192469182717655099059088523999951080095911*1010786408192947706716860548199064569228124248165887 42 Pedersen 2016 5747039110999067044044521529516461883547910425403269084942388160397743569843979655172663070491970305450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1030339657924651698735134169057427643053436556476389 5747043414296377252127015860186353027332956743114888648697485488122445797958694491340662128243471614550=2*5^2*29*31*149*4327*192469182716264085490623010328329763618789*1030339657539713477492463200174389754275704688168447 42 Pedersen 2016 5860689220653341244586761299983767638581582668598120984180745601619337001581037939647208667815634971550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1050715056950590752358144383263461839697262289725951 5860693609050161258349293848183369989443019903634977112667409856668517656472406235401500440695642084450=2*5^2*29*31*149*4327*192469182714869667465432411406195272165887*1050715056565652531116867832405614549841664912870911 42 Pedersen 2016 6137703859466022614650987644857383491739343907474808718413653837441173789874210607938351923662423694272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*609205426963588128505941594083924600144554251139941269593 6137722545252272588747075522181149758112969282147124292873557073692173816956862441558319306359799153728=2^6*151*1451*1811*396735172784552913211926032080708249*609205426963588128505148124946182759536095299058901365343 42 Pedersen 2016 6271565259631422519253420189204665457306291611126095191794787507072091858900219440889147504661804123550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1124377662907089669672670614556531029127310357505791 6271569955686102382860889788549684341683611477879383680844937759952208970955905930974249998282476452450=2*5^2*29*31*149*4327*192469182710250091094589930763850086436351*1124377662522151448436013640069526219914058166380287 42 Pedersen 2016 6451355003191835785738086197988118349434983159370770810749725688034178285752000658759646215643899706432=2^6*151*1451*1811*328481*9085995379*132928044795118424699*640337261165136825269407322199869152382529547779729453383 6451374643865835790565893798127699131755861314277203420182820900238932834493284213983401533069338821568=2^6*151*1451*1811*396735172784552913211900909577205383*640337261165136825268613853062127311774070620821193051999 42 Pedersen 2016 6518206046857101656847984886790935660807415407307680526494327052102539579279934028157695426470297813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*646972644613337747946590363895611265604346127558845238749 6518225891054168449964862608509489208701358730283432479510387970316543679834483597536478083629542186304=2^6*151*1451*1811*396735172784552913211895867586078749*646972644613337747945796894757869424995887205642299963999 42 Pedersen 2016 7022452775148438799594583308829930653471110611463124068375584438763975867936035425759872362745030420416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*697022280509332546087514560725721141319532075449696181929 7022474154487441052664181842887915002235688038755343729877398758742974888400545479838750795921276139584=2^6*151*1451*1811*396735172784552913211860929501827679*697022280509332546086721091587979300711073188471235158249 42 Pedersen 2016 7246561471297540876560794324523140857359320744040794395144513610312204345495734692356628456953665563550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1299176762722379367642513617829392739717853485230591 7246566897414865884842746568352418458044876039042730636265909139534826074805473775312764325335869412450=2*5^2*29*31*149*4327*192469182701384433056172564457872412273151*1299176762337441146414722301380805296810578968268287 42 Pedersen 2016 7429506412802769943766339231341736837585668210114405095950097284036842019514312032023328575840172341150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1331975465638597216136988315121201823876465141673983 7429511975906543015174242579483502973721020465366352110426555237691234638335633354856991221439416010850=2*5^2*29*31*149*4327*192469182699980183041653403098974234955263*1331975465253658994910601248687133542328088802029567 42 Pedersen 2016 8121966995984104134143959308092443054617127358200314791738717040616265984732320756568233709765700747550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1456121062461816141231875277340444489515722517319871 8121973077592050828851801704413935294245754903038836269437018650746026326184141096507156577146590068450=2*5^2*29*31*149*4327*192469182695237874036878832874517394181631*1456121062076877920010230519911150778191803018449087 42 Pedersen 2016 8240631430469694339783436162429424407928521509765139541189376019966050454694870807966769583747096023550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1477395438792700502757108693687831697294109334303791 8240637600931802608212027546710396500650801443030457254647303092881788336698080020332143380272128552450=2*5^2*29*31*149*4327*192469182694505193192853804624180400354351*1477395438407762281536196617102563014220526829260287 42 Pedersen 2016 8524453759219510058924440752036073994355579838083835460938550739721184123584888536378850753968289813150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1528279623756012237211360436626207924666631817508223 8524460142203551847612727284187624490579978797710722784841052245973743769680883103749188878452705258850=2*5^2*29*31*149*4327*192469182692835504587578634478901172719103*1528279623371074015992118048646214411738328540099967 42 Pedersen 2016 8822226756695599721441858817176031960291476544620478523248192931221537615317575232139955856618014021150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1581664910063099316760897285394929077854077865419583 8822233362647628040622855859101710463331288970260484092952512174198634307883719020623663190103571130850=2*5^2*29*31*149*4327*192469182691199228773476543606754851245567*1581664909678161095543291173229037655797920909484863 42 Pedersen 2016 9089274451694713300439713326925999938757982111062512211086513170622992482491999475604996858997678363550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1629541708080421539932516081184388011896989001006591 9089281257608079169519354600880455349968427829069216741063884941562350400410051482004013911768784612450=2*5^2*29*31*149*4327*192469182689822978639597897240550810828287*1629541707695483318716286219152375236207036085489151 42 Pedersen 2016 9309553715900395701596444216401831541659557888933166148832365827767481327585095229893424156834729595456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*924031327707129032393435875417928577018387315590437147439 9309582058149354109470248478656971614310664776390217113006454591368138890982219968220397763386986884544=2^6*151*1451*1811*396735172784552913211749976117451999*924031327707129032392642406280186736409928539565360499439 42 Pedersen 2016 9323981586632375013323116411044234704478734404054959440977092358953080247825815273263609289282050587550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1671620431481019029664003449684103442910645121372671 9323988568290948624394941136903563474213784344491252013124459384566047413468481424853820527718278628450=2*5^2*29*31*149*4327*192469182688678489590459993694484856786431*1671620431096080808448918076701228570766758159897087 42 Pedersen 2016 9375264506124992243876115791865418756807813703988146756009256926779592033730344847631833117302973953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1680814526858980564415641762617156371827805032181759 9375271526183452344294157933043239876423441653236290904129863909043618367727513774994447404063267326050=2*5^2*29*31*149*4327*192469182688436049867811013839339781967359*1680814526474042343200798829356930479539063145525247 42 Pedersen 2016 9760883721605763736914441919786918360456710523963023079310203862885715673922417544728193468186069339550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1749949043415030351902574706685608825607952378784511 9760891030410150338340477317222365570323213905394167439300177867798732143803440089317728770643359396450=2*5^2*29*31*149*4327*192469182686694636106804234783781131807487*1749949043030092130689473187186389712374769142287871 42 Pedersen 2016 9859885596580209336907036418585456613361012791433072720226607889679372196795899491919322329387799699550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1767698280200255002584576561440029017070985012015711 9859892979515725734842610022397257402312596047944129447360776647093268886056715630958419849124342636450=2*5^2*29*31*149*4327*192469182686269528987235772544106754559487*1767698279815316781371900149060378366077476152767071 42 Pedersen 2016 9966507393269050933742516365992884278482945134016421716654016740662221729551911312530201173156996853150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1786813630453821537921348224191877750850004441185023 9966514856041381043718889114816134992135483192734911383397181299455937936746992264263197292446308618850=2*5^2*29*31*149*4327*192469182685821148090427982336684551387903*1786813630068883316709120192709034890063917785107967 42 Pedersen 2016 10213103035640650474661490949072490503777555041918455536079103893985493993663832973590980341434390145950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1831023747159064343644628682365877449499703990438399 10213110683060125667710681652010733276001728073170223515216136037239669955963850977170892761377565054050=2*5^2*29*31*149*4327*192469182684819994601689473217223567886847*1831023746774126122433401804371773097833078317862399 42 Pedersen 2016 10598770481993459743275655139193483049770318876515611967235974202163936641551643953764457682958034369950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1900166910633855592503670863320178916978939501044479 10598778418194975996134418054154650717505304229387266023152314084570900848958340316480240648262507070050=2*5^2*29*31*149*4327*192469182683347628686249528811707733730047*1900166910248917371293916351241514509717829662625279 42 Pedersen 2016 10845747775651518128044199370239592447927001028372266399945398237835860306937718793464846473505928827950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1944445450478099474056363019670853602569750094960839 10845755896785954264309493111887826967973778907516685128375060494804200137766606244108982342591842692050=2*5^2*29*31*149*4327*192469182682459741040369867442617664821447*1944445450093161252847496395238068856677730325450239 42 Pedersen 2016 11149625407929270566553701899237219156359745097163344772218418366150075592198651239594463339527791775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1106669931076237759372106933936916136649930184201269630399 11149659352140641815740567038241986252070319341458240691749905577468066018902228675305695915474525024704=2^6*151*1451*1811*396735172784552913211693752534791999*1106669931076237759371313464799174296041471464399775642399 42 Pedersen 2016 11393850323122039389174319022183903310325605238877884106239943070431889565101857366782661165014950171550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2042710275261975687728642494804407403788236875709951 11393858854667501567345887856981012260358486580556976474382819343779586130348304517922668687020678884450=2*5^2*29*31*149*4327*192469182680626803002414007334532860005887*2042710274877037466521608808409578518004301911014911 42 Pedersen 2016 11865276559013773249221514342766069031507386384093366987794055069225164953831325418667473483376348085150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2127228431001645940350081180660998551147507802878463 11865285443556181105347883655519906446885396686288718719941472604211473083833411331682312636440261706850=2*5^2*29*31*149*4327*192469182679185745380511797670379179258367*2127228430616707719144488551888071875027726518930943 42 Pedersen 2016 11960914307175938947183167833847848913549069830327523582688508747073003752561637053943832591430707073950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2144374540993745798965738954654344486431479796252159 11960923263330468536210067594699238649078835875961506546476012251114174944727296773909511221295585406050=2*5^2*29*31*149*4327*192469182678907259570216589445061589941759*2144374540608807577760424811691713018537016101621247 42 Pedersen 2016 12090830873274227169669772648717950042228861106940714719486763979277125932643319978750933775926974133150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2167666220010905948424700552317718573606191902682623 12090839926708346934488156445094668861134713955391640877786223172182954822003636657663466779585784138850=2*5^2*29*31*149*4327*192469182678536015110180763432421100629503*2167666219625967727219757653815122931724368697363967 42 Pedersen 2016 12182540088797121367673007985744836888100511102860010143152244350744092991047826051306699698343813819550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2184108015503397474120857889133423762566117712106111 12182549210901736122799105132275172629315353249478412728877464451840503286290758273346179257290939716450=2*5^2*29*31*149*4327*192469182678278717971341479839185118073471*2184108015118459252916172287769667404277530489343487 42 Pedersen 2016 12680684313583810521761853283674964212322237109591670740708281576472231822533545284244811122047618561950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2273416221042063665647296599779528080632855913861119 12680693808691403195998521935831600186616899391716903397895080541069772509088751477391357513058316798050=2*5^2*29*31*149*4327*192469182676946146432209981302072875192319*2273416220657125444443943569954903220881380933979647 42 Pedersen 2016 13434982160948364723805174211425653208649285740915506168905892584656355245243494010687854463358512387150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2408648115416937719259830236012979235285902051321303 13434992220862953655868389713568647308230234084177976542946874041741186048290705553770796369084764924850=2*5^2*29*31*149*4327*192469182675116449933159289430532320480767*2408648115031999498058306902687405067405967626151383 42 Pedersen 2016 13697232461312158899748126765494779380646942584416438775934946951553683937466953325360298304917261109150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2455664827770665899187408646773341798104842204780543 13697242717595867714239161559975715227622044243237703173578616556400394347354083425598613049003422922850=2*5^2*29*31*149*4327*192469182674527522143862407398442555316223*2455664827385727677986474241237064512256997544775167 42 Pedersen 2016 14402282237912606653140698900065016945947490800245156514150383371405120032739595431767299833784574910656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1429516428438595360890006559722436889854147579288621709989 14402326084597551281061673636119433144634845009305366764388301450461755719369808608554201988875311169344=2^6*151*1451*1811*396735172784552913211629510459451999*1429516428438595360889213090584695049245688923729203061989 42 Pedersen 2016 14460044761208335570889593554488683618061810630245265198681425089848543577435107023418271584745215678950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2592423208730964028158386788140899556400771849756259 14460055588674535914694169222743813897394910707572273840800654972919670868753554542491355803681761601050=2*5^2*29*31*149*4327*192469182672935932160692488947050315599359*2592423208346025806959043972587792189004319429467747 42 Pedersen 2016 15052759806515778464728310974661783169986055870319684274722918772829602966519671973459479470062374529950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2698686243527450953097539373730871819633460006791679 15052771077798178929707738702610483969788112134441751968105750822822848454914302992178540821604528510050=2*5^2*29*31*149*4327*192469182671810611853534932244278533204479*2698686243142512731899321878484922008939779368898047 42 Pedersen 2016 15157213887779463623585696414901312138482228980533420541365709294355624089184178668704078893420744603550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2717412961804360310991195140193063696743145721147391 15157225237275524768548232834592253684859705242369705551809328565496710193993893546356633959841820772450=2*5^2*29*31*149*4327*192469182671621418499516173548530241981951*2717412961419422089793166838301132644745213374476287 42 Pedersen 2016 16932458433659300036004097335363079561351596101322515832135213751131794259561086257078663153100257004096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1680652212262005880546801552564715069173440310352938347599 16932509983278868265742694544757829631214746526981713528990302663569725272697300802414630508478802195904=2^6*151*1451*1811*396735172784552913211596604668011999*1680652212262005880546008083426973228564981687699311139599 42 Pedersen 2016 18432101204102360943718557543700694015163485762163491984841165037478554701751779481275949731429437846336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1829501119797943114586784303965439030669969836581284363659 18432157319273624307850403173202534318031770789960389091836728602868760434344879783552556631958496873664=2^6*151*1451*1811*396735172784552913211581365338328159*1829501119797943114585990834827697190061511229166986839499 42 Pedersen 2016 18933696837144098981476673835237875001494254398441058401103214289008855258455974814619255946432646555550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3394467715574813605409092974514807302022971387103231 18933711014414359008197912353269860926165848875846298814167412048283949796950845168675017646527050340450=2*5^2*29*31*149*4327*192469182666183299536804355958909049851391*3394467715189875384216502791585588067614660232562687 42 Pedersen 2016 20017348515929695439245632822240686299044023209420578476192856834006533476440666745247339657418282881950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3588746765789129651719585545293292127956644670635519 20017363504622196458836159120234777174151015110089747328977758469295824709179508437005413470904215678050=2*5^2*29*31*149*4327*192469182665001717956186658415125704670719*3588746765404191430528176943944690591092116861275647 42 Pedersen 2016 21154960636822667303908947260084744236666260223153204553990545576422761772865371261429672558690581173150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3792699942521215480074423414951404508697514184359423 21154976477342184870078272001140767706715909662187940042950742639252990937169952779818046767028487498850=2*5^2*29*31*149*4327*192469182663891543035518694796759249698303*3792699942136277258884124988523470935451352829971967 42 Pedersen 2016 21409949237583261455383785110093171492122520219463963180059744858102086416113610949768221578343397045150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3838414764120312617298209622587537944760080204721663 21409965269034446371217952066227229341248884824177466536081939623851343237600896691341048416709462346850=2*5^2*29*31*149*4327*192469182663658889915899939986989324742143*3838414763735374396108143849279223126323688775290367 42 Pedersen 2016 21791447087570264296708446636682032934312726933308399457615970202895667853864074574592539299279861341150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3906810394750755077698177852426839257524273213053983 21791463404681358600881974479333876448518322177551232081121969450522532593202607324529141311424367010850=2*5^2*29*31*149*4327*192469182663320975780100236054108518829567*3906810394365816856508449993254324143020762589535263 42 Pedersen 2016 22444665272391018759988949516481136222219096427231456138664473786173505162884328894245559734076326254550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4023920542793818799772594690553284653309462426158811 22444682078622163132778603522954449319593986891846861378550437643322961065231358358670194045744692881450=2*5^2*29*31*149*4327*192469182662769057172653587239125382334171*4023920542408880578583418749988216187620934939135487 42 Pedersen 2016 24417908627172839601377947511314091600639609505081027588902205418338089049977540710993766051838599605150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4377687211838560483328844347139610516226958795876863 24417926910939225515689997142677295990000681595913872095297076415285304925175897323514970720173645386850=2*5^2*29*31*149*4327*192469182661281152781740749007887771642367*4377687211453622262141156310965454888769668919545343 42 Pedersen 2016 25008789441187083160098342581509636073428445038802712121268065681870669740621715010415053782007718785950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4483621402302045965212940419003318371191586943987199 25008808167396224115801886435783438929695996717202304633858460382205248543067596547597147147557362814050=2*5^2*29*31*149*4327*192469182660881286551868407552423755918847*4483621401917107744025652249059035085189761083379199 42 Pedersen 2016 25354440363298679460338179094256458470930363807655899899001310145732858952775141600500024037318609307550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4545590330296324300008818253543198676499490052995071 25354459348326083988846778582874059402505346481466484350326821891705630544399582468635465731003627108450=2*5^2*29*31*149*4327*192469182660656014666183851259426580024831*4545590329911386078821755355484599946790661368281087 42 Pedersen 2016 26762408941673583874422920369855854084790541623485647113241579907137575966366299381627274322376226509150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4798013506020853081431443679005301504427297747448543 26762428980966894577518459087896444868858511817497050022214248644888609528716618062054005318362761522850=2*5^2*29*31*149*4327*192469182659798523401000363472633979155167*4798013505635914860245238272211886262505261663604223 42 Pedersen 2016 29844215100329167149855452631374900466506153810598162743928370999839817192208575968076087523397909207950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5350525337238803883040453714178124248244971953560439 29844237447233039915024199537693638030247194010652508355088518111464384607351669047797615194033571112050=2*5^2*29*31*149*4327*192469182658203981528407480044384937155447*5350525336853865661855842849257301889751184911715839 42 Pedersen 2016 31265676975238376212247001068957219236343889416879441818439747912214428583320011205359503441356757855296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3103313637661042332714897740788719066840013298361195275399 31265772161283564594492097155236466655556848063445233445682770309895286141494066289041305717233398944704=2^6*151*1451*1811*396735172784552913211510737175916999*3103313637661042332714104271650977226231554761575060162399 42 Pedersen 2016 32310108160898398672806174067562520440629946088155357223701089764044267667791776835213191455953015425150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5792615144430667082765879934668864347086618955281263 32310132354226276887913278379502382827580370119153989205777169532405631821219868167917411109100432766850=2*5^2*29*31*149*4327*192469182657147184365342808647491311455743*5792615144045728861582325866911106659989725539136367 42 Pedersen 2016 32522128299777654864329306839983009775237593982283836385502953732549617818890358789892478317529555841950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5830626501782994910571409533400892545649157678558719 32522152651863055992907214727449794323614569351067699234700689500817296098363142289661042134615432318050=2*5^2*29*31*149*4327*192469182657063801710683059861225532763647*5830626501398056689387938848297794607338530041105919 42 Pedersen 2016 33360846317837418984890298716722399331669503303453566068003223189055374948081089651074234610623389953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5980993398393989541286416145364148459763023094901759 33360871297942383131928898453491381641973442231277391272050313186088439061276840406447697582643011326050=2*5^2*29*31*149*4327*192469182656744342121861663598142118325247*5980993398009051320103264919849871917715478871887359 42 Pedersen 2016 33434515034226736007662329168418836027900982240748602703827042038522397749873448571283111842717925229376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3318584355505000538863482132882203487988543582696138137419 33434616823139268431329264873043032787559503534205174961158685825888445266051246634772629613701003410624=2^6*151*1451*1811*396735172784552913211504157005039499*3318584355505000538862688663744461647380085052490173901919 42 Pedersen 2016 34796640326671704241037112428335555213570326247227445130501500484385955494090015580575713423782258777150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6238405168061833370199648183190632180834857449825103 34796666381877842556935931584567803147111488248657903228307526530953490642823581454380914148576384934850=2*5^2*29*31*149*4327*192469182656233209338623349474984938578767*6238405167676895149017008090459593952910470406557183 42 Pedersen 2016 34830261598930583289996059272321187554376125358183899481253407653284944743761930742396913849632169813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3457120915976548616772943574700533882901932746433306988749 34830367637090483191039391719653253432754263888762422587833505773015163142671316094527491804723670186304=2^6*151*1451*1811*396735172784552913211500355743828749*3457120915976548616772150105562792042293474220028603963999 42 Pedersen 2016 35063069980907219557212878199429505961705776922443410587231861984198958181157050978917255915768166129216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3480228601356976501041563829169925174610254630089808362879 35063176727835050010743502159529863556795211463983531047233704256661471117845789456401984335753922830784=2^6*151*1451*1811*396735172784552913211499751148414879*3480228601356976501040770360032183334001796104289700751999 42 Pedersen 2016 35356859430775367193350986751343395547987207609526368303096877577283794376883262402406008050637760209950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6338842271226889006167384751629632686033447491017279 35356885905465228736841025310771475556934697743351360815610805651487475710485609150466804748260579630050=2*5^2*29*31*149*4327*192469182656045033919369946427835213762047*6338842270841950784984932834317847861156210172566079 42 Pedersen 2016 35357507041761505950581213941263384765684698346863178041433843081706392998534597276292820260333075125150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6338958376106121410924581092584819092593787354955263 35357533516936288957260607537481719255126900514196998283866024754546444432161171170133401039341045066850=2*5^2*29*31*149*4327*192469182656044819839977890181433685626367*6338958375721183189742129389352426323962951564639743 42 Pedersen 2016 36517901751074812349298819699163787602334198670762085527475547833973546033398228672144719271249334585650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6546996056859542309220889374875520438476781334717673 36517929095135874868275729476038970863105049289278257463531121174197321248954205959427484464370790086350=2*5^2*29*31*149*4327*192469182655673426371889745915589018936553*6546996056474604088038809065111215814111790211091967 42 Pedersen 2016 36892366511839589872032887938988756276864434089010381859213398005693654014912306490525458362347983029150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6614130782421579647747496670764472591767658822546943 36892394136294289295744238577803067135033714851211895180434729407788794061224079597839081446055440202850=2*5^2*29*31*149*4327*192469182655558562196884974890763652058623*6614130782036641426565531225175172738427493065799167 42 Pedersen 2016 37905944465176396720480353171170234328481268451723601371973589770120453692505941521595510361287907099550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6795846887280220078736588217505001105460668390323711 37905972848583174951647436210045306452975202525740402069754177744513411273543343051045228846268459236450=2*5^2*29*31*149*4327*192469182655259039806790243088538858239487*6795846886895281857554922294305795983922727427395071 42 Pedersen 2016 39685696866312263770915101312117780750402739799273139021230164208564870943914009908234166879518610079550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7114924145109796111564234540831683085568636119215311 39685726582371138624571351761665274914233755221289796772926704601709271463466559969035417199508041056450=2*5^2*29*31*149*4327*192469182654770123831066425227856086625487*7114924144724857890383057533608201781891377927900671 42 Pedersen 2016 43334957890878632912144787429966862028086677778968092994560057777013840676321528714466221469120676891550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7769170320072026526611164397410634976773363881892351 43334990339449823752751851587801778740775636983432741368894610512692482479525608941474605240036539364450=2*5^2*29*31*149*4327*192469182653893226975605167173797376973311*7769170319687088305430864287042614931150164400229887 42 Pedersen 2016 44233815110273234998783015892483064216966804972874323623492626000254627812070918438394288223012846875550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7930319082428915985602951907531195996526015796997631 44233848231895327316461194949906083612848606866036195841752662861236615206989432463847289857674773220450=2*5^2*29*31*149*4327*192469182653699444764356986683623280946687*7930319082043977764422845579374424131392990411361791 42 Pedersen 2016 45028144311116144140046400819852697954658611224426338969517086498325006665474289330257211414132375221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4469324442580403449651569412964324533759064561244068003249 45028281395977045803617185582045551782662298844097813869375705097518137811421606635502485123164648778304=2^6*151*1451*1811*396735172784552913211479733204619249*4469324442580403449650775943826582693150606055461904187999 42 Pedersen 2016 47267630772071030068242977026093314048235627355899577121854958446396927303113621850185621590033021361150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8474227089806264495658875407932529204007771240622383 47267666165369115001890772760600341225679325903424821006744995277531576663230661436801298987723802190850=2*5^2*29*31*149*4327*192469182653099809825491624800244462479663*8474227089421326274479368714714622700758124673453567 42 Pedersen 2016 51328146032702483923766192470621842940820968099973763135430760270078586603621356603618197522756435995550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9202203674588813972288694185872450578466830628588031 51328184466453933041425895242870058396344186197878477542061321692453188205018001721192823862285795300450=2*5^2*29*31*149*4327*192469182652408173637647932351262311090687*9202203674203875751109879128842387767666166212808191 42 Pedersen 2016 52527112867312140012500536682085331294909370509445984968860024855610721474345363329668573545377246299550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9417156636344448011047409811215002684411941218387711 52527152198832101707326435586977136349702412107249771660021837412825723961037260099078642825297712036450=2*5^2*29*31*149*4327*192469182652224399651670260353742110019071*9417156635959509789868778528170917545608797003679487 42 Pedersen 2016 53898169795618016550097758638059266478290708709176622231262820463603186627795831078671271202402985873950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9662962224095237526500883999118798327829179971748159 53898210153764990479605507915100340113642962332727092495274025790866763283899875130795031342316394606050=2*5^2*29*31*149*4327*192469182652024268860396891244851881397759*9662962223710299305322452846865986558134925985661247 42 Pedersen 2016 57589267946836840878966740417621415190670972107714980223017523700878271457989945555350093578154278853150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10324709035460157633323766334721535691561016375625023 57589311068823148258344134452594164317215895263958086678568475075917452805945877758477654373201346618850=2*5^2*29*31*149*4327*192469182651532845280598289771307519427903*10324709035075219412145826606048522523340306751507967 42 Pedersen 2016 58097987870510818398941986257391230720821763145652295142499979930962938058831044589188062496600864416550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10415913271591862289978889713475546478782567461102851 58098031373419029547114503201077595203698668484993985023131311040968134200299253710000669982700095839450=2*5^2*29*31*149*4327*192469182651470011662091444104240468272387*10415913271206924068801012818421040156228924888141311 42 Pedersen 2016 60100307698943773882460227772621236883215754821127780042901299861685331586139464580145265231877763779550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10774892823886002496547467669937335942533233430369311 60100352701159257079793737379410579333683736871975227449788569163805051196699891047040760628486999356450=2*5^2*29*31*149*4327*192469182651233031695101069463792980464671*10774892823501064275369827754849819994620038345215487 42 Pedersen 2016 63288340952116947202655877470712948940789960835324670699229467068902134113083808547877826138188935827650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11346449242432080346698221962679128414187454111595313 63288388341484259065570697718818861705360363031884466495638174081886706244348581633660453831189990764350=2*5^2*29*31*149*4327*192469182650886663178493317161910011514367*11346449242047142125520928416108220218576141995391793 42 Pedersen 2016 64002665409542631302178757058564611452290686405875699612988309111561519047989702408795343007958668981150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11474514634522868792433877098465625674602098089782783 64002713333785460259219951444762128229732866278047152752710282974435314936583094536214588807633725770850=2*5^2*29*31*149*4327*192469182650813786306821718167806275096063*11474514634137930571256656428766389077984889709997567 42 Pedersen 2016 66731879810623333625319743372730254139068733743638719485233022678386713029289948468523540699300187858450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11963813172100366146462322657266054403839103196802649 66731929778461266829017199021060076555777219983816221625449880238811101965302845772512939021087191341550=2*5^2*29*31*149*4327*192469182650549714395860016537071935106649*11963813171715427925285366059477779508852629157006847 42 Pedersen 2016 75764693006413069685955186107534123188793127349729591689200739277889988765745868304263484064785369459550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13583232403202374112159607395240725130306200406994911 75764749737887021071668976123084010139769038939801261306542917372759849434348133138591344264078030476450=2*5^2*29*31*149*4327*192469182649811404353443548932044787691487*13583232402817435890983389107494866702924753514614271 42 Pedersen 2016 78653650431201441356329865810688918374821362480044107569950475788036967278129302019497077498434466075550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14101169961538892759835820686842735404799109222661631 78653709325883694492452045110071087739254271213613173448391966107154251060942988639859165779624546020450=2*5^2*29*31*149*4327*192469182649611062649275527338305957985791*14101169961153954538659802740801044999011401159986687 42 Pedersen 2016 81028714025462672370480028998210583650776483495976604399617635164726409713784294993698564647527537931550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14526975696282709744545213267429646636358648902249151 81028774698557179078466789553281026142029222280547287810357904171888113146327364628442494127155028724450=2*5^2*29*31*149*4327*192469182649457058158097825646003785362111*14526975695897771523369349325879133932263243012197887 42 Pedersen 2016 86839199058540690304304133089743261309693739256243739956626810224434960181186866417157785696287148094450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15568690054881736404640897457136916122156887880349769 86839264082439868933552666808465411191850551873021024760879406800573523124228737202324527870999574465550=2*5^2*29*31*149*4327*192469182649115807415734957729617051995647*15568690054496798183465374766328766285977868723664969 42 Pedersen 2016 91074407871788369962153000738747173943357666347398787881418642453462412907008946209320540358163687645650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16327986018524916964870185571811155810534611178082873 91074476066948843705504629752416424888172979975321148557482067336925702481092079493351434711594702626350=2*5^2*29*31*149*4327*192469182648894508831358061584463274003967*16327986018139978743694884179587382870500745799389753 42 Pedersen 2016 92752093219936238192173763950803847696442186251213494518937955987557316758003970276759754814181899915550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16628764508862244226813122720227870695158652393994431 92752162671322519106894718238526307674485118156485420196481873715906705567659900506953089554704990580450=2*5^2*29*31*149*4327*192469182648812434678371451534377144110591*16628764508477306005637903402157084365174873145194687 42 Pedersen 2016 94567816015615470316332513317645738079489600900171205138314599614204662146473038981444793955738596099150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16954290604657494501697801852106808971241573785296343 94567886826587943671567691405497081934304593466632923202767511410423459047015512609832378530406190332850=2*5^2*29*31*149*4327*192469182648726888927882880391795659329023*16954290604272556280522668079786511212400376021278167 42 Pedersen 2016 99476044419554662793666399796071944698967198314667574418322702508886220168795757971173508495731650333150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*17834246748518090497172063746966145179422558238286623 99476118905735479195423365828430112631849441683404431637260865020077778660874610305361394216568819938850=2*5^2*29*31*149*4327*192469182648511273977411742335351188103967*17834246748133152275997145589596318558637804945493503 42 Pedersen 2016 102958614943513274875914192953160616047833198910300521106734054457088070518886586419786677660240932737950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18458608346386216421577937699674508779984181176983039 102958692037391042509273931451658277364551739429245539623253890938064559677851441421421920557506400382050=2*5^2*29*31*149*4327*192469182648370755092647765430512582909439*18458608346001278200403160061189446136104266489384447 42 Pedersen 2016 118009738468016775931463874547542669684188178568423873888499374292520376810949349245324750691440154085150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21157001234288929841861408693654345838975289109398463 118009826831951720424016379786992309718976341702159889456374857728831314025041158869411335526363015706850=2*5^2*29*31*149*4327*192469182647858832432225055541831535250943*21157001233903991620687142977829705904984055469458367 42 Pedersen 2016 125767439432464613180872998082213975092526602627361588372968588494655911434054961424650819080547755875550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*22547816017973498848779953607675846477851877820777631 125767533605250524045845730923868609994567959879415633772473671779969883408815432831878797801711704220450=2*5^2*29*31*149*4327*192469182647642827861225991027020004246687*22547816017588560627605903896422205608375455711841791 42 Pedersen 2016 126178631947837150645146359921071217637414323377415698922895685781215100367284643573577865853116437168064=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12524016979234171587108321932395687822024805950183820282441 126179016089366275603696558958377755541950780172027413757275762871717960241413275833130534824215286095936=2^6*151*1451*1811*396735172784552913211434433624034441*12524016979234171587107528463257945981416347489701237051999 42 Pedersen 2016 127868514342350239660549834210583135435824289379892493364596582012334473973092458524572437669178641409950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*22924500561459978039887731797849574049174939722721279 127868610088389757056959572615427975563724876098880557770054118918147431349188128926078521952568210430050=2*5^2*29*31*149*4327*192469182647588836326579048516479758510079*22924500561075039818713736078130580122209057859522047 42 Pedersen 2016 140056661841382339508501991491409904258614841617492430636523457262355495751055636252775860183650947969950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*25109613883701638958563628164797577811190680569556479 140056766713725216947021151219087503904858398503270839968501504942637355301065650673401074747750329470050=2*5^2*29*31*149*4327*192469182647307590371788945938695811010047*25109613883316700737389913691033373986802582653857279 42 Pedersen 2016 140789401277833755767005968420766804585430133564874427889404840765815144226485019645140774319664107295296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13974227053188678030180133611884037729992457613995456260399 140789829900771384482507819640324869696346904670219833336470203894978889013595915368625328821587169504704=2^6*151*1451*1811*396735172784552913211431825127772399*13974227053188678030179340142746295889383999156121369291999 42 Pedersen 2016 147798269050548952787845945359143030099232999812622204408801882754044126350911025575251194591403103616950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*26497543349574564129969849855940160163379997203574219 147798379719692032287769758070403256725592528780756914568673109197931517138639658814724074117116668543050=2*5^2*29*31*149*4327*192469182647153038600345928498958962601419*26497543349189625908796289933947399356431636136283647 42 Pedersen 2016 149091899269141933207591693783010935614714725506269519079877701302080557291573003677055156995115546869550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*26729467735534480772458617972079738069129968084887111 149092010906936057629205467229610120099644951283168900693316090930650533381634853441388127132980774666450=2*5^2*29*31*149*4327*192469182647128777933697654922258543103487*26729467735149542551285082310753625535758307437094471 42 Pedersen 2016 153232801769743820084768921653177961053814014339872017957500994687180764839915654110394878791605878043550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27471856291374287300249296086086713220731594919112191 153232916508184076976545950068711933059382246901793215774226262368150696357415548352286786906216661732450=2*5^2*29*31*149*4327*192469182647053873902912906146159900364287*27471856290989349079075835328791385436136032914058751 42 Pedersen 2016 154508161717055055238751859116243685903692114153045396922925887728748701982006078310735633028941435573150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27700505149762693900723422141088895793242645322407423 154508277410465849969357072838823382574672280440724331569763786399991587607620116959894842062492577098850=2*5^2*29*31*149*4327*192469182647031612856276185794888888851967*27700505149377755679549983644840204728998354328866303 42 Pedersen 2016 159074410485155427103586524700245729879715193956267886707756246024307334342897227196428261752577035317150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28519150560530660245466264341944459800079423373691903 159074529597705305801788282505987970523962810676525167189512691216419855358352764903782656240732238794850=2*5^2*29*31*149*4327*192469182646954837154700640785097157856767*28519150560145722024292902621397344280844924111145983 42 Pedersen 2016 168237775536425154141472256482759994840473097416986815387191231352964565826465579007683597651054790229150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*30161975366489335356816494147768842358859773411170943 168237901510366336426743978597673091035339452404532948391129056521150607991173645420438393139674905002850=2*5^2*29*31*149*4327*192469182646813340190539423887187962842623*30161975366104397135643273924185888056523183343639167 42 Pedersen 2016 173982307937217739718131552174244193135837986721660277181158788608861568035619455638653034017250829093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17268830269081174879823766695664523266080565498310267027499 173982837613509041732406769461568150771434098622473554253684765559593047517286367107179015184606450906304=2^6*151*1451*1811*396735172784552913211427527358011499*17268830269081174879822973226526781425472107044733949819999 42 Pedersen 2016 194701962615969826764518097516029536868406131543693299289080045127129772540642436858005688687196893621150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34906523112929140592975396965465157393618124427651583 194702108405900230054165063160825521776400409003840945460752773861592830119111279219320378408373587530850=2*5^2*29*31*149*4327*192469182646479467663028196567361684196863*34906523112544202371802510614409714318601360638765567 42 Pedersen 2016 196870389975270947590494654968539335687750296621918350448931452100744166481621213226314580538571255681950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35295282726438778900448268926428649920940327229611519 196870537388887468624337242417155672240057048394034414119111065504733090056223703258216095920077770878050=2*5^2*29*31*149*4327*192469182646456089514100724913563619806719*35295282726053840679275405953522134317577361505115647 42 Pedersen 2016 209656604829683295694232678067174859107233577987521869998174929895680807691102831787621163695507318481950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*37587618655392657498082836830280378874538624306387519 209656761817427106975468701886536919890505952264617569778708907123899240460821857760117634705026636078050=2*5^2*29*31*149*4327*192469182646328072108568724910731460955647*37587618655007719276910101874779395271178490740742719 42 Pedersen 2016 223865648085951984481165848253469882282123776279251456832472367476476369949866967491783314079841286171550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*40135041856338198535401307284133443058794313984829951 223865815713215806737540067963059757625892809442606799569949827384042262751393549912378655338673702884450=2*5^2*29*31*149*4327*192469182646202964188299665515386088934911*40135041855953260314228697436552728514829525791205887 42 Pedersen 2016 227848347477891304385328152036069476937763551958254323511656107379836985934615883199130153867014940955550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*40849067470198014035032549259115624285000247649951231 227848518087341127063828835788878210263061682679730536736260506448886836223119094912123175304114099940450=2*5^2*29*31*149*4327*192469182646170697071471640868945831419391*40849067469813075813859971678651737765681899713842687 42 Pedersen 2016 228332942587688816485230132071700685466581941830471777007685412095910160258717664821439556083374303173950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*40935946565679570555504417745601825499589040936414159 228333113559996241531623027920657946246429448020117262726276062651481635889361677028866796229743925306050=2*5^2*29*31*149*4327*192469182646166847782245611605418861751247*40935946565294632334331844014427165009534219969973759 42 Pedersen 2016 233395399780932088314769679951928932491895993347995818749925433784477398493346832371351463185829482273950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*41843553128293985276660759181675665997122728435436159 233395574543932077299565031727992087114203143675127733748957082566859703754954480878285253145550762206050=2*5^2*29*31*149*4327*192469182646127590839721225650319254965759*41843553127909047055488224707443529893023007075781247 42 Pedersen 2016 238588025307759600562052103973918887339677388712642886967401948586451866298472116239805367989758007770176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23681351064510037028600825106533555726446858473895336770119 238588751671387560296777740826709765398054898014095568767003991605384064403795133983800691890331039269824=2^6*151*1451*1811*396735172784552913211422591187722119*23681351064510037028600031637395813885838400025255189851999 42 Pedersen 2016 238761606751066519236971435197401439769343105565043100520998252377074718542270060681662185328297795628450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*42805616505134311908244672903473164402525721701926049 238761785532202382119617036199879905839194721649992277324808934995833746546536030533334588274237218771550=2*5^2*29*31*149*4327*192469182646087796013921123466363885864097*42805616504749373687072178224066828400609955711372799 42 Pedersen 2016 243568412388644617047628057721850737588396786119381712531049930180493342919953058801027975098789462913950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*43667389390384702298943750125974601636735105518824959 243568594769044965758171356771316610766249825369884927942459225745019476266890046628736567825147427966050=2*5^2*29*31*149*4327*192469182646053638435249700629801651842559*43667389389999764077771289604146937057655901762293247 42 Pedersen 2016 258578578837562053265513824504075174038045467267700971856201282842150677836802281919790403857391315963550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*46358439419045658420718636696742317599442861405598591 258578772457351530506470985662556080368204520167897063534915626588300959349135988202857874223582123012450=2*5^2*29*31*149*4327*192469182645955149379843370598947628348287*46358439418660720199546274663970059350394511672561151 42 Pedersen 2016 287833342778499873466210215280019315045210307822022732913724729768474060544064464533589819429121371419550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*51603286876910331774542987438697485530127221923098111 287833558303820972524341694079961418995001202153006103761630150900869102707107770436933803020579558116450=2*5^2*29*31*149*4327*192469182645792714636696553172342449663487*51603286876525393553370787840668374098505477368745471 42 Pedersen 2016 310249220885703583878630717434093625296967255308510698635015206616871574901620577497056303401117258991150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*55622046404204021930806291144453808779982401727766983 310249453195700426671687655686548133649782491066672193120178861982164455905987781029148643935819033360850=2*5^2*29*31*149*4327*192469182645688980922306266351043180634567*55622046403819083709634195280139087635181956442443263 42 Pedersen 2016 314574527216680293439270723004968470840309207767341185440660662914487548689712548497918038229839629775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31223485777884895822261996171754368734185986780488817411649 314575484915603188187120887828596884766813898187079427952228814161183230207589382565869345360986687024704=2^6*151*1451*1811*396735172784552913211419380210923649*31223485777884895822261202702616626893577528335059647291999 42 Pedersen 2016 336966302551519401202330141845985894487858701288853868009569979297839550400953021648778023421559430821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*33446009276195252141991984578650476156283730340183568309499 336967328420549105346977533987155465381082298851002899069933986482578800248532831252441352425526393178304=2^6*151*1451*1811*396735172784552913211418710247005499*33446009276195252141991191109512734315675271895424362107999 42 Pedersen 2016 342273509221722285569837489028532297073167409129629535006991039403509764691490725850514517914673363483550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*61363419248920560854805070469533817920065209040916991 342273765511029377699341049192846043781098510288488826520621712362728703379918318112139684429544670692450=2*5^2*29*31*149*4327*192469182645564354113726218089728245452287*61363419248535622633633099232027676823526078690775551 42 Pedersen 2016 344997048790905300818962404848090857935876597524630863063387333956395241064071647305113375980498178037150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*61851700392281086131040172791514627233064486342594303 344997307119558267571042889057131115633050253274322225791566219462667651776035946682536429473032843274850=2*5^2*29*31*149*4327*192469182645554822619363267974020159344383*61851700391896147909868211085502849086641064078560767 42 Pedersen 2016 351003324667742423070747165005431459996250393777079992759089697861015770665612510227051175216084794715550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*62928516490591166450302533468935445750231750516210431 351003587493805330133407213969576049547305678169768180485862459940936057689744431082804691740247343780450=2*5^2*29*31*149*4327*192469182645534325414603352529484107566591*62928516490206228229130592260128427519252864303954687 42 Pedersen 2016 385399006754802865784513471991977362028306270570621218970592111129313304478559036923235133628673823645950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*69095037133863099743933969615218767871189627855508399 385399295335840351798417501337754071617456626722015865122430456237892290198002183017952647140099091554050=2*5^2*29*31*149*4327*192469182645429250733980485797320729382399*69095037133478161522762133481092372506942905021436847 42 Pedersen 2016 404202989293585505843199579011292303975070744223335611981821320595101874904129473410904585202128460469150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*72466249433349671681704841817842700413170198256991743 404203291954765116777509667119986065899389488580218406254472105201605418473678926153013157467152377162850=2*5^2*29*31*149*4327*192469182645379367373739073751066644135423*72466249432964733460533055567076546460969729508167167 42 Pedersen 2016 409943372849271980093407861910817585644603667803431768855502489029430844960216967131883894127281307308864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*40689439113678804661186686209571161164361739473917125658891 409944620891604267099013315415349891805109173516161406335985918257947540319223613474724167321045334355136=2^6*151*1451*1811*396735172784552913211417034729410891*40689439113678804661185892740433419323753281030833437051999 42 Pedersen 2016 418869605031385841176685932464271162179041022194679363022669898292952939429502343086975653489003322369950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*75095707063675508482295519762715710371784701706004479 418869918674708923788156179707394386578021386874130312562696329050144872620543133113082807419748099070050=2*5^2*29*31*149*4327*192469182645343568652049092951514376130047*75095707063290570261123769310671246400383785225185279 42 Pedersen 2016 480851640942904850862297018672678941026557212805555652905875019649483376176439559704239647942276056585950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*86207959554932017146630037663086894130124539526263199 480852000997453482431725046445881420462916760233305812715802961794536083208065443878325306630677953014050=2*5^2*29*31*149*4327*192469182645216396546680080311357206515199*86207959554547078925458414383147799171363780215058847 42 Pedersen 2016 522119525307622681197741824423445437454760867102709808202918808656279673927004288312010210436458264878656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51823622583304121043119537313780606293810022328093954458239 522121114861969098452883225435867602189045141358740195273105202630418864198041462584707636533313685201344=2^6*151*1451*1811*396735172784552913211415372543310239*51823622583304121043118743844642864453201563886672451951999 42 Pedersen 2016 572836523729223026425241196789432959098652741332479250041351769445083358186445600482565503999164125879550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*102699177177395424984121080919264954617427214320251311 572836952660682190339402501755902899524844971017045843206541256509880616521567430245817188140628733256450=2*5^2*29*31*149*4327*192469182645078392878619283791915376685487*102699177177010486762949595642993920455185896838876671 42 Pedersen 2016 581737633789611535745311355256360315672413528119900702880741386361851626219477510297932026591585962267550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*104294984430075849858200070297477264831777638054518271 581738069386089371174512061615250643366145570483863658342855602374027003313888773801223560947099563748450=2*5^2*29*31*149*4327*192469182645067354576312196537555229593087*104294984429690911637028596059508537756790680720236031 42 Pedersen 2016 599972507811089169974275944914297815050327913828812105434071633068596712994027309747374253089028811317150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*107564165916178917641404564398137731443262881087611903 599972957061569146858658102791211170941488047712928035955220876710091181014229852533011642872654222794850=2*5^2*29*31*149*4327*192469182645045764199088421180265721056767*107564165915793979420233111750546228143633213261865983 42 Pedersen 2016 621928273486205673925231963465431263413006772301903909960684095144238129627984127220856249804307002157150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*111500435647122292199323428631820712417315217802884703 621928739176836056687569492647190907138782140648008065740839424149623068448115231414835139207172230354850=2*5^2*29*31*149*4327*192469182645021448155707205659662904544767*111500435646737353978152000300272590333206152793650783 42 Pedersen 2016 677168466181317739878028985528077252136378483071242057439971587898811482100508046753334308082296754357150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*121403998185307157044244132737428735323664669238408703 677168973234981860360567412640013480091885369426842438777239802228508909802599858267367198153351950154850=2*5^2*29*31*149*4327*192469182644967243806856289263067663584767*121403998184922218823072758610229464155952199470134783 42 Pedersen 2016 708667802112863983861636827564761692105997709453563772224697462589164396896154105826271728263017626379950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*127051256605116493822432032049713322621769441595868679 708668332752761809999177744681876224439878625781254543557584579147263708999200524563515537264406332660050=2*5^2*29*31*149*4327*192469182644940118294857111858500003778047*127051256604731555601260685048026050631461539487401479 42 Pedersen 2016 743412688092170116251036334966566722855703240747478844350552657484537411248462301115736314144272285845150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*133280383159351130366204570548317823940481091136417663 743413244748521196043643585704624925811766485150450899211977593604930103193019139031139480428687261546850=2*5^2*29*31*149*4327*192469182644912864047450952394461808250367*133280383158966192145033250800877958109637227223478143 42 Pedersen 2016 757984826819179796091977936321572749323863910989251880246706965515665792008927513608127278087259117727950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*135892902778798724613987459544802669905589308734498839 757985394386931368688707750408986270768686672683404761499016877134037139046057228065129549742968317792050=2*5^2*29*31*149*4327*192469182644902177220193846939309071591447*135892902778413786392816150484190061180200597558218239 42 Pedersen 2016 798494919915434037286888366862903143660684911603604651767065923612432328154562170201674058016218379957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*143155626184214081470775565971213527576572075181960703 798495517816540106071279171954895196089968769444024694728645500327023359170715645427951405516320180554850=2*5^2*29*31*149*4327*192469182644874517578797374161292641504767*143155626183829143249604284570242315323961380435766783 42 Pedersen 2016 799404247746893378129137658314750679951070405654314610011133081033417215677505483499219460099040626241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*143318652137006720238837848746731274476067757995326719 799404846328890586792351060409050024154875378712161513517754221155274480612863133883863080375167465918050=2*5^2*29*31*149*4327*192469182644873928873629711402373185883647*143318652136621782017666567934465229886215982704753919 42 Pedersen 2016 811163159333678447568934444059458884910270439150090538098716561451199381994925999343378077080144400411550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*145426811261712617611480413234983518635147549189130751 811163766720573556707747916237637694710146983025700129029970045471116657893948241170629660156055171044450=2*5^2*29*31*149*4327*192469182644866434964390887758783322213887*145426811261327679390309139916626712868939363762227711 42 Pedersen 2016 876037433453256269416012460295194863850570640524675761134835867104233396166195613118812849372997562267550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*157057589496116519290343111652200313938406839726518271 876038089417041830923696189519654278854070072048337785310758713521796194380323684033084731006903963748450=2*5^2*29*31*149*4327*192469182644828707501298317678747749593087*157057589495731581069171876061306600742278689872236031 42 Pedersen 2016 886699665018410689243982314389712894105418713443622833634198898918888840094881570144979044207544323623232=2^6*151*1451*1811*328481*9085995379*132928044795118424699*88010477596259761098336563345735921009365350172020415380083 886702364510075296718700810328454132706264738290878804251434044376786188682467150474939083233500281304768=2^6*151*1451*1811*396735172784552913211412874963132083*88010477596259761098335769876598179168756891733096493051999 42 Pedersen 2016 925668857887938344532734866169243067754881485331435307698277674646542618813249478759133244663363442683550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*165955601826757126017820282193335793052274767499780991 925669551014995487540840168583391852821772797750970868803456164839343946369839869959685772346795583492450=2*5^2*29*31*149*4327*192469182644803414847699846598016703292287*165955601826372187796649071895095678327227348691799551 42 Pedersen 2016 1001408428525642136329750394356293478392453674528791162500798788457812163554887665586758812201029522601950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*179534330245858776901801071376671840599291096226277919 1001409178365361975117915964249180356169196384174361353163255730824291259074229846305820044705241443158050=2*5^2*29*31*149*4327*192469182644769649446302430033759702297119*179534330245473838680629894843833123290807934419291647 42 Pedersen 2016 1056710615333195950993212940271127085113564711778539071669060524284852012617835701959334778366936041345950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*189449007201637272793383750009097492202252983605542399 1056711406582369795776548166336099479052779635540934908094269310594905454134091657986214779611639625854050=2*5^2*29*31*149*4327*192469182644748052568755306030574938406399*189449007201252334572212595073136322017773006562446847 42 Pedersen 2016 1074940551870038658622296646194471014682315730256080632471544580392360088321117386416699322543890242592550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*192717303486486007348064929207350406454754866223104771 1074941356769517529887642433401244584824680462476792567752818439328420299186039916561901191530196755423450=2*5^2*29*31*149*4327*192469182644741420322956832402514804982531*192717303486101069126893780903635034743902949313433087 42 Pedersen 2016 1127011562030342359199794244477708252850985400163700756367803170059675408662372017199063048174350461355550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*202052689197308445384562298271861328925686984335719231 1127012405919818276735289402277988474334952384084968431171175332839721276358634144136473228768473683540450=2*5^2*29*31*149*4327*192469182644723658024704989888643264707391*202052689196923507163391167730444209057348938966322687 42 Pedersen 2016 1145790654904673999285006217313886500394542862902176841804016528371929608461337072651885517873823489121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*205419439232338312663656955503933797861990652409576319 1145791512855655031618776858449211726617809451486370680393723911962699821909414461385706892438281511838050=2*5^2*29*31*149*4327*192469182644717648267371808745354271947647*205419439231953374442485830972274011174795896032939519 42 Pedersen 2016 1157956348991672946289935292611116751694927640934089963413721428311909638285665968729035521957440496443550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*207600527065901950956972043240495311652348502990040191 1157957216052144558077227481830081818122291434114691142592548881542704251670599401613463887996193627332450=2*5^2*29*31*149*4327*192469182644713858998683585150477710044287*207600527065517012735800922498104213188748623175306751 42 Pedersen 2016 1197901471145507308121928767118288302416094388046496435068024976632665422467549597502454688568254495577950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*214761961449908669432108197498493875930127355444495839 1197902368116291587095209264052881851217121009367131052384906678301596070004512605460211393177399755942050=2*5^2*29*31*149*4327*192469182644701958464926158138011373096447*214761961449523731210937088656636534893539941966710239 42 Pedersen 2016 1261504950182993064597468126560812182077046284952793409355343943661213690750389660491400379515916111387550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*226164909223289755763626577073730350703924297321308671 1261505894779115361203920758952505729756729920392282465279815480047416319365802126084087918434349625828450=2*5^2*29*31*149*4327*192469182644684564972678151923801338962431*226164909222904817542455485625365257673551093877657087 42 Pedersen 2016 1278489053138536005567625589724837866015727053274405707813265541263777001371021100812736565738830257589150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*229209850190522720970622528122327659629327911279942143 1278490010452101694025208916096694079577898163639241437586145296085458878996975798771155212299235271242850=2*5^2*29*31*149*4327*192469182644680213135735890160200638221823*229209850190137782749451441025799508860718308537031167 42 Pedersen 2016 1483578022988882308885050158833663348011340159106049646438920693006776648970947188114414036621670851073950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*265978574912667615984885724232476970745615207248732159 1483579133870014750323627043029832834626971268690830342829814008358111504490610381241259762572620881406050=2*5^2*29*31*149*4327*192469182644635529256216948872422647221759*265978574912282677763714681819828338918293382496821247 42 Pedersen 2016 1575852056791735672640003525577679911304649745588376748144449013418106038659517957401836677626712636085150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*282521632056963273881829351008007147389657170227838463 1575853236766290622010599737701086227163626986429872240147838093434878831442840263417567970170794853706850=2*5^2*29*31*149*4327*192469182644619218667161730743914228858367*282521632056578335660658324905947570780463853894290943 42 Pedersen 2016 1579328583778143962568443886925081122701541138464623011817097581192837998040847069260902160107420314293150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*283144910158392279309303186402513294218717357788429823 1579329766355870552244070496149290915127901250784756699094258534656700680725437858557761495705178805578850=2*5^2*29*31*149*4327*192469182644618641404270765118972670344703*283144910158007341088132160877716608575148983013395967 42 Pedersen 2016 1919249403221273321351373831945635322423496084771988070072030574461566945051396700582955660530372485045150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*344086534891065523425719161101673450009810664005681663 1919250840326647929600455857195078225708012072315436600053567881756238845698356789074980370096099254346850=2*5^2*29*31*149*4327*192469182644572297797683488398282544890367*344086534890680585204548181920483351642962979356102143 42 Pedersen 2016 1956279818863255492459724118903802907656873699547796349194481727986776070449159936050935477478074151042950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*350725415373424881340171253974855767735136245563161139 1956281283696453933166982378371945372006028726020116753437054096991028870972061784275739102974218538877050=2*5^2*29*31*149*4327*192469182644568222004193082698033505663539*350725415373039943119000278869459159773988809952808447 42 Pedersen 2016 1979984127946283771189248189452550532079370362621403318401449901557645280545517603019039540889560519937950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*354975167156948377134887577524444962359882363173207039 1979985610528915884987298419855047256316044885428373582880054073354092261099155097762377261792445885182050=2*5^2*29*31*149*4327*192469182644565692993932776177138978344447*354975167156563438913716604948058614705255822090173439 42 Pedersen 2016 2134886968510592573165971768215115477668376748379338052668628193462685119640566273543241558373175677569950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*382746431050581674091843819553068445370866359688788479 2134888567082165125565072537394176633334557894577424000791953934554113854491311023160463775177570495870050=2*5^2*29*31*149*4327*192469182644550549058118868141421665090047*382746431050196735870672862120617911624275535919009279 42 Pedersen 2016 2307296791465032720921316149927682939182253481532296687911965316662694270272348655449770725629641416640050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*413656378690531963923524048165888884823817965796559721 2307298519134513438472357375651794188087928126888590606725075071714544407150898213873856595655664934975950=2*5^2*29*31*149*4327*192469182644536084684506085776559908031337*413656378690147025702353105197811963859592003783839231 42 Pedersen 2016 2446132104029342082518636147463497712100800476443199946880118126754916659216920481631942635405400286081950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*438547026847353917306523611359932466520698844369579519 2446133935656637525299561748597867814489542329915526342536769900672488113655867792143298045877001444478050=2*5^2*29*31*149*4327*192469182644525919095522803227487910235647*438547026846968979085352678557444528839021954354654719 42 Pedersen 2016 2570615527661333716275214743883200119201568416881368099784804121326295867543306271749092576003411500237550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*460864642169790616246440807771742535206147725233925671 2570617452499963158124484400442020926249709864792536406223646540069410132210819045580569819698328412978450=2*5^2*29*31*149*4327*192469182644517738018836533938878756859431*460864642169405678025269883150331283793759444372377087 42 Pedersen 2016 2576907267513278138560453395556613351026277231491295917829135544898569866396151118609120929547593158427550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*461992636770418342364558103344107518177079645167785471 2576909197063068694588162287286059202047372150672908449509942875970543833589197374049431675425653289188450=2*5^2*29*31*149*4327*192469182644517345508756782965316430745087*461992636770033404143387179115206346515664926632351231 42 Pedersen 2016 2617242469618892029708288588011697516614907116965009715727450430553533483883558671011883386147573141842496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*259777655077370960478873870900296523024473010337586944437199 2617250437620358282866876045169468455858306083351502106689923833064904016070673370234259899503045840557504=2^6*151*1451*1811*396735172784552913211410509943481999*259777655077370960478873077431158781183864551901028041759199 42 Pedersen 2016 2672138031334123638925671832668343329378320256371390611787131767635005091000782651767933976847753322042950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*479065781867218637713631897953482301036228946892981139 2672140032191292113261086001993455146090171226908395348988367908762196866164080235693083577215588327877050=2*5^2*29*31*149*4327*192469182644511630254408366605693222683539*479065781866833699492460979439835477791173851565608447 42 Pedersen 2016 2830231692806806356752949878464588493928586464946642528984009058380593665171643819103466745863335830499150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*507409101955308785055110982474916073345480205242944343 2830233812042154453059818411604630002522974284586282443259379757229272164544369426669090404134392699932850=2*5^2*29*31*149*4327*192469182644502991531312890478933791297023*507409101954923846833940072599992345576551869346958167 42 Pedersen 2016 2885934344851698765275155791050133067211145411518744368658893496275542454018488904728158071127215661499550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*517395575049530200312081704842340223145285068026371711 2885936505796363274181110352319077515103932020181088458731966159348919241049776508698525156178599648836450=2*5^2*29*31*149*4327*192469182644500173256042720433011209363071*517395575049145262090910797785691765546402654712319487 42 Pedersen 2016 3214923379207293731795647782060752669545385209942162919894866709669833999691361650033200957284121180965550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*576377329405466448036840479747953103509715317000935431 3214925786494048365136826162252912795879165319609623468037631721493078176079565260665848331368415757530450=2*5^2*29*31*149*4327*192469182644485519791337939679261413166591*576377329405081509815669587344769350691586653483079687 42 Pedersen 2016 3273259243448620734352024167238465140777231776581593633144177129092702831715257027158673466948800803765150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*586835889586849828634945322061878480583262285156504063 3273261694416401863217796088916737602526016989596453545786570328735418902549085436489092100602970442826850=2*5^2*29*31*149*4327*192469182644483228920625780985372425900543*586835889586464890413774431949565439923827510625914367 42 Pedersen 2016 3299536341255613598380173952216662510949607282148946438697003924194167863718565642990858993670517986177950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*591546895627141597585535693903054887255870083541347839 3299538811899294286810549603395511333710969106336823932324279788214688782526569748602944981845728521342050=2*5^2*29*31*149*4327*192469182644482223471612814681828673482239*591546895626756659364364804796190859562738852763176447 42 Pedersen 2016 3510374448493244429696938416586494911809383630238356650547266541187435998642922166081084263930849352088896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*348426579982053596547952085720365074641023512504350085291299 3510385135569079923350808310563338490889132943451542622810850052866652946044919226610621411765510737511104=2^6*151*1451*1811*396735172784552913211410201630971999*348426579982053596547951292251227332800415054068099495123299 42 Pedersen 2016 3680768715133324079428232895312273394406213995558041959587186994712758143682123239798737959079260463233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*659894931216319773410562372622156659199706618464719359 3680771471238129598623639333744275355999999173680538196598846468890501979737061056803963111338612350846050=2*5^2*29*31*149*4327*192469182644469251251716392208909919080959*659894931215934835189391496487512527929048306440949247 42 Pedersen 2016 3723773112813680989618458567290628229928901301616271546364974359940785002151017105195207882287787216373150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*667604838098706016641184143610808764349414157404743423 3723775901119539136212390458675280160582762148886387945912330611370874897516360889619610552452099404298850=2*5^2*29*31*149*4327*192469182644467954648477581696324121011967*667604838098321078420013268772767871889268431179042303 42 Pedersen 2016 3958110866314941909912689481389180619637109014492663310188042588597302789366762785855490370078236581249950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*709617338121408528461323205056276022091563208414574079 3958113830089420479184738182461100704611805475272042100871638739830306400229716612072275066958116708990050=2*5^2*29*31*149*4327*192469182644461384320195028452569897154047*709617338121023590240152336788563412184661236412730879 42 Pedersen 2016 4246227013897637521462453554443189572259269081587910945402334401617466486687990114502815514982437639619550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*761271326759623531507136914114892301790286543783342111 4246230193409197216078217977360108826677525716770367805532445127730447536493978069306485881036868921916450=2*5^2*29*31*149*4327*192469182644454300094167422774613792403487*761271326759238593285966052931405719489062527886249471 42 Pedersen 2016 4363098450586281593381906418847413143780906541898630767156845053978623947304418307266493551645284451083550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*782224251173949771417766931882530041163273976874508991 4363101717609432809943359365040831069353226547541136985910285981709274069759479605693363522374452559092450=2*5^2*29*31*149*4327*192469182644451693183586484221106523972287*782224251173564833196596073305954039800603468245847551 42 Pedersen 2016 4405175867889227176807980700421306157793684986592743892253057766326809192498239436821959160611056731521950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*789767967322896092875879176846868038430093107134584319 4405179166419321917334978618837735075290849003121477328475935060244700752144744349855456211824390093438050=2*5^2*29*31*149*4327*192469182644450788479015504488471565227519*789767967322511154654708319174996608047155233464667647 42 Pedersen 2016 4523102014351880999058669798056670968474095206721545023128295065317725020460247528369477686932234103962150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*810909982029940747743554535114101560445630635023132803 4523105401183318235186609298218925898108494986447473266219418180395416257830480736352960426942183445349850=2*5^2*29*31*149*4327*192469182644448342648009610514760887520767*810909982029555809522383679888061135956666472030922883 42 Pedersen 2016 4562828113787297059499224044550701384432379320489253691057383171409704481446130404582172693028875349377950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*818032149621358402072157654794210259351257157371491839 4562831530365046012612537908533598689133230606927389400998393955611501673890781230391484776999363990142050=2*5^2*29*31*149*4327*192469182644447547182402523270605425866239*818032149620973463850986800363635441949537149840936447 42 Pedersen 2016 5122815762472145761060115011355044427422719463527175393122130636437760680125945126952360052528433669659150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*918427757036613159257004761247058619962707625000271543 5122819598360307570636287922610164925967107344797085104169010302730956953807296539053882904645751462372850=2*5^2*29*31*149*4327*192469182644437646808976570768088683335167*918427757036228221035833916716857228513490134212247223 42 Pedersen 2016 5656694892115958830256902056067217114989939290803422455282542536158149835595660331517367087276522577653150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1014142581520327453532015684675539616244369371239521023 5656699127764863206463208163625426462846700274587351683496762360486019388825894377402509616042781335818850=2*5^2*29*31*149*4327*192469182644430033255095213703299785267967*1014142581519942515310844847758892106152216669349563903 42 Pedersen 2016 5839041200679717390398857828506650226413418678371872918544243282638174188539804179378070271617502246401950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1046833960430526848741192285597455724871318359598673919 5839045572866822397083287402887545289534240308908770302798325209067998330756915271933647768995405007358050=2*5^2*29*31*149*4327*192469182644427751817178388831216114053119*1046833960430141910520021450962246131604037741379931647 42 Pedersen 2016 5841619520563378909572395242335319394125645372697703079689480781000841326561361902473469116370608459747550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1047296206323697797214441781279970119210300365138099871 5841623894681091452750138375857310527893290978790610369165321383925402613070684030736999295741491671068450=2*5^2*29*31*149*4327*192469182644427720579556418424709542661631*1047296206323312858993270946675998147913426253490749087 42 Pedersen 2016 5847607445080607306998049826434857387552624753396469462438606213943102832095080394678099398681440339611550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1048369732356773152027955863498498875046734367589194751 5847611823681988565671711677790935037638298586567080189057123762391980319804943262363936493218293823844450=2*5^2*29*31*149*4327*192469182644427648139160808686221514853887*1048369732356388213806785028966967299359598743969651711 42 Pedersen 2016 5939267482535743978491902926358688469044894027169846543603291350309284704894293441209387598278601398161150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1064802711115546316670773565178981016757128409541278383 5939271929770796422620938223534702604697768199538227214746660508470748631356769617028580698281984993390850=2*5^2*29*31*149*4327*192469182644426557490403518656326242225663*1064802711115161378449602731738098198360022681194363567 42 Pedersen 2016 6971059227543476089753918566913764147966383899546795927505063116240637001066201869636742865405834674997150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1249784217778015719730691778832460450814243431976597503 6971064447368823332626340429174418961223748195990928370220328618225618667857413237225063277350665075914850=2*5^2*29*31*149*4327*192469182644416258933685553488167094275583*1249784217777630781509520955690134350382305862777632767 42 Pedersen 2016 7076341207206463592589372333008041970622652320915461360010648495822361217375639525364724060359082138586050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1268659363190543657943233785622763907721474350880805041 7076346505865389509047005630327271585875266684737344118956894269988948507256815195611898968841061245989950=2*5^2*29*31*149*4327*192469182644415376946088367386768903655601*1268659363190158719722062963362425404475638179872460287 42 Pedersen 2016 7651577634431554266009847305209545051501355796516287813909990062326704141789162491750129865469947458229050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1371788799445566029771268476088045916784600283031629101 7651583363818951348398604667859077995913701189336407178755722575216063722273844563629499065938392862026950=2*5^2*29*31*149*4327*192469182644410986561156221792975607909887*1371788799445181091550097658218092345684357905319030061 42 Pedersen 2016 7655882239739652918186628541590924916221698130146835198620317792490237555031514583076556638484456599189150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1372560536939427627612340788393308703847371474092214143 7655887972350274357687538375016701954488165381671461080780553378139167344923063888178513550475166945642850=2*5^2*29*31*149*4327*192469182644410956194073201722043946551167*1372560536939042689391169970553722215767200028040973823 42 Pedersen 2016 7694638400005242387104455969134938252806305935476166932741411156108199200090759277845850402662588208821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1379508812066718111466557104782644921894409395653635583 7694644161635899536073778374897180254972864536364189520784346930834816535866357696859196616010426624330850=2*5^2*29*31*149*4327*192469182644410684316580236238110361005567*1379508812066333173245386287214935926779721883187940863 42 Pedersen 2016 8323103396871898394919994819795501414881570977813485786480070354832547467076700917409462833138526534056150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1492181163408458053058400207176761114219268616239464283 8323109629087787059055671305687479489438328503208127249156635572062975516863062416878797460178319492695850=2*5^2*29*31*149*4327*192469182644406629011214063250165495775067*1492181163408073114837229393664357485277569048639000063 42 Pedersen 2016 8546136313911942863925915094842544880804116881181208382369955884843898370836691915196843639275143167157150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1532166911723476601053324607358810702065028784962184703 8546142713131558742898285350189035177679049971525279928114447753282862194721826219989446532476406465354850=2*5^2*29*31*149*4327*192469182644405333235510115179387032544767*1532166911723091662832153795142182777071399995824950783 42 Pedersen 2016 9105714009458492622059814213025341426574533545059638232895711995100869927352798616382255715925252389492950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1632489021992092548915240037902071329808948585165410139 9105720827681554551931312998811398777993141857140049053540504610394590285937594682063062521825910572427050=2*5^2*29*31*149*4327*192469182644402361620472681247000841768447*1632489021991707610694069228657058442249252182218952539 42 Pedersen 2016 9167658617618383368352913261754495413871928558377636615497942736280415315575581416118703732736078072129950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1643594564367746094530640516065419340827125390756583679 9167665482224645504079903479935268749662739663533397411918738679958265129978602129074923752169501406910050=2*5^2*29*31*149*4327*192469182644402054967594730535179938516479*1643594564367361156309469707127059331218140808713378047 42 Pedersen 2016 9325150195498030440125143189025422955364696564387927054175815328392396006774273657753157486305057653499550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1671829941810709097292304983356957387740276989519011711 9325157178031640968665604394228465737572020044605082342798432522385394658820162056247375647494279576836450=2*5^2*29*31*149*4327*192469182644401293661968391921863927603071*1671829941810324159071134175179903004469905723486719487 42 Pedersen 2016 9692634399880349031605513463696725897525462186258340248831717911063050313424714720465826095300832645232450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1737713180487706573951888806982667324104262620195631729 9692641657580659789453941626145895650167011973505895854390043983290242306021039844204865308786580664207550=2*5^2*29*31*149*4327*192469182644399613477434015219371227041279*1737713180487321635730718000485797475210593846863901297 42 Pedersen 2016 10174854376857846931302115618943145588086471288611466454033071246815357795268164201079845894113652693045150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1824166457823599975124853148263879525324048813437041663 10174861995637295968257871898034111116214838321740566752591317835901889497999969474333074022559969126346850=2*5^2*29*31*149*4327*192469182644397592827237035883633018490367*1824166457823215036903682343787659873409715778313862143 42 Pedersen 2016 10915294140652853920406833828053460102836308961179235002872081874053041463943206845583013775744064420635550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1956913849690528449964089245598553938674599941945656831 10915302313862572591676686498468451933239868248420951896090134417699157701214252929527294691592213497060450=2*5^2*29*31*149*4327*192469182644394837697454207767336900658687*1956913849690143511742918443877464069588383202940308991 42 Pedersen 2016 11371991633418442234145835396426280397662611902285452012508588433289309889000443132810191763127331783123550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2038791409488332085484164715482647103881288830370685791 11372000148596443048406387799895206589428904402719496696000607709936827525825075785179156188133267537452450=2*5^2*29*31*149*4327*192469182644393317245762826522615658816351*2038791409487947147262993915282008926176316812607180287 42 Pedersen 2016 11396087549301018697693241421919235600731004449604136780259112248083839738111473570983690047156442993720896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1131132837319778593364299673424367248767315164798008889036799 11396122243848182912956084446332631838094802541745799709102451205908337588941993698826843285091041831879104=2^6*151*1451*1811*396735172784552913211409576451568799*1131132837319778593364298879955229506926706706362383478271999 42 Pedersen 2016 11505487504224717697505942342407290810498359188082589273137415978994999616461988835234655205012256106054450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2062724792784375168019852380277118881649137384445972969 11505496119362438755372845312275846061296128836914354864510358377761594240354751416019324680849758706105550=2*5^2*29*31*149*4327*192469182644392895605330823545997787483647*2062724792783990229798681580498121135947141984553800169 42 Pedersen 2016 11956304484673236827412609380395436264534128899978229178613545061490415412279386699122372520831570423493550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2143548083604333361589009141092344850025814045296301191 11956313437375999968835470301986848808391161676530767508418585127858046082990786443302533247795258708282450=2*5^2*29*31*149*4327*192469182644391541307297368203872689329287*2143548083603948423367838342667645137779160770502282751 42 Pedersen 2016 12160226192713258354970987541917056114521861311898867530413340721878006790447384399371538133693080316597150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2180107539499325718652054306928418897355314922294869503 12160235298109559986879511331532700269950996783968024829048704384371169692815696465347492337611345450314850=2*5^2*29*31*149*4327*192469182644390961690698848020045735427583*2180107539498940780430883509083335783628845474454752767 42 Pedersen 2016 13233237696393763012709162515416743204643006117274800171153766162656742557613359602677892238524015076737950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2372478999706631551685358923149676374335735604909463039 13233247605245100955992336941125318063573351290495858841197930755302473269668987667131911278727137696382050=2*5^2*29*31*149*4327*192469182644388206113484991758546988584447*2372478999706246613464188128060170474465527655816189439 42 Pedersen 2016 14126471920645390556521542310925408420262589101131951214229302555512650255549465734896363677162897262005150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2532619661234515653845580633737249648186161497757284863 14126482498337214942851646007586161268906704487703411119191371622196935097475503336569287771795356006986850=2*5^2*29*31*149*4327*192469182644386231502701862709211481722367*2532619661234130715624409840622354531445002884170873343 42 Pedersen 2016 14209710422851922862928942059817856659481473335661450516245096522753623412507537914994976957681000219457950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2547542811787902027841816476328241635427938026758365439 14209721062871498241169454351055302539031497984151436733248921274014956345166662723206032609255014300862050=2*5^2*29*31*149*4327*192469182644386060138030539038631677480447*2547542811787517089620645683384711190010449992976195839 42 Pedersen 2016 14346927199250461655057644271703405525561748116725625287178769284241356985077970224826158862569649400684096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1424022095258810466314730540955404717702535667589714619017599 14346970877411077970096858559025757906927581697455501448441242100207680550814677602447466381999562298515904=2^6*151*1451*1811*396735172784552913211409519211011999*1424022095258810466314729747486266975861927209154146448809599 42 Pedersen 2016 15072859137315777303596596735606332337789268214155587222168647926253759386221586796773021711934203675701150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2702289688226713689933784051100671566072613510633565183 15072870423648257383151925903538363748931490190838761167587752149076065383273843538750064471229083106250850=2*5^2*29*31*149*4327*192469182644384394729696871035752567614463*2702289688226328751712613259822549454323128355961261567 42 Pedersen 2016 15306008677673958429394798424231820239612515534846011648052366146891445959685819937846547162220616538658150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2744089163229099333854876939586865165570801249206233123 15306020138585342623141127653768736722500416084284639042618555173640706491298781893839650058862139483613850=2*5^2*29*31*149*4327*192469182644383977098491677178804130900003*2744089163228714395633706148726374259015173042970643967 42 Pedersen 2016 17552301188530175971710028985373386023220254999295147144501072706548921559268143394271767019126118813057950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3146808583183065584906357193385554603624334968852477439 17552314331431943945478995722381592399275268611838859340920337643054971852537144300713081055071913243262050=2*5^2*29*31*149*4327*192469182644380521794475371498924209960447*3146808583182680646685186405980367713374386642537827839 42 Pedersen 2016 17695828033407138758780442106840770410901098332161001100494938818125475062519037779743954507088329894191650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3172540337813116577916764467990840878081865948288660193 17695841283779670994377473501538585384858743440148878879271690970668942124538147467829315015192679225040350=2*5^2*29*31*149*4327*192469182644380330833704245176789422919167*3172540337812731639695593680776614758958239756761051873 42 Pedersen 2016 23709814448463731471267365499771647142321721656682456957457705571774081493916836761397812377419649178441650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4250738795483908308412931967627741236866411603754545193 23709832202019740222652716778299062641684392463729405416751537615322031499939407104435169598983569220790350=2*5^2*29*31*149*4327*192469182644374407320350138784640723930623*4250738795483523370191761186337028471849177560925925417 42 Pedersen 2016 24200061989408021224933985772952773117880907424030444536799313474218169106478360222478113528576669359833450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4338631269134941232842089250442720134326226364319582149 24200080110054088619567600623233501819440939618286939433103388162826320725717336795151987084012452995366550=2*5^2*29*31*149*4327*192469182644374054229255867527148319886847*4338631269134556294620918469505098463580249813895006149 42 Pedersen 2016 27204060854880321808998350640160892669742815816745043488038308554065921655715281882955753208799263896467550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4877193666863031870111377370810913458355729807802482271 27204081224876008717154205017978976838456942179910285196518004395808083895590842863029477900518527421548450=2*5^2*29*31*149*4327*192469182644372168559993882979265796460031*4877193666862646931890206591758961049594301139901333087 42 Pedersen 2016 27256201234024332580518593618052891488796447251050417202215209913398605117254283547878030659292717818549150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4886541489171824649647269027950593584470393191512825343 27256221643061958997007747078529079921236511023414194257521453935111985251341759663653904909641261079882850=2*5^2*29*31*149*4327*192469182644372139500296074693804297543167*4886541489171439711426098248927700873517249985110593023 42 Pedersen 2016 27723605975400035106626099727694268866936330004741065437239132935925825441955915009642918596291527478273950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4970338664037001901103576982232737067516894721521756159 27723626734423371989405421725529755094010803092272477556257959551918886169152033404707550906610133726206050=2*5^2*29*31*149*4327*192469182644371883880759946307240874485759*4970338664036616962882406203465463892692138078542581247 42 Pedersen 2016 28338214777708312757498019697725326485048617066380042161225053824628559599195862375511967344174784537473950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5080526851536165324997283919672246587943785183752220159 28338235996941568995366222338673066373712041795524666651354474518284575105746140857023081633135742459006050=2*5^2*29*31*149*4327*192469182644371560590556800985165533941247*5080526851535780386776113141228263616264350616113589759 42 Pedersen 2016 29003200653518866837965814039558169506606415161668892739626853602847571145521183709125106557326118804215872=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2878748737638633192945843936626546298362836831861782715238743 29003288951621933660050958163268547187138861265405720602847713727646239981787837985803589090812672775432128=2^6*151*1451*1811*396735172784552913211409407501115743*2878748737638633192945843143157408556522228373426326254926999 42 Pedersen 2016 31094848128561155280543101256499729301263448645656376431894587683335161308342074203958833154735919588932450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5574741108457700518193147172394208784355038453398585729 31094871411920417073423145807257149026081935188032715654337349009623558746253845906469931598662662232507550=2*5^2*29*31*149*4327*192469182644370267782493478471192725766529*5574741108457315579971976395243033875998117858568130047 42 Pedersen 2016 33257652265389623463906278406657283352517248122474675895657761549301106684387203056330122232580856694453150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5962492580382253991112191183556187450069555754470977023 33257677168224417745879843547880973287554281898294471186003859255763253173850880774300416962694499187018850=2*5^2*29*31*149*4327*192469182644369403505132749783446313659903*5962492580381869052891020407269289902441322906052627967 42 Pedersen 2016 33927307758390225260275240433583614426786288716817048239510643876685162285743240496642275072217902813749150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6082549639027476782042064963094391995307956542324409343 33927333162653081216705876155530718330325832482489061551366652239560295825247945077704511390067037236682850=2*5^2*29*31*149*4327*192469182644369158245302860312504606983167*6082549639027091843820894187052754277569194635612737023 42 Pedersen 2016 34202246994051580710318540391967857698241938982632201384609324703269806391564282311052406149235149493121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6131841246853709332759603068174091276028485241403256319 34202272604184842355792535243405174118195560858380774011891710546522650103643632949300108625620914547838050=2*5^2*29*31*149*4327*192469182644369060330431593866356725419519*6131841246853324394538432292230368429556169482573147647 42 Pedersen 2016 34269637166235969293243329688405711654321881733024190971204828898938967015046047860463441069523052356945150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6143923079883705147293371599909243359002759655146079663 34269662826829988399114222416574608355295377383193301283724610913539304153163863013945981338520795126446850=2*5^2*29*31*149*4327*192469182644369036570324471954617678120367*6143923079883320209072200823989280619652355635363270143 42 Pedersen 2016 37736643065122804682194613961378868112789183524387247874458006558743852344832948873312291685305187211445150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6765494223369593188415846519240331082394675013665969663 37736671321759215530489817502009015672348553833045992595812497711374733185652697338133582035401270191946850=2*5^2*29*31*149*4327*192469182644367928677412709828871035770367*6765494223369208250194675744428261254806396740525510143 42 Pedersen 2016 42241900110591242541200315476123335486608163252074446756314201316840350037215202724687529717902237007445150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7573204926818002486498254753648921355512261506908289663 42241931740697043645658115461202009307240252637480395175909149980721760645624368757983332536940069355946850=2*5^2*29*31*149*4327*192469182644366760715074746512685874630143*7573204926817617548277083980004813865887299418928970367 42 Pedersen 2016 44878003448664463444420565948878624213074418151155564771702244814946587692522322692522688253552993426971550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8045810343128146650390596566510322519927226109218365951 44878037052645191282934585954594169644500076861533008784950296125091413515619656322307161808978447770084450=2*5^2*29*31*149*4327*192469182644366186067693652975271275110911*8045810343127761712169425793440862411395801435838565887 42 Pedersen 2016 45120566637110754900531771358031893397808381435927984112414145339163940483576037521935674960798308859803550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8089297514136004671852093888765571071317924548003131391 45120600422719186367978290983170760273416337612047846630864833854808829690765857507990805055793166057572450=2*5^2*29*31*149*4327*192469182644366136564548361208231956925951*8089297514135619733630923115745614108078266913941516287 42 Pedersen 2016 46381717963672241110037767809810409338043318848436841957944597593527808871320662231429365677390000987291550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8315399025071205500648220443824795793620945985599460351 46381752693612006771927998829204282625617059945011975768494730646229914989199574877847498156574601732964450=2*5^2*29*31*149*4327*192469182644365887528739447052692215909887*8315399025070820562427049671053874639295443891278861311 42 Pedersen 2016 55422054250554329507511032163754260093374925009091451711158496131807549290924204553208330210800798817057950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9936167009670957247290259662096649194072115538526157439 55422095749763291939015946635885109037565485875033763574962008172713908431444240264337611557436232279262050=2*5^2*29*31*149*4327*192469182644364434175745565167722727160447*9936167009670572309069088890779081033628498413694307839 42 Pedersen 2016 57556161210540007697658881836744829581590298615866019457783091781356675988642158875802929395797094067403550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10318773599369980955966567566216263255122016003127123391 57556204307736483912799807057252455312242932761312858635976411636591338585274548325887892602674111025972450=2*5^2*29*31*149*4327*192469182644364157699568126647400197397951*10318773599369596017745396795175171272116919200825036287 42 Pedersen 2016 59153905722135823522656038529708684457261530474879308173122404239487399598365146702686390692774308762451950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10605220150669410562122681282846867663431145753674314919 59153950015699598855542061037469142320185553919900727308670754751954115164423955399135947454403362139308050=2*5^2*29*31*149*4327*192469182644363963768199334152480208254119*10605220150669025623901510511999707049218543871361371647 42 Pedersen 2016 64859641473159470898700395579189891010070670686994919846083676089177860117532733630172863231145463530023150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11628154866855147486382117754945120113722961594752176423 64859690039093215516478093464269781228464092316144680650924852302329571054364367548231126089163115314648850=2*5^2*29*31*149*4327*192469182644363349200600884167059801116967*11628154866854762548160946984712527097960345132846370303 42 Pedersen 2016 67985908003684583563315235893994767997357320880359690019145729076453556424052140298421825002783821326005150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12188637634664704364240404039899708315966830343016164863 67985958910520154663278416333786348792727494530292009683136302625959004128330860205309999316747856582986850=2*5^2*29*31*149*4327*192469182644363056213480882787748680953343*12188637634664319426019233269960102420205593192230522367 42 Pedersen 2016 68002018000415487024712285265845997759931140500856366938455068720919456189765692269616943719348771963777950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12191525864273081049629349161105017151956260923408739839 68002068919313983791368239632955639734425884496744943454859189592446946812830268341926629230098199919742050=2*5^2*29*31*149*4327*192469182644363054773453591928606434856447*12191525864272696111408178391166851283485882914869194239 42 Pedersen 2016 72074935192858128881745735743117498217131397520616520278920099194663921486615118759060499284603637725435150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12921725890019428480117894020811377618454160213723665463 72074989161496371702049361924362132230222249101272515102573453312295843601336333038418619860562490820356850=2*5^2*29*31*149*4327*192469182644362711361433229804976010253367*12921725890019043541896723251216623770345905835608722943 42 Pedersen 2016 73745073723244297195248944496669237229349271671276874420556536967633829628504218164353091905944517533633950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13221151373098439410083948359068161092507753820101487359 73745128942457402422617314812689337048250612617057848836281989722840738859235429620604328164696378384446050=2*5^2*29*31*149*4327*192469182644362581508670432326920641269247*13221151373098054471862777589603260007196977497355528959 42 Pedersen 2016 80824029362990704127925622301812243350687658014520536013597095335553356416106786528959373681942941339803550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14490279456525063733288833849478392673744076358284731391 80824089882820383427534376250047136243202882644976384410723482056077650738498029090894723123000738377572450=2*5^2*29*31*149*4327*192469182644362090700648327022185037516287*14490279456524678795067663080504299610538604771142525951 42 Pedersen 2016 100150142048502324442526361415941709559689954127676012532671077920285763114454760029536255901449393168553550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*17955100201401067622070007756060689011684049679720306391 100150217039437407770410974238633183576013061852827959762254541809110241709721897501485013622789160148822450=2*5^2*29*31*149*4327*192469182644361104038622360527697121725951*17955100201400682683848836988073257974445072580493891287 42 Pedersen 2016 101851282803574420642574652252354544654173238870019819938709623383524038554734844078397298581888860930072550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18260083819888739305200290418600196510028666148966486371 101851359068298370584679603580259767123503154295828174050247964638253764193466169098967967395535575072743450=2*5^2*29*31*149*4327*192469182644361035119752056918842248089087*18260083819888354366979119650681684343093297904613708131 42 Pedersen 2016 103821399860916068547195108303265043256491954135194505854973267034545736806804792473437830287918797594785950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18613290000624133371922391200316064395623539372459907199 103821477600834335059656238238796049068539800642985872587412908852081187300740487588162569973852997246814050=2*5^2*29*31*149*4327*192469182644360958126152999754641394718847*18613290000623748433701220432474545827745335328960499199 42 Pedersen 2016 104251795945749357150726333754886861305000356842522919360482466332908983286428686394895659028158473204609950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18690452196018023730613592661046140726098659076776865279 104251874007941803186772961789341061859285218948415840663116387913102298208706280872165538798010338479230050=2*5^2*29*31*149*4327*192469182644360941693266335186846173294079*18690452196017638792392421893221055044885022828498882047 42 Pedersen 2016 105002788923074399242423762032254403251294106226339507523162798209434400942022226030065909238700301909125150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18825091587262115298988121900701108745550789007277235263 105002867547599204061775310593812452392329285467090526910901408349361994766330797541329213338525552051066850=2*5^2*29*31*149*4327*192469182644360913342325880795148769119743*18825091587261730360766951132904374004791544456403426367 42 Pedersen 2016 110077740061211217005826893321265184958827007812077260361283457912852097862451394586137095108993096406820928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10925902938401337947801196773522523565244889155923798914749207 110078075184763731146134618824821481408031186654186045255711029293811590898393590214769791243953765226715072=2^6*151*1451*1811*396735172784552913211409326961051999*10925902938401337947801195980053385823404280697488422994501207 42 Pedersen 2016 126265067840804546572395107198922302866012269601662854425611001909259465530756042705765560639140239895956150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*22637031746998426846608544197439804290929565094265662283 126265162386207199681896533101394260992676843915738383444795454841244213460003236325083271077945444274795850=2*5^2*29*31*149*4327*192469182644360250604538075883796166168063*22637031746998041908387373430305807337975231895994805067 42 Pedersen 2016 132059235122526594906310196793224971805497763962318438119029394683072536930318085611978652355234735721755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*23675820629360823808165885930357655786572892237232287231 132059334006515430700694912224811878246861745558154669883574365509049615102046770811147434058704845927140450=2*5^2*29*31*149*4327*192469182644360107004349885301774540795391*23675820629360438869944715163367259021809141060586802687 42 Pedersen 2016 132353422015099477542819589679636159845147053437345343843506583915609555321555460924213112192528163648457150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*23728562992237621247706927156108214342470382315527730703 132353521119371077914959670444360525088307910595410398483948913901950840690766353543462919557100185472054850=2*5^2*29*31*149*4327*192469182644360100048738007367862156086783*23728562992237236309485756389124773189584565051266954767 42 Pedersen 2016 132504712888889135751396225792988916989052498563657655564654084750920173950618540541155954963431215314303950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*23755686696137464673958825505678165585129188644691428759 132504812106445089625158464995663336818038114722968907393762851600984935770237644153038254414559881742976050=2*5^2*29*31*149*4327*192469182644360096483716084818471426805247*23755686696137079735737654738698289454165920771159934359 42 Pedersen 2016 135381292342911269240277327048857661930019641264760812829651418180441966289509655846623455389367963058395550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*24271405109290043532511684637821120806620662735013196031 135381393714407084668479417725481745223550983920933333976877648536179653362236193034586573049785809796900450=2*5^2*29*31*149*4327*192469182644360030215944472105488753970687*24271405109289658594290513870907512447270107844154536191 42 Pedersen 2016 137469363985418025834452018062339078317282172297869811563134467933500193077853344381623419863431246669031550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*24645758403274947902146145928204302878714249650397111151 137469466920430794805543814802067357719122126308718416027994050976593776372023680268859616547511949433624450=2*5^2*29*31*149*4327*192469182644359983850247761793788769067887*24645758403274562963924975161337060216074006459523354111 42 Pedersen 2016 144334742903914896599912397034005015062450470883745736531227217773157728871603828104298829239626141365717950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*25876596062421744924323330183707504527997333155332474639 144334850979621171029149738475338181812678854737330666167577614592155436615546030711133209432073841052202050=2*5^2*29*31*149*4327*192469182644359840860901915229740097687039*25876596062421359986102159416983251211203654013130098447 42 Pedersen 2016 161956657587486485973323512319350453474817476785164966373221267057336173504604760056789834045372647020737950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*29035885080013310737938926377883008906484657909317943039 161956778858220076885746709111318239397278595537196631900137460330546633293767290072756056348336039192382050=2*5^2*29*31*149*4327*192469182644359529331257394777601027784447*29035885080012925799717755611470285234211430906185469439 42 Pedersen 2016 189735730992178699076025287916835914293750133663146408804016773097006045166966973080213201474481498784027550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34016168045980237639612897276481915573862030756391337471 189735873063468811989171460148965440195792207022562787177532811506237543355289363362282046438992477519588450=2*5^2*29*31*149*4327*192469182644359155749381301689923527065087*34016168045979852701391726510442773777681891430759583231 42 Pedersen 2016 200863705139520548298015755016159969668152136821734265752791520971002125755293507705936030271039250100865950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*36011211555328025315678907002332647184613435112901900799 200863855543272001986094030242105621146205075674869061482631123922526838488240981495690894557081487281534050=2*5^2*29*31*149*4327*192469182644359035084334043033533499788799*36011211555327640377457736236414170435691952177297422847 42 Pedersen 2016 202569625460799280825677896705066562565322740130213705106006563204071041754325166920994029942479153142931550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*36317052063166066811938794561175226207074652997546349151 202569777141918469133523114024196255565665446142364785734695634615743257874872706323958629152238134223724450=2*5^2*29*31*149*4327*192469182644359017758309643870901575962111*36317052063165681873717623795274075482552332693865697887 42 Pedersen 2016 236105824148077514521416410695830619839318734069203767317354694326849897154994044728977909172215522176221950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*42329482954303083469028088418006774016405360633325958319 236106000940602910134552053697647533088693211212771805192559215307402894918387439090948038507545802920738050=2*5^2*29*31*149*4327*192469182644358727991404548734352916827647*42329482954302698530806917652395390196978176878304441519 42 Pedersen 2016 241944053403886348417566149954130036705222963608496404142551036421438617414321913187010176824293151557835550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*43376171347775675635503760912127546551150217792212880831 241944234567990876808308633284226622914776299220427324697281849000024869888324255096571037592415673431860450=2*5^2*29*31*149*4327*192469182644358685756115965778408070892991*43376171347775290697282590146558398020305989982037298687 42 Pedersen 2016 246992778498971632173335795019585465611934105713884268741010156970839810357865826776840060514498757439669150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*44281315994776603335710892188826033314795287691253855743 246992963443486333879161895491738884096564760772600097229013560638782492871752031118187194358726128389962850=2*5^2*29*31*149*4327*192469182644358650842205856153224590407167*44281315994776218397489721423291798694060685064558759423 42 Pedersen 2016 250279802126936643320531678698171282459955719995754590415473720437097172958980113894178146389983491435137950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*44870619588334184567400642722679092670052400733831191039 250279989532725692322955040806612255403403019332389406147508448728198016894778792656647636536606455321982050=2*5^2*29*31*149*4327*192469182644358628868225048454461228797439*44870619588333799629179471957166832030125496870497704447 42 Pedersen 2016 275495453011015698544597986475622156910812141476437114299762675678451546516507645181955856100150785301953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49391327487559350040001144835924845928884489597513941759 275495659297908656676320284989813782611007420708920443126523578878227253017025098037319655288335222219326050=2*5^2*29*31*149*4327*192469182644358477739882892842589627925247*49391327487558965101779974070563713631113197605781327359 42 Pedersen 2016 276992041340408669203520711354293616773505668097463560177326814611388799749455028830083856254858633498885550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49659638573942877119225828678157331349974655412617021831 276992248747924683482498085330147273789736120919148437338122803689196263194086195882706692615066603138810450=2*5^2*29*31*149*4327*192469182644358469635189280061489227058687*49659638573942492181004657912804303745816144521285273991 42 Pedersen 2016 291496743156181664937421739754512523794005344713676741273106011920531547807724358709603894412896049727393950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*52260067980897899471088357096180354852373626619270546559 291496961424602417053732302438408480700741778319716710534302889721797613070773116032030730251826087688286050=2*5^2*29*31*149*4327*192469182644358395397613610575750868780159*52260067980897514532867186330901564823884601466297077247 42 Pedersen 2016 314962608224186281382588283507737195832784764193053859911125324600082350359050058429979460732820732313636950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*56467071086340631010653010756761241062953730116072142619 314962844063497378683198674742927716358812746739576061729521932177561542986728355932982146581924088053723050=2*5^2*29*31*149*4327*192469182644358289774287940243677043576319*56467071086340246072431839991588074360135037036923877147 42 Pedersen 2016 326330130489246370955394810146885649488049412319987250198261422743215119626665221181611416315693022902299550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*58505061219314823658819902577284433824219702670201907711 326330374840388872594522499858002859677272727558510543375056279410121354731437315483308024241793494616036450=2*5^2*29*31*149*4327*192469182644358244069087882279020202879487*58505061219314438720598731812156972321458974247894339071 42 Pedersen 2016 340244144077210310621073064223675516088740646787959519351579067173824699305546294149560973260645826394395550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*60999590963012621248111221394020616332010832953662316031 340244398846959000738887913254044214745530292561083083141393334372478878919094180182317502211295545820900450=2*5^2*29*31*149*4327*192469182644358192282110594826737760456191*60999590963012236309890050628944941806537556813797170687 42 Pedersen 2016 381428282980194438115507857145185607365229924363913552971199092247626196242291513113600939257070759157957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*68383158530529197131038600467212853895451998214312720703 381428568588013087642098292341230654523364675372840566777915101714438759954133959241493377602019892682554850=2*5^2*29*31*149*4327*192469182644358061139926800067508271926783*68383158530528812192817429702268321553773481303936104767 42 Pedersen 2016 394257727024537403556385186450597333904166057744252924181506735576434095610016241531961287186894500371669650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70683244667530246837520248740508274795165082294681804953 394258022238852717047500545696171214758581109213499606150930780347532609418224636683785649472322427052842350=2*5^2*29*31*149*4327*192469182644358025884116251295102319141017*70683244667529861899299077975598998264035337790257974783 42 Pedersen 2016 415171333104708991779296859404206613661284046505926693730557513094875949606478607535397213805567235721019550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*74432674124757131568910744491208411426204974341842730111 415171643978821124698809729236848951634348994375082469851832836780147684800167093845645164845931301304516450=2*5^2*29*31*149*4327*192469182644357973083702613968288393657471*74432674124756746630689573726351935308712556651344383487 42 Pedersen 2016 486470897241383594569345469815780902936546836806183262837095953679300912417765932882178970733577242887483950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*87215390077074234247548779869827942277577638948969404359 486471261503547669077652998365303246012049385134422339278674975153403607338571083892060377094290685606596050=2*5^2*29*31*149*4327*192469182644357827196019917671385413474247*87215390077073849309327609105117353842781518161451240959 42 Pedersen 2016 494644312269188964440657986021589812993330227013531838552491482478739760858340229263261708281267934927093150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*88680734836553557625345428140944040837085922121756205823 494644682651484505786111556408796985320141221535780739620842464364838938891882782457202365083330197120778850=2*5^2*29*31*149*4327*192469182644357813159170471308668027560703*88680734836553172687124257376247489251736164051623955967 42 Pedersen 2016 562028158606426325098978894568139066235921028527256637672285993022074334272956233031053561533080127020418550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*100761433757129897383496367089829263611659572341736659691 562028579444742626689326337047377472298492727190716710851181297494572707727687905323129278817889677599357450=2*5^2*29*31*149*4327*192469182644357712993090884369818344151787*100761433757129512445275196325232878105896753121287818751 42 Pedersen 2016 575695473835928718360565145744699594361449379282883054760119280761480108458157403092200584944996506598063450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*103211734968994429693800001021532763498535055169677778749 575695904908127151067865476868815937050774704702392528613887323098740268857420488231627522985695405081936550=2*5^2*29*31*149*4327*192469182644357695536947729449812519378749*103211734968994044755578830256953834135927155955053710847 42 Pedersen 2016 619792420270375741052350299169816903579413861311046713551159384375466401588478578579638712298032501536373150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*111117515985489274724279703371613433060185742915179143423 619792884361711039657442515687887435041761212517903441242545401310070399576030595635413719567651948284298850=2*5^2*29*31*149*4327*192469182644357644464647907029024689442303*111117515985488889786058532607085575997400264488385011967 42 Pedersen 2016 630807728860314170083456624113590226603676446101498596291668618939326664111119531649762800629335639190131550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*113092360608135080285747903210414616045284860445735773151 630808201199748517722795567116374562118829631476242912666254290247942719008452044899413248806278956848524450=2*5^2*29*31*149*4327*192469182644357632821527860479848224646111*113092360608134695347526732445898402102545931195406437887 42 Pedersen 2016 680173829610907967033510332919426529567076887706048492768687842513529199275905641472562186712894667660469150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*121942805224580106822792095866608232682276813970320991743 680174338914943472322074649743919850589560165662969860750826228642686289073568639881456211488125205177162850=2*5^2*29*31*149*4327*192469182644357585274007288906064468135423*121942805224579721884570925102139566260109458503748167167 42 Pedersen 2016 707468064072828302008384492525625953840382766840592487290248383800331127475465090296908641373307944418843550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*126836165380244932791596286979769216643084181283640648191 707468593814380148429361649465737819060518706352133719256809587620596452387009381420105762263658068328932450=2*5^2*29*31*149*4327*192469182644357561833870951431501815434751*126836165380244547853375116215323990357254300379720524287 42 Pedersen 2016 758668753536348169163600526934079602190767714808790115742844885399891150422775331324108036097854231463067550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*136015518408552163039419074720417083902517351660979254271 758669321616213883586392748233848451003420946193715186054381127681293330962529674583997454721066973870948450=2*5^2*29*31*149*4327*192469182644357522412407281840604327212031*136015518408551778101197903956011279080357061654547353087 42 Pedersen 2016 762947704276706719278338891020800992789541540069297148293521528576312523889673386472752610069838369590465950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*136782656504699735848092936794080316220398556687500332799 762948275560587032498042117356368841262699215761056036155244569774321228405594516980258995520116970287934050=2*5^2*29*31*149*4327*192469182644357519357441907104893469740799*136782656504699350909871766029677566363613002391925902847 42 Pedersen 2016 784576555941057128145462669085529241979977329507880937466387645177127574002038815102977513898935963231162550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*140660316495302408382971996005498673137425474506042564171 784577143420299503884429014910828540609504573221307311488785108717770491872033484696449908897933620010053450=2*5^2*29*31*149*4327*192469182644357504425395245275133092224587*140660316495302023444750825241110855327301749970845650431 42 Pedersen 2016 785850400437531639205890878905045789480708350995161845835413428326737094505198342320162435811022009295131550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*140888693660899700414115544898983623896062083688069873151 785850988870609805762920191781443599896175515654259991713811180156529590275225794565515961149871511543524450=2*5^2*29*31*149*4327*192469182644357503571593215177935742746111*140888693660899315475894374134596659887968456350222437887 42 Pedersen 2016 831184708864849431235559658621813417041771351996964800815041301728078994715033610058586721169211964050719450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*149016311193179419621568274735153939485981983314051702269 831185331243582699051552847342736056435884237543778827557382186391336863538164357304845043712050559791840550=2*5^2*29*31*149*4327*192469182644357474889849903646060085595647*149016311193179034683347103970795657221199887851861417469 42 Pedersen 2016 848991530315563034017193137807553562914679262076175282001678605526064223318065626794904916895752902424859550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*152208750633366932555326395309211432686997451867967462911 848992166027779052203818318964286925069984239249132650992236336980895838755802749293066769015954337679076450=2*5^2*29*31*149*4327*192469182644357464461839039584638173302271*152208750633366547617105224544863578433079417827689471487 42 Pedersen 2016 881951448284862644749820237569445839065445871861269015659072237085817681603165552243314225900766671056676550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*158117864865897210273195736121299112816801980975062532051 881952108676974449709538887848094235530986303287248197044235327684425311272130418158347169692008926761179450=2*5^2*29*31*149*4327*192469182644357446270944322247824144941011*158117864865896825334974565356969449457601283748812901887 42 Pedersen 2016 898341659985673975915789362101636294194117430643531768051606950964416692285465954320720264537216521664223150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*161056331925362000494176157221411690073105705427784140423 898342332650532244502957700228766924672139394061560078150754144589574937805921492743953922734769914972448850=2*5^2*29*31*149*4327*192469182644357437721963975993709574456967*161056331925361615555954986457090575694251262316104994303 42 Pedersen 2016 1006491834599499642126199168363627955944361306924314554953458267313192409257702421256205675854236251449065950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*180445692562013247476734633585310216073622135393935744799 1006492588245598254718047143099851397849103094231115438696757543990478313244704020507462946828963672365334050=2*5^2*29*31*149*4327*192469182644357388291873845126243454082847*180445692562012862538513462821038531784898559748376972799 42 Pedersen 2016 1108747752960615571192464593195278500670798007716171068107817746872748585319440090335727266197454742147547550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*198778320182960092403090280952765538250759470267467375871 1108748583174423214000252401963065676147935591454829497679897745563667639064211832808085909504015562911268450=2*5^2*29*31*149*4327*192469182644357350424828610789681558277631*198778320182959707464869110188531721007270231183804409087 42 Pedersen 2016 1163645331863428265069016142576719593837089100440310198960056399245096846427106788544087944746335753212448050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*208620458295324991743743213672286482632467391238803343081 1163646203183725539603305818879911674069311304773479518460983796846540932447217785608001839746756336545247950=2*5^2*29*31*149*4327*192469182644357332840905304920748297864937*208620458295324606805522042908070249312284021088400788991 42 Pedersen 2016 1231518697123642086560260866896025601266162911292854379586572854530230500298529154435579295735907590608821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*220788919061593648464324937597600529293529560739861635583 1231519619266504601697845683184120059457194276681886232259204701642967509049640078289604459231284848224330850=2*5^2*29*31*149*4327*192469182644357313268071211444416515940863*220788919061593263526103766833403868807439666921241005567 42 Pedersen 2016 1299801576482629263179124207043151383870852781539580794184163483205779008982448118740329525269603209346331550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*233030798262693891151154063356123107468204787332212977151 1299802549754695078224478629645534702913218757401940680236204627299670353588207305634041630692918459204324450=2*5^2*29*31*149*4327*192469182644357295639799710912392037477887*233030798262693506212932892591944075253615425538070810111 42 Pedersen 2016 1360474526465538021558274716674895278690631481749460332332395990902583050240938640508472130490874356324539550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*243908355440097944582762585747259569949869138711679568511 1360475545168605335121736197047982457576604899371702199258789386782024247293746678475110648668571971856196450=2*5^2*29*31*149*4327*192469182644357281460864728522661032447487*243908355440097559644541414983094716670262166648542431871 42 Pedersen 2016 1465645684112171285754425316936800637651891920372031670581574297137852646263081607607919829894854038539189150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*262763632479326941288916753880329422360176166713427014143 1465646781565835397248849064055084409088266733581456639306191947772847408017991399808832685886072919405642850=2*5^2*29*31*149*4327*192469182644357259664040602604227157773823*262763632479326556350695583116186365904695113084164551167 42 Pedersen 2016 1472905268436697983553048136860897782087219662036688755586594004396890977895477298936569268138222839407643550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*264065144002937871475239498514975807851764700350134344191 1472906371326230738637353571156738181994555528855078513817804533989438978425673070575383671479924216028132450=2*5^2*29*31*149*4327*192469182644357258274331447049885470284287*264065144002937486537018327750834141105439201062559370751 42 Pedersen 2016 1515319779377310021836823209902171599918063854973812673558354424309634950572561173817004574372981170487777950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*271669294914309439975691218023196724076100225988220819839 1515320914026196997288935953381012169844195906994111483488413942308788701949336507428745054820638355635742050=2*5^2*29*31*149*4327*192469182644357250421046969539463958056447*271669294914309055037470047259062910614252237122158074239 42 Pedersen 2016 1605180943111269065234397137903824226887226310392099361919923446559322008517102731205342212871550655451041950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*287779768310106990880043482499124294336705941679868142719 1605182145046857369797547790395699809691486692176299657960983947127941178584280650951702936176841634689118050=2*5^2*29*31*149*4327*192469182644357235153835366363673476129919*287779768310106605941822311735005748086461128604287323647 42 Pedersen 2016 1640843013082183116587355829034269238810553980071048862896526219207022583490375703234662950042609408049787550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*294173329283860131245141637448192651590529182773226636671 1640844241720998390421741154973827758306699932620101220391957209571271021841694335759272572115284912471428450=2*5^2*29*31*149*4327*192469182644357229558430784446883577810431*294173329283859746306920466684079700744866286487544137087 42 Pedersen 2016 1666002373896002736287875191778308931020829839066720244573655488356863665977904997784841914982548801876025150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*298683945396581762894371122351451418016481660099567533263 1666003621373772752826843227385644783890798042533667478338446600420998254036720186290614514879299855028166850=2*5^2*29*31*149*4327*192469182644357225755022667408768191937743*298683945396581377956149951587342270578935801929270906367 42 Pedersen 2016 1766179588547690797537392032214402398723151300783108044910117026541967937501845287980841280541267998810395550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*316643899223678910527988961371381234209901653625565036031 1766180911036667459545964526539464402228922480784916234895624888234305785385560221296995637940020793564900450=2*5^2*29*31*149*4327*192469182644357211685659223899478936370687*316643899223678525589767790607286156135799304744523976191 42 Pedersen 2016 1767468960820196138822255339185234929337867470464161836013754560424694814939655568543059638661822907224581150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*316875060237295144432758079419708649826607878150083934783 1767470284274635559124908050114911470391838528570182810895074934763776753367284162715864816606354611826170850=2*5^2*29*31*149*4327*192469182644357211514969394990144885717567*316875060237294759494536908655613742442334438603093528063 42 Pedersen 2016 1917690821798585491912568375808913564801301131007309510291513499693145583194983196824612376026434700966497950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*343807109569802879272178055453194607893291764751158842239 1917692257736917538861442172301703664064509132809992083331801140726793157237784260583327055580273606264222050=2*5^2*29*31*149*4327*192469182644357193199471635760951756952447*343807109569802494333956884689118016006777554397297200639 42 Pedersen 2016 1926466572557852553613609696956718992234122500513031577225354740236323887602863830763829523022037692251153950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*345380442178246422996950903851246419147876720780718205759 1926468015067336094056576558484143134235523316647499397709942614838577496739779053098332197483520707462126050=2*5^2*29*31*149*4327*192469182644357192217813689300141860285247*345380442178246038058729733087170808919308971236753231359 42 Pedersen 2016 2043567461838091787562678957134779855565968651530207142994747877303973877365486089163511740860881681911995550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*366374503271855324994159150922695629939854565953896508031 2043568992030977533881077782735154413223442620057769042494922722981452160889257591128560331826613046079300450=2*5^2*29*31*149*4327*192469182644357179925724296570517219528191*366374503271854940055937980158632311800679546034572290687 42 Pedersen 2016 2136747960674605178264753665614904196564125161386551130632539690865385905530537651115569460597327605425777950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*383080073121330671317573561669133256885200101377778779839 2136749560639660952030270202269369692019900054700234733537046465374139959075311269456862939401983435577742050=2*5^2*29*31*149*4327*192469182644357171107142909268154631456447*383080073121330286379352390905078757327412383821042634239 42 Pedersen 2016 2268254867677078068076948824387074171118783418097505676786683017016640701808227947257574286927668982516565150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*406656871357544883939183370167814266986277227217106280063 2268256566112547605765413521136514650486622390266518881448944641577395176995727619063726042050253217658026850=2*5^2*29*31*149*4327*192469182644357159894205773847678551674367*406656871357544499000962199403770980365624930136449916543 42 Pedersen 2016 2284741700288312282586178234124019626161325056664017577457968116061285221694398465700682566926213388406555550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*409612660790125763120570525397256217715797558456486303231 2284743411068876582896071306353236747061951076670848300302801458571520053904223094664997396431378188890340450=2*5^2*29*31*149*4327*192469182644357158579513101603717037051391*409612660790125378182349354633214245787817505337344562687 42 Pedersen 2016 2423411538151597731214134011445624883608496568712726496601120443497789467820147515418772559504110533196981150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*434473642340621363597932261839722397854445836768895542783 2423413352766071764623119796342028069664957195507049952417814746836280993464636760732913285137797572477770850=2*5^2*29*31*149*4327*192469182644357148229671536202518527256063*434473642340620978659711091075690775768031184848263597567 42 Pedersen 2016 2439538392210650037962641885559523553725436648229709359808933005205365530910488480208091297157167289986853150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*437364894161546622634659533841236194751747182524116985023 2439540218900672254368733909055886722276444836006251058879384742766839728556317321120652450190950895718618850=2*5^2*29*31*149*4327*192469182644357147102394134513466304187903*437364894161546237696438363077205699942734219655708107967 42 Pedersen 2016 2449155924090930517042204057539093369278363404164596665083700213754110135057035822341897380486745945236097950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*439089142825287660070141844932039229852330151644204874239 2449157757982417395841505665178413292011585981228460286289065870370101016275814949701102462829716017290622050=2*5^2*29*31*149*4327*192469182644357146437189117797753032232447*439089142825287275131920674168009400248333904489067952639 42 Pedersen 2016 2464772007533481897126498770096849592695053309297519748359828781597135346385631663675183820084545780863890550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*441888822758129484473334141066856909413172776698285413931 2464773853118059526901070047619063044046929674477660364407787314178973491213305252543794355432142290922605450=2*5^2*29*31*149*4327*192469182644357145368146776998674952902187*441888822758129099535112970302828148851517328621227822591 42 Pedersen 2016 2728682124369559004907991177942987168982366943595555066382700630654252725204133173530028602071402972140993950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*489203110037526197186796285567888814756388282607729058559 2728684167566102376110029751387360228155154916592966239522940181016702940716207606210614681769649266010686050=2*5^2*29*31*149*4327*192469182644357129152199873704527847957247*489203110037525812248575114803876270141636128677776412159 42 Pedersen 2016 2852923907702135343225397531420935022216917453330967235173060915022607650965381248643571596368933751756159808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*283170509213442940531442557795873038541582682300787915090712427 2852932593218339346068414284966740632442705244767543174826098234076524204653634370002457439111047265919616192=2^6*151*1451*1811*396735172784552913211409299260739499*283170509213442940531442557002403900799742073842352566870776927 42 Pedersen 2016 3074087855377974672612379942335570669824534193818112594050536621504123278150647208834599052083319346548353950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*551128079723448181923226515170624874776596638078072629759 3074090157209186169568350071442660616405069551272141774404775637408605574547210719438863793936133481836926050=2*5^2*29*31*149*4327*192469182644357112135462678593649266895359*551128079723447796985005344406629346899039595026701045247 42 Pedersen 2016 3290976045462416652840868535764176388153902503048359844008012691902159773250103296040513912001513551296772288=2^6*151*1451*1811*328481*9085995379*132928044795118424699*326649918733175246763703965736505449508426499162470908162857797 3290986064596012428141371561333278990192875868056959818964438856816888218909948956384933957964795458274043712=2^6*151*1451*1811*396735172784552913211409299112766047*326649918733175246763703964943036311766585890704035560090895749 42 Pedersen 2016 4209977270155077472545215273503836329114576617779197615608988856157833127910284294163642866852596864754095550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*754772406559814286213858005632431347164700051867947990031 4209980422523368828419330998831585136832486036872524342602213609843148932323970278730570142811946136133200450=2*5^2*29*31*149*4327*192469182644357075864757459768251228060687*754772406559813901275636834868472089992361834214615240191 42 Pedersen 2016 4919792845501436435203760980053018798703044598194937263081999585110159037578071713965573286133035402544769950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*882029438044470220813525870758504378880344653173782612479 4919796529369061123574646484907939316621778522316650332390339345350320672548097051612602193727285855500670050=2*5^2*29*31*149*4327*192469182644357061702420256581377066273279*882029438044469835875304699994559284045209622394611650047 42 Pedersen 2016 5848519788348385317850591168382061383037126436689756759910972751618882370962074549250901830105534227665269950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1048533298922490997062947105025177382876339902073002222479 5848524167632915630217234541143192961474437919362326912417876945040715045649783717837314238295430276460170050=2*5^2*29*31*149*4327*192469182644357048363789878638169806300047*1048533298922490612124725934261245626671582814501091233279 42 Pedersen 2016 6072558411918228730513113734029824941588201619076529435332758240141080831843669067786793613262568697425563550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1088699352139194039676207393625909791103587182333544430591 6072562958959544331787943230771474579234934882272577081888383006166314124081552818394758374644863089709412450=2*5^2*29*31*149*4327*192469182644357045756908890741533720268287*1088699352139193654737986222861980641779817991397719473151 42 Pedersen 2016 6093623214326514700926082575758342355417944395932404578663095908441834116638938575854505213871721396725595550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1092475888349999595369510380041689824943683360378363020031 6093627777140840680737114510488886985700311364995700595616215639909963320694130648071796386744053256001700450=2*5^2*29*31*149*4327*192469182644357045521660822842739222610687*1092475888349999210431289209277760910867982068237035720191 42 Pedersen 2016 6115372532070458460521071249273231966521712388841780146615320886587511982160762591366632146478854434563675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1096375145719155371160444157651645633391843548952620453631 6115377111170349709454437413000417344013239654086890959328202073393020462105985740230926367534861281024420450=2*5^2*29*31*149*4327*192469182644357045280468713114971110657791*1096375145719154986222222986887716960508251984579405106687 42 Pedersen 2016 7117205338366746506174582920310937382508434516055779127441185897122863727021475747605279239098816913799361450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1275985559186059449121433488166143914758892409857143687909 7117210667624125349371711695473440296920316085697109693159633142751944301986307874071568769006364003469118550=2*5^2*29*31*149*4327*192469182644357035768316119019656875297509*1275985559186059064183212317402224754027894940798163701247 42 Pedersen 2016 7375578711074752371372553889060854995996988096234598889055243488620519911598948570591130903138335640492699550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1322307208875777128570752069755437032343626214172617075711 7375584233798265397614487492667520042005742088969767852705251533121954980324608528263596655035893375329636450=2*5^2*29*31*149*4327*192469182644357033734282484855343772159487*1322307208875776743632530898991519905646262909426740227071 42 Pedersen 2016 7620444163620407639226310848609520865018396969445613466791612422045762749564549000848782244519406453769973150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1366207133992103075021258648528611737318126256212922055423 7620449869695525370212046822185101898638721613609766344676203689959646385494311090908102979012721939986698850=2*5^2*29*31*149*4327*192469182644357031933890370304958963731967*1366207133992102690083037477764696411012877501851853634303 42 Pedersen 2016 7640053100723496861253468309176934427695232588956025804852024680747646600028621930431437012878167238990386950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1369722660014606637464399197171440495268364319615807877619 7640058821481494708761351414437793161045019764580192838631734710769173125699516762819860222899945691456973050=2*5^2*29*31*149*4327*192469182644357031794705071949488497848819*1369722660014606252526178026407525308148413920725205339647 42 Pedersen 2016 8717633884512243010764961576915468119445356430375796836739719103381685624300939012908887845821366399996233150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1562913309096871950199791889419080471868062388331069764623 8717640412146686075974685894533535449269204119685981859904985331640350606503708097062064588043966742458038850=2*5^2*29*31*149*4327*192469182644357025108636772439140529533967*1562913309096871565261570718655171970816411499788435541503 42 Pedersen 2016 9704477786884863312702151883831497915490359753844595311469848160407358503241461517507813515156400237782581150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1739836484519437652021170359633802243802750311056962294783 9704485053453325905943220513042170565786316075010753540816456442345747531952030438643981577008444847348170850=2*5^2*29*31*149*4327*192469182644357020288119544373572350317567*1739836484519437267082949188869898563268327488082507288063 42 Pedersen 2016 10246720132218320573271237758954742365802304413920706644581641958296765292934687486327592153544654116427885150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1837050681571597909501922511073236804712734549171872794463 10246727804809777109343614140139881215238954890838657061462676792196547228566589942673280511835633971029906850=2*5^2*29*31*149*4327*192469182644357018034646545638223760918367*1837050681571597524563701340309335377651310461546007186943 42 Pedersen 2016 10358074990287699815480103440818761978538659682743899450845597946445547245908041081753007388967109878422709150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1857014583705458117842177574009241032957143912972401452543 10358082746260015947835863051566468915742047160838085133967408293741840737428333651792492473096876243477322850=2*5^2*29*31*149*4327*192469182644357017601074556527200484468223*1857014583705457732903956403245340039467708936369812295167 42 Pedersen 2016 10700190281291680092131759804616591990405366190634154912425492779968508888420164752066692786415982124342453150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1918349637303615357140224495910904199441223134272547137023 10700198293434831871115281335886273453063254178297590005712311498571905100049476307336205583647715396019018850=2*5^2*29*31*149*4327*192469182644357016325464579137724620219903*1918349637303614972202003325147004481561765547145822227967 42 Pedersen 2016 10729038815030883054743819864680132737707566622839468082259388517449929860127421392051998449545331762757557150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1923521655069701337574374763545016950549388508204217352703 10729046848775387329443700985067936329119292555432098543821697255883587985710746386042048826904901805178954850=2*5^2*29*31*149*4327*192469182644357016221619146306346265824767*1923521655069700952636153592781117336515363752455846838783 42 Pedersen 2016 11186228419721071257520093583355233347370377209379363272943745622628198548318968925783162191902581001008260050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2005487441591259554825118659083516725037435390649894200121 11186236795802343756573688320492892460770549412018926900067959250002000922648287074495995869243147194354555950=2*5^2*29*31*149*4327*192469182644357014647390463953292194565631*2005487441591259169886897488319618685232092987955594945337 42 Pedersen 2016 11948165581559483239513083212863756410926757436079857562283495840187636083509183309393350758348256152154343950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2142088926203776023419455678251419340943978554950924965559 11948174528167956921442184344110381467564993175386240182136720230016578995440659295073639018092831725293336050=2*5^2*29*31*149*4327*192469182644357012291526475611261215512247*2142088926203775638481234507487523657002624494287604764159 42 Pedersen 2016 12922986474908824942837226747613083806881471832457352353070550461043416701530753641062921375362846095996823450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2316856594631346457838559157096571635296479121587562937949 12922996151448668024410422108438693551055872099350412510511766605982073410476652592175343443283306077980776550=2*5^2*29*31*149*4327*192469182644357009682510850441625233849949*2316856594631346072900337986332678560370750230560224398847 42 Pedersen 2016 14218496372686526693778611945121044390403461572879388934210499009066337187787308261411215418793833702892985950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2549117972905181281869160122027602487389994905394252751199 14218507019284890481256374385908440694743463026726575959712219135432354091076801898725998997903392830380614050=2*5^2*29*31*149*4327*192469182644357006768842291160004022378847*2549117972905180896930938951263712326132825295988125683199 42 Pedersen 2016 15462453662538306382375094625621662718030315408694827882967065438726864002065561412090238621585206077329937150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2772136905566655482378542999057618776776569669962220592303 15462465240593365703339818302860663035529912711835790336138012454783151842029744376114616615683573002235374850=2*5^2*29*31*149*4327*192469182644357004430600812049559612640767*2772136905566655097440321828293730953760879171000503262383 42 Pedersen 2016 15636342369934689753248029653503771013791548066783039414251315856896281167493258576794070598876986767609551550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2803311990307744619374259189455002493162151211771441489551 15636354078195023888208766061859461326153736449509209121365753903717225890222935298053414358682603488768304450=2*5^2*29*31*149*4327*192469182644357004133383727026686232448511*2803311990307744234436038018691114967363545735683104351887 42 Pedersen 2016 16195575724613124952561721259233469382307601443457597443403247255200738889707936088809659312949142313096859550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2903572366517237215337461031158292086986713192764545702911 16195587851619067823774444309031884625078346267112045082005766137809617849984281782730364076114255965727076450=2*5^2*29*31*149*4327*192469182644357003220790002852629241142271*2903572366517236830399239860394405473781831890733199871487 42 Pedersen 2016 16944488702381065622493174409519489135346405146747462603441681937413676291520836542403016831816078261947893150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3037838851645543755109739149116590054279437050758279341823 16944501390161894580822305092173595035534772886842385619380137932040458817640150668726559880298094825107978850=2*5^2*29*31*149*4327*192469182644357002093014983945980298536703*3037838851645543370171517978352704568849574655375876115967 42 Pedersen 2016 18162041845545961498305560088997674891302123080705745597592092975043412182827671733326249379086808766714363550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3256124000711724687123024840549675987235013377410644126591 18162055445012454121112119867900753161191604517095343443405229020545904500407030353770273911316627231108612450=2*5^2*29*31*149*4327*192469182644357000458041328558582868028287*3256124000711724302184803669785792136778806369425671409151 42 Pedersen 2016 18858854736588044437720868449686193222304819641156632911098711539140858700064533794680762859050201790151963550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3381049887229482871580096427719831503614662894163964718591 18858868857817654002050528372998740224305704398568408284831734018738535488468734104696515541734223262647012450=2*5^2*29*31*149*4327*192469182644356999617319811242381945548287*3381049887229482486641875256955948493879973202379914481151 42 Pedersen 2016 19521824565900810187493182277403962273717880573764919435094105890242913871593600367251763922298134543435547550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3499908327890021935887156367935611926699565246615192335871 19521839183552356009496512173165687922569222246670295993168044457974654825748279980069937491002011852503268450=2*5^2*29*31*149*4327*192469182644356998873146625330040869637631*3499908327890021550948935197171729661138061467172218009087 42 Pedersen 2016 22784277267369701203993243654269749672628065028444570154241574264798719441107763573239283242914995252493685150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4084806800913021810697134719434330374057634720156004830463 22784294327897250434919633419779197109143041032340906366594839943521414565989085041520100605039498369172106850=2*5^2*29*31*149*4327*192469182644356995842016820402211718778367*4084806800913021425758913548670451139625935868542181362943 42 Pedersen 2016 24387968407586586917877232774640838686529195738776615268176160345658911956485465753313532450799882699308723550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4372319474641914571274119074389472827532482609169792237791 24387986668934182229916411045092652143606232472145276060111744388007034575860871601212473647057772773867852450=2*5^2*29*31*149*4327*192469182644356994649331640865667987800287*4372319474641914186335897903625594785785963294099699748351 42 Pedersen 2016 26694663215830860277579001847493702986583840106675059421300363014863398332167474160477482729629093458520499550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4785867928682244223217045644957627153130987919280489151711 26694683204397180235277129778072865533114102325926218953471802655378730610910939272672569584065796520629836450=2*5^2*29*31*149*4327*192469182644356993185112628023261035843071*4785867928682243838278824474193750575603481446617348619487 42 Pedersen 2016 29018517723797531250746485937224113389769452990104540631540292246990745508766017539774922213995677693466801150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5202492804998564153859237379971531047425184772547685627183 29018539452431503490257250629781404470170725801703432136845293473061440386054693639566008590946572148451150850=2*5^2*29*31*149*4327*192469182644356991945387976904255547356463*5202492804998563768921016209207655709622329418890033581567 42 Pedersen 2016 30451209505308672977254105937820427010950876242410663031200637983146677764576895749673361511259707777195821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5459348401691559973052823618213702424516366158643794175583 30451232306720917759675160403619379893058042960297947347363778168671724386782660551657005794910692730757330850=2*5^2*29*31*149*4327*192469182644356991275366118377777316580863*5459348401691559588114602447449827756735369331464372905567 42 Pedersen 2016 31534510592737490257887432259456321600168495967658030419868850151999637511872556793847107776178131101420341950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5653564597247740170889723756196487432933250872995922648719 31534534205309458445691274437593670096926030506286713125064754180920724817996132862830351158462694271087818050=2*5^2*29*31*149*4327*192469182644356990809163712748969558363647*5653564597247739785951502585432613231354659674624259595919 42 Pedersen 2016 31717853666745240475450796889362304805075359183569194184691265127793482515289664177689243011875561833488577950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5686434678085446536322561115503935418681460395393495555839 31717877416601772415888720454295930678353272902442192284937113858989952593154285393889534695017741012442942050=2*5^2*29*31*149*4327*192469182644356990733412324578517095370239*5686434678085446151384339944740061292854257367474295496447 42 Pedersen 2016 32246168843337353252215873078454818289156759036892585168965584345520582027261376662632034731834253429131491550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5781151986914007908522739646858821975353374587684215624351 32246192988788422564041470063280265428455327270738364878598584224351510207512757672697690426419625728980764450=2*5^2*29*31*149*4327*192469182644356990519947094707751958385311*5781151986914007523584518476094948062991401430530152549887 42 Pedersen 2016 32555166785306800789837529618586220805065361288861532266348158065932892798813299543439914867342389282813083550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5836549701751009586962905624905599075473808689668702548991 32555191162130927924093633151895346640012100788188346009846845060978156938368259261230212548859549947317092450=2*5^2*29*31*149*4327*192469182644356990398307906763557191372287*5836549701751009202024684454141725284751023476709406487551 42 Pedersen 2016 32971320279706988863110930409558090379435103863428104290531028408530173394048288514800523842483643545128539550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5911158459544881479471175928985029744115864100933449248511 32971344968140655883498909325321837221675061692172383516377181874452379042220419167101868653398999670092196450=2*5^2*29*31*149*4327*192469182644356990238089187217488759311871*5911158459544881094532954758221156113611798434042585247487 42 Pedersen 2016 33294051360730008726200070852303435794192289768605745438208306664997003331302333194330500121504177671963433950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5969018276609029751943742777805886147850768053506498403359 33294076290819903599451459289820069239657689940745359807794776748914814942552170899327664579275044550802646050=2*5^2*29*31*149*4327*192469182644356990116595480317164133109247*5969018276609029367005521607042012638840409286940260604959 42 Pedersen 2016 35599228972419074209699190552490787490898653003104513752262560344424675591546680259395831841794009688657051550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6382294724882649806689389329753282547635708363924636439551 35599255628591639539838221002461311290740154245123294094167107741436075732418248535679435903962430641320804450=2*5^2*29*31*149*4327*192469182644356989312860020090948771648511*6382294724882649421751168158989409842360809823573760101887 42 Pedersen 2016 36658243464188532712032545271662600794592849236635959702237925983048005839670317752805616640283404739716993950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6572156775255456096453344901891679627212022628982478978559 36658270913335380256627537217977800029270499768205604134792777191491762605586255667271572965241630080194686050=2*5^2*29*31*149*4327*192469182644356988977504365513071808757247*6572156775255455711515123731127807257292778666508565532159 42 Pedersen 2016 40878663264189798185340850879386366446035158155808170344606887178198735374213740069584168078619100246515413150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7328801337619638817052133888476938413801410470246333060223 40878693873524147940468041645278130275634681798278108971952314423100466673598128624776935943488993480335658850=2*5^2*29*31*149*4327*192469182644356987813637542900383633151103*7328801337619638432113912717713067207748989120460595219967 42 Pedersen 2016 45567947717444565467815067454295629972398642437433995753882665942101012182309925800550447707449869227859833150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8169504810514220381403246980152328486020148432347917276623 45567981838045288175088094744407786757453980619811856226965981768386113917616326346559304308961274207330438850=2*5^2*29*31*149*4327*192469182644356986773318863998772191253967*8169504810514219996465025809388458320286405984173621333503 42 Pedersen 2016 48725988708998240481634178818969279989162430039862557514456984931436613551083956661774885841392698796552641950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8735684161672975632606318018437400401741089496724559614719 48726025194293032952651608390434933540835281842338680280555720797313798574203127910509467411865529509203518050=2*5^2*29*31*149*4327*192469182644356986185540484923066515803647*8735684161672975247668096847673530823785726124255939121919 42 Pedersen 2016 62303849358342373153048941842608674369436297236336534587371571381198803912398221984394023569191287607108315550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11169947793187018048000833763249663566988938503569132722431 62303896010537039139171073223330752267446153033760136054328104497939327793137304929382275639017439849766180450=2*5^2*29*31*149*4327*192469182644356984337243390807808160274687*11169947793187017663062612592485795837330669246358867758591 42 Pedersen 2016 62480388639225656662988168092798557893580773066954410874598868741980207967368540876647735189473998150131457950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11201598077579101396561163709079163516528938084720137405439 62480435423610307421814661470321264357024221371331451321053775047066379525484754405047217844826153485508862050=2*5^2*29*31*149*4327*192469182644356984318502133440679033635839*11201598077579101011622942538315295805611926194638999080447 42 Pedersen 2016 63461396203335674658308519490816865044875589295005067044085541920210958891443138416969357866909590140023247550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11377474903628906897444736251771206035727383636440037769871 63461443722284181759944022148350040179674200525234319151235012213242860947226491764976384075880809309867568450=2*5^2*29*31*149*4327*192469182644356984216258803699324117631631*11377474903628906512506515081007338427053701487713815449087 42 Pedersen 2016 63545963265978987228700722931454083373950830844341764353438279153988622997033680687388735715012315576464923550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11392636240921503827904670765434246711528751808011209441791 63546010848250051594419629205119158124748722311475816738139665925096526702410150553654282668401423289223652450=2*5^2*29*31*149*4327*192469182644356984207592784845699022540287*11392636240921503442966449594670379111521088512910082212351 42 Pedersen 2016 66918532713241854989468509288299366663584034735376146395238928656818430952138476002087152164285694296105745150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11997276645050557775602020502012757246583677351825798975663 66918582820842702324644987111136597745628274183591548723258191644458763978210969244828128617486224891665646850=2*5^2*29*31*149*4327*192469182644356983879842937796146799956143*11997276645050557390663799331248889974325861106276894330367 42 Pedersen 2016 70426888755868616770639200589122614509314583992547584163188289477328503246525961103189674325005645738430939550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12626261117754023478886728734874465534663612418412479456511 70426941490474227757661245782732944904678440739122132991007306733750421244189540963386436770272963404213796450=2*5^2*29*31*149*4327*192469182644356983572208662080935053839871*12626261117754023093948507564110598570040071888075320927487 42 Pedersen 2016 103125203365001606919885520946163775579815652332249807293283026252849859745482111583500002538043620909257153950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18488474622549535818644510453700150210811579460083968725759 103125280583618303983973818028436659631716412937465202368975506080344025770045409411256805527514258709016126050=2*5^2*29*31*149*4327*192469182644356981711672906478257380085247*18488474622549535433706289282936285106723794532424483951359 42 Pedersen 2016 107809354329845699237107373035594889717192982310152138154469533069702572832013925269775845165260418392585217950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*19328257754275237548265410509324227027935052323822295664639 107809435055884889571478396993521215912078057697598441434917121756627276834161521150679503864679367022152702050=2*5^2*29*31*149*4327*192469182644356981537562153403497041448447*19328257754275237163327189338560362097958020470923149527039 42 Pedersen 2016 108387287039997570682200966243191435911612660683739781951717490447771219702040062624398925819182599498232705950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*19431870585053037830239147218488024156753922720576930393599 108387368198784168689159081333576880250060840155130773424995663284528356593737666103863738831635335799508094050=2*5^2*29*31*149*4327*192469182644356981517123209194833804889599*19431870585053037445300926047724159247215835076341020814847 42 Pedersen 2016 117371104044305022702846533811525380719817233335188577225271076168684012877394337253357869895819074261036283550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21042505689547163473795642089788622213454017240358773892991 117371191930040020286159592353816916744714299394663201715760914822604961942269347862528935266481860955525892450=2*5^2*29*31*149*4327*192469182644356981225288236806637678012287*21042505689547163088857420919024757595750901984318991191551 42 Pedersen 2016 118103123842335384295979091418528299723454370994693190234003245947597316589878799967885735531892331960587829450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21173743534588653018017366153023781249074624129523775268469 118103212276195906526279405256150925153179373921698246118869435372730427551136215546393876144625460704848330550=2*5^2*29*31*149*4327*192469182644356981203465147700645964375669*21173743534588652633079144982259916653194597979475706203647 42 Pedersen 2016 130174483461565065985550644791718741025889174142612423062022365716534900012815709474222391813070232163025179550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*23337918912647009004473331954858490751338742504685345357311 130174580934279922888219427117321585728036581340440185527070644823362623614146536064319973212887539509001956450=2*5^2*29*31*149*4327*192469182644356980878987403670051997695487*23337918912647008619535110784094626479936460385231242972671 42 Pedersen 2016 175055144860428461115802779270991676492895724869972981082544894734835792934380141963302521179194614970829992550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*31384205777936542504295953212145890541851495881934043012771 175055275939114279387820450879777867156338954891734829983950629516679678699920725351800310070531548845192023450=2*5^2*29*31*149*4327*192469182644356980065080973164694178713087*31384205777936542119357732041382027084355644267837759610531 42 Pedersen 2016 188374076971378900417337232801323944488947232438964999956011799441706720951949006756843982156407048959687673950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*33772048228643776350978175700358471440761556051288218904159 188374218023082758222649458955032477560361930167114063327809792017921650561961314620445922714621390141260806050=2*5^2*29*31*149*4327*192469182644356979898168280870546536113759*33772048228643775966039954529594608150178396731339578101247 42 Pedersen 2016 191313325947146453550490036971003009877028963857332301596410589343931973352825568694757082263934626609537316950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34299002148002306916264289524209837419334784977121412328219 191313469199716177614638334656755206721193952078864970779123913114194154845343325251176907618905183901146843050=2*5^2*29*31*149*4327*192469182644356979864463928241968723995419*34299002148002306531326068353445974162455978285750583643647 42 Pedersen 2016 197083257099790750066626851963791791739155570329615200354208180801580299497928691080252901757639131349249501150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35333445932922162292520796977254479289372610367617902961183 197083404672799004249567833458259232133590217396588230356747995211288988258043245001671288616276944589820450850=2*5^2*29*31*149*4327*192469182644356979801223958745958056321567*35333445932922161907582575806490616095733773172257741950463 42 Pedersen 2016 216228296578669615474026319232397924196522123487215734886016867758435910929683318438398824357548976027591553950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*38765803542925071570334352326007073772346795087154088373759 216228458487198352823615668703858287474479592884142881935457495249135990212002024716703579347134615110425726050=2*5^2*29*31*149*4327*192469182644356979615567534453633120079359*38765803542925071185396131155243210764364382184118863605247 42 Pedersen 2016 218271478029842436775985392025744565142846250965238609231246429856771380698540624944816208481867805251608037950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39132108841500538302414453459246298904785610246925116009039 218271641468275020833618465382429387553421364080770766580735669561435005722567791597817952894113878348653082050=2*5^2*29*31*149*4327*192469182644356979597677408651294459645439*39132108841500537917476232288482435914693323146228551674447 42 Pedersen 2016 252159344304721787581212930827397732344846969862118334400723837997325108491678254215511875149857492804815643550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*45207587339398862296692220373097231882016604020440949704191 252159533117884032044523403768150783580960353523291737121199061254919635092155549311042728866506756952700132450=2*5^2*29*31*149*4327*192469182644356979343235794263444373130751*45207587339398861911753999202333369146365931307594471884287 42 Pedersen 2016 272431760437139273817646418648797600784333514747776933797774964506882414604841886132028210347494612166238389150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*48842063092870833782245890168543661419271088736532846278143 272431964429984852450155868025381105228419032380597319020555776970669107534248169719561025558303206703898442850=2*5^2*29*31*149*4327*192469182644356979221283862894754558791167*48842063092870833397307668997779798805572347392376182797823 42 Pedersen 2016 325291178279112071026266790909492123818523087274626882487839996729266463868963203534500490268283713236609755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*58318795971399407268296136831013095079836068124231589247231 325291421852302628202561472066099445497604714104598940395226141932638332994253679153377414307145994531919140450=2*5^2*29*31*149*4327*192469182644356978974788742192174212402687*58318795971399406883357915660249232712632447482655272155391 42 Pedersen 2016 369748237885882595663775148154486376186762898108554557609049653911659184403770101331824121675906305388053215950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*66289138734494486698605224542381741100853268944440334187799 369748514747857399919652525225075052470497193103264414877926960540400968518253285006465171969364717533265184050=2*5^2*29*31*149*4327*192469182644356978822039765292447482477847*66289138734494486313667003371617878886398625202590747020799 42 Pedersen 2016 369899446296321026208646542298923306129566487284219400546445857887514170464444964369699438782142279869535105950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*66316247654214258578233929003750730800742487968094720601599 369899723271518436636664782546496917986333413310983796573936260824205722936853516889985963383246758635629694050=2*5^2*29*31*149*4327*192469182644356978821582885313284709977599*66316247654214258193295707832986868586744724205407905934847 42 Pedersen 2016 427543693260277965638351733441575878421901548158124742156097049894485844290340119682515637245825876837613749150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*76650813428178969100801436032800194803041586040921340409343 427544013398629152801924265122233586769471060748406326530877991028803698104108469767798888604224403750436682850=2*5^2*29*31*149*4327*192469182644356978670954174883743068737023*76650813428178968715863214862036332739672532707776166983167 42 Pedersen 2016 460812298128839675600453931673880996310672771426458846248443621268944733806440617984796820814921331234151195550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*82615269611242143474048985910230854246693717405953342572031 460812643178226803211859833285498859089375740852923130444242988729203934055234835295934286927225210516432100450=2*5^2*29*31*149*4327*192469182644356978601171759597442017330687*82615269611242143089110764739466992253107079359109220552191 42 Pedersen 2016 467090533382228863911368693321836958253160036573188927158432515590274385395237003427867532700963174951864425550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*83740843082800262364734061340040114375514207912112050268631 467090883132665063392861466992589968421037379762715006798760995265081169321432014610711648016591749524043670450=2*5^2*29*31*149*4327*192469182644356978589117836056698847881687*83740843082800261979795840169276252393981493406011097697791 42 Pedersen 2016 495610810726700381677556441420821261416398117505196486491429530771958755096143416999812236076789484293184795550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*88854010443498905732011915020879178604526544729198341484031 495611181832695576392189541573032153292607227066508075688009673110616254472275449759867434546637255769334500450=2*5^2*29*31*149*4327*192469182644356978538204930617104441650687*88854010443498905347073693850115316673906735662691795144191 42 Pedersen 2016 508583186543175331373937533087170068243820510613019307333469795127874186729296044179539664205074621161315925150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*91179721649402511029525254710493703290943700496676350491263 508583567362692372704395989880930164895978570977734955831689244946880326241695543027267326418677604175012266850=2*5^2*29*31*149*4327*192469182644356978516936633150858724986367*91179721649402510644587033539729841381592188896415520815743 42 Pedersen 2016 525032894741966695770247246847352779425723503639916699415024569027352975592083929434546616774113083560807707550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*94128855349583063750356485443149602209924042000285747523071 525033287878780292484842442303075209863389467388896015290110181243643142175246750541601180856948011753812708450=2*5^2*29*31*149*4327*192469182644356978491478552415714340761087*94128855349583063365418264272385740326030611135169302072831 42 Pedersen 2016 526363306591004431283180652860029857490324390063668858829854060447058072773566377579148788061420775711951233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*94367374013361244934216969223538071373783220707862873679359 526363700724010610100768629068192761917473701496778325688327764750940069691866090719298512449359932203742846050=2*5^2*29*31*149*4327*192469182644356978489489116485356911349247*94367374013361244549278748052774209491879225773103857640959 42 Pedersen 2016 534482545620380023336545410102160379520050920943288736596123155946248609592900293854796440980236706153199764150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*95823006000992012015300151688296002337185969063339049805643 534482945832951488073089739631990263044131525872295868974268685156821004581268318436988147369175583352457067850=2*5^2*29*31*149*4327*192469182644356978477562639702869451925323*95823006000992011630361930517532140467208450911067493191167 42 Pedersen 2016 703332014159824773123331896556329571906980417470194250073146127448072686480720047776719206482389471823337845150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*126094646805163839494770553779561211799707801094113514257663 703332540804364032410490810987282668307975277466861142079778424473176691377994975602999649860955047483729546850=2*5^2*29*31*149*4327*192469182644356978291943926173195582918143*126094646805163839109832332608797350115348996471515826650367 42 Pedersen 2016 709232663598044625197857381273518407108525781792720432714747747698981124036015765456799469318331377815585717150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*127152526002831564842959065279565332190864508142163872059903 709233194660902320386199180603245439596523249926937384551495938040885239897629648962436602556439456961592394850=2*5^2*29*31*149*4327*192469182644356978287055526881870336233983*127152526002831564458020844108801470511394102810891431136767 42 Pedersen 2016 732816973604896399454843279539221870134440742353145734014456254950337087620636082652081387395310621143014683550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*131380764133026628658849032302077485608593212129919216020991 732817522327334246335540490887290913743099303271991895678975456502314897342775850374571029556705566518731492450=2*5^2*29*31*149*4327*192469182644356978268303211447330423639551*131380764133026628273910811131313623947875122233186687692287 42 Pedersen 2016 768835836206196340452670667040214422352499334002982031919843636737871055729747303828419533236624417935546116150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*137838291540562734435191576235870220766480387252016701609483 768836411899022165427936227016181552558248022649160523946912569708122901863406052082539332191794006780586235850=2*5^2*29*31*149*4327*192469182644356978241884183749663598923263*137838291540562734050253355065106359132181325052950997997067 42 Pedersen 2016 778787364125082626950555257021961383161951736185915084841989174110600130164146011277839700792364038946416757150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*139622419623517515976152414844669003068173892085994419816703 778787947269464374669382881382657925933344110137247960473790543760973272778953275252122189706756491103311754850=2*5^2*29*31*149*4327*192469182644356978235015820989428707264767*139622419623517515591214193673905141440743192647163607862783 42 Pedersen 2016 826724908817379507266250930556171722811969151137693681256881748301421061119891338309291009865741856424861569950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*148216750103273474691320465392454529198488616273153658068479 826725527856680908051346861829734200420163317695543475992428288604358264385169062195398771027762925717151870050=2*5^2*29*31*149*4327*192469182644356978204246930194390628290047*148216750103273474306382244221690667601826807629360925089279 42 Pedersen 2016 902684110994311458955904698465358885989362766230141535877921482593463901574630209572816335991704510542192081950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*161834854465469841660727558165870732227554706392904278099519 902684786910732381678469459828655810093746430924306143331593713676353490547571598609886386542383526102098478050=2*5^2*29*31*149*4327*192469182644356978162183997691246826374719*161834854465469841275789336995106870672955830252255347035647 42 Pedersen 2016 930836055521230501547985023567539673329054357072288440388883550373578185454907882604657355629346967546012443550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*166881986446573953846130996914679362780807192972002594760191 930836752517408290368817042121061733611028952554537812940887228897940446717104213311224486393501434564271332450=2*5^2*29*31*149*4327*192469182644356978148338283056827186826751*166881986446573953461192775743915501240054031465773303244287 42 Pedersen 2016 966790367300514416108822860515963340073504945364980907702571456085549659415371452476916709722929445703942731550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*173327941064958954339222028660824337239556432757015078665151 966791091218745488690640096913789618156707764339644433734449737741411107327435017229238593952517141281471924450=2*5^2*29*31*149*4327*192469182644356978131827736813997152357887*173327941064958953954283807490060475715313817493615821618111 42 Pedersen 2016 1388422233167946548354548787100585993025101513369597193714416507451798220619048499291824630531531599697790801150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*248918871291369444941599300954801651018506210909951333707183 1388423272797840486219808274231083641930975780758625538851513218318459098032229709905981882503030507306367150850=2*5^2*29*31*149*4327*192469182644356978002021510107858942381567*248918871291369444556661079784037789624069822352690286636463 42 Pedersen 2016 1398590579115811123794789294193722324395046587087077048066368926291405476538723459054682013866602507935705597450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*250741870906167786910620048558786215228833893391751532555029 1398591626359611095980403341950601143746641994368262731651809838651981229597038462772933864575922711793866242550=2*5^2*29*31*149*4327*192469182644356977999857525691592279150079*250741870906167786525681827388022353836561489250757148715797 42 Pedersen 2016 1431383008337373162309067032434817300215078692605418035542051687753304715926354321441059968868498453177653543150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*256620957450402037221291881297932731656047822375217227414823 1431384080135655840947895098534061069370508719857031732118807487615501447347443772241745098072400896747546328850=2*5^2*29*31*149*4327*192469182644356977993088235886179870620967*256620957450402036836353660127168870270544708039635252104703 42 Pedersen 2016 1948078351389578423137609010932463778246754020609368581479273544908565767139345660550507660894083144790335517950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*349255041320264907854826474857901351638614500995791156190639 1948079810081640143253069745444988522492114051808914167697623504726024568535886623357377823267475214829330402050=2*5^2*29*31*149*4327*192469182644356977916513017644788243013039*349255041320264907469888253687137490329686604901600808488447 42 Pedersen 2016 2028145659882918128633446785315803317874695058898179188177040412667232036685093832567924767218931518578181863150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*363609654478558513206699592064652527737073743771380079069223 2028147178528188208782538504605839208816179278636210151469443850837620269335719200287950073953334902596221208850=2*5^2*29*31*149*4327*192469182644356977908138387411360117884967*363609654478558512821761370893888666436520477910617856495103 42 Pedersen 2016 2059491723408748194968835791385047587319327565697521468503817195544198906199996189786940813360692893059622069150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*369229433941808697286198345696189722373534312027895853663743 2059493265525483885670669911827083216903774953539642896710596851210601038445647493019628931737453275622431562850=2*5^2*29*31*149*4327*192469182644356977905037115901238447687167*369229433941808696901260124525425861076082317677255301287423 42 Pedersen 2016 2133623460998382639548935992566723483873855755853885638891048918702475550719484406209947429824209931752027675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*382519907118384299836084986458813993609422237733964307333631 2133625058623859581024745108902625699284482273561818121088293279990862566131311880886478586616147192972200420450=2*5^2*29*31*149*4327*192469182644356977898065357571833881906687*382519907118384299451146765288050132318942001712728320737791 42 Pedersen 2016 2177196577594461612237431020626149693783617787095896572700084364858255312229031086571811516659164958759740571550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*390331774965671386216443597772184510430637372358702314877951 2177198207846839436713032543721077983227105716556267380621807946624304174941284638641225860681753325246192484450=2*5^2*29*31*149*4327*192469182644356977894189041545955867685887*390331774965671385831505376601420649144033452363344342502911 42 Pedersen 2016 2581587722530999342667741752993075433251204351690484771502124971952669555832291852172836397714479986722260533150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*462831757286000190804670824116931329215850409916263478170623 2581589655585444921794500928586261226843110153246124124611017797930706577933175669270332347711529721441761738850=2*5^2*29*31*149*4327*192469182644356977864456428363614242837503*462831757286000190419732602946167467958979103103247130643967 42 Pedersen 2016 2669005733071445380063657662565170462279568636533732951557307427288615755550539839366661961255976534168975317150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*478504217719463106289445026149007914944630677233886908491903 2669007731583195556695931428841807939647455979737293336061631131798537911156151942933274410892020044074698794850=2*5^2*29*31*149*4327*192469182644356977859213420627614815856767*478504217719463105904506804978244053693002378156869987945983 42 Pedersen 2016 2724460520345362624790465381791773074136809605498916998601108542644502224689172975802010097803575193178856669150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*488446253165287567064583461521481902085208608861430754995743 2724462560380831764338323637974764232365773896765577838946609739234926551896348685249539322355192479916892962850=2*5^2*29*31*149*4327*192469182644356977856061864895645012807167*488446253165287566679645240350718040836731865516383637499423 42 Pedersen 2016 2767798231058152510448759508269481068831343592077278425941805830248448889899885421429206567465941679286037633950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*496215917016294669230495769054506877762083134949719945167359 2767800303544254112893561411693697612175835386867763862560875375196024105624075889175798335039162254368920446050=2*5^2*29*31*149*4327*192469182644356977853686846414649756008959*496215917016294668845557547883743016515981410085668084469247 42 Pedersen 2016 2781198453483089962982297791122773971859300590632623470098378342266793792213308169006629238164088072021808001950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*498618333342816610463744849184651758386008359605755523345919 2781200536003078581622965163617590411673588281467276848744735671045267522083817515794471481944542399070661758050=2*5^2*29*31*149*4327*192469182644356977852967461090002520411647*498618333342816610078806628013887897140626020066350898245119 42 Pedersen 2016 2796110292367935537520953020320441779601708310002987878933795136893189960594799691943282297672302162768643581650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*501291755026381311561695013858995926524787137689783042423993 2796112386053687068858573930708475834465320107100079275342100976335189400820162679402508179599654216205122050350=2*5^2*29*31*149*4327*192469182644356977852175031108025285983417*501291755026381311176756792688232065280197228132355651751423 42 Pedersen 2016 2815073653988091457570815123211762138019522276530452418777186454811475633667089007151573807332431489497951548950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*504691541098381142665187113370973755252053134997971914481659 2815075761873325796731875537248836786742733237464113407251155687967340989857767014254228157735077189300916931050=2*5^2*29*31*149*4327*192469182644356977851179425715934718091259*504691541098381142280248892200209894008458830832635091701247 42 Pedersen 2016 3368357940342685779428324786864966988833269771011336008874506226207772252778651564709190463689829974210595125150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*603885357484046295428367918497279126014745559765731273355263 3368360462518955078367082989688016076539549464984970364967498690846766772332496660474218545836277430858725066850=2*5^2*29*31*149*4327*192469182644356977827066144468187699039743*603885357484046295043429697326515264795264536848141469626367 42 Pedersen 2016 3420012040768839495463419691092809705823498811776438805340283764261888951417429954053740595683307030901136200650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*613145998857032675490098076589391189092511377266751735465973 3420014601622930039722312382745598013059186737538970434745091049762297907744172063557744454610363995524850871350=2*5^2*29*31*149*4327*192469182644356977825213146661567404836853*613145998857032675105159855418627327874883352155782225939967 42 Pedersen 2016 4472145330930838219457533522346853160952491441531296708202993619459927594605602637514454440395386332211434849950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*801774374850144662461116598357483777934021869277942817886079 4472148679606669678826077284823515152665439773937750638383709922641209215936152394453993639936142183656991390050=2*5^2*29*31*149*4327*192469182644356977796785350525334974762879*801774374850144662076178377186719916744821640303205738434047 42 Pedersen 2016 4783909196825118220747214831191614020197274590141878347910826764776296573521123956885905084128342166727277915550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*857667969575122616288064223557881013618578941942636256754431 4783912778945090151556212985115819567624994674705135157252170624062911830198174726845827311281862769168892580450=2*5^2*29*31*149*4327*192469182644356977790763320512997928270591*857667969575122615903126002387117152435400742980236223794687 42 Pedersen 2016 4878947826828972136255098207020481590336916306728173586840229956977573717152912765038702431598791374458186183950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*874706668570643386290480939005446556650020663793741471458359 4878951480112455044171158517562787509742143287220827534165209008349797248343378317584140176795868439083619896050=2*5^2*29*31*149*4327*192469182644356977789080619178695268584959*874706668570643385905542717834682695468525166165644098184247 42 Pedersen 2016 5488268694947025552570218537076437767895324640770318506784649747727420188427541594854450884585426698255358707950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*983946825579766076513457410915746790788247820934675673350439 5488272804480901433755657468385700783645949047013638092884505737816446721509151528553925189012268405613241612050=2*5^2*29*31*149*4327*192469182644356977779676881921801107505447*983946825579766076128519189744982929616156060563472461155839 42 Pedersen 2016 5853593280482064267774468741196161001096630976076399539657949116323924318192906519986624538038584440202745013150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1049442883849361182257914070846733480507863434548373682292223 5853597663565549943162311286586438055665515974891317158864723527016811654726333701197684965214478494309002058850=2*5^2*29*31*149*4327*192469182644356977774977540869090356463103*1049442883849361181872975849675969619340471015229881221139967 42 Pedersen 2016 6141803649712691579784884646938469778344959521780212720987096489168316720182748883990552956284560843019568001950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1101113764716535136785375010062851491100457497387694262545919 6141808248603810147483167730197279764045608369043536115627255553707185511323776730832633484288355756610501758050=2*5^2*29*31*149*4327*192469182644356977771664650199593048411647*1101113764716535136400436788892087629936377968738699109445119 42 Pedersen 2016 6683411770167821359940615967887059759467626531873979650280498098036743636088467742835077971090749998281861813150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1198214256775295820706891939189001541569724210353739813748223 6683416774607035725484511765700936192640204655035865713632162509012632447170286386555082931489553743481853258850=2*5^2*29*31*149*4327*192469182644356977766212008086951704559103*1198214256775295820321953718018237680411097323817386004499967 42 Pedersen 2016 7678371367484571637906500607512801225892511470327976028711407850770582055630903932272857693805948242634343221150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1376592428795422882369357100562443616888754679979435849283583 7678377116934717059141871455961128885443009923197444903644337031908510400321142063917183081737874449228233930850=2*5^2*29*31*149*4327*192469182644356977758199765557708014308863*1376592428795422881984418879391679755738140035972325730285567 42 Pedersen 2016 7819960061975408985069195062984665184282274829424291815996269205225912446087071117170948123863386295644706689950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1401976708287880829418774915610735976239375233388817125178879 7819965917445060518970242520756574959383654217175178353262125222211960350141281977281879902660085697350477950050=2*5^2*29*31*149*4327*192469182644356977757225290106775664066047*1401976708287880829033836694439972115089735064832639356423679 42 Pedersen 2016 8375820316511556335274540046503776686630747701479966001322656033775043604698355130592440466886371954359325392450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1501632348949271981355843891172500575459058531760580204178929 8375826588201089445925708386262701633004201468574923311019090049247040080289057037553723619931365039138745647550=2*5^2*29*31*149*4327*192469182644356977753718177516160213069297*1501632348949271980970905670001736714312925475795017886420479 42 Pedersen 2016 8952769434911025998880977435524197317474079924413265901642085514133084189073124000204749570547289171753902303550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1605068839603030374802757563470190735414421096371148185981391 8952776138611467924063331176996623190222474020762582276525365318751076397607775519035914619624970891285815072450=2*5^2*29*31*149*4327*192469182644356977750538604990773843775951*1605068839603030374417819342299426874271467612930972237516287 42 Pedersen 2016 9037597977676901008147339420681626064499288095423604706726266177972300112741562129969373570338264010502952863550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1620277055529099532385299020136489717156169691767370657296591 9037604744895692619626178462676965601522414115844659140318314120514020661854094139145838466249490304972630112450=2*5^2*29*31*149*4327*192469182644356977750105346022216834478287*1620277055529099532000360798965725856013649467295751718129151 42 Pedersen 2016 9039918090475898958796915688257332368688499564371232865191605270231213064132559631278082394673534690011593437950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1620693009585004780725908683148864612260116951150885447077039 9039924859431956486597591186389013803767862780136179533329653524595606540787672225561592129535622489162171682050=2*5^2*29*31*149*4327*192469182644356977750093610361118559243439*1620693009585004780340970461978100751117608462340364783144447 42 Pedersen 2016 9511334138470021854386061573993659324546809853458411833570822601533269007785677247500751563912108518964286849950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1705209338819802400299413521018328259309372376071262351726079 9511341260415396514113021437713808586901413608529347601207214882033558356714157807798225374152166724819659390050=2*5^2*29*31*149*4327*192469182644356977747827847770760339002879*1705209338819802399914475299847564398169129649851099908034047 42 Pedersen 2016 10990472075246335140417370046705822232070221935393317620587124634065210873190703830539749855625893690627579009950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1970391886974855164198279397377436638461492814952790753313279 10990480304748171800577555818322226995001867198398473685037865474662485144903402625093123312923845123054248830050=2*5^2*29*31*149*4327*192469182644356977741980393105692560622079*1970391886974855163813341176206672777327097543397696088002047 42 Pedersen 2016 12552457381484378216468650094129361495960733123979462460039031435842269717657650594717212222757780504759275641950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2250427462691141409426920306573222230619291775697800917274719 12552466780577553493814377526888128007865560862024813755204261745545150492726796379006702551097083060142960518050=2*5^2*29*31*149*4327*192469182644356977737301449454092002381919*2250427462691141409041982085402458369489575447794306810203647 42 Pedersen 2016 13756267993701061184093011915658186924003555094155720819977605864052364412147529575830293920999865245618442779550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2466248825734168039336927769694766672458257874316975737549311 13756278294189697584626113608868135048417959056557369279913134475176949564759912674369553742032692400433360356450=2*5^2*29*31*149*4327*192469182644356977734420439507827878015487*2466248825734168038951989548524002811331422556359745754844671 42 Pedersen 2016 20855546392842116334960437353845109202937029767317442041926522760123389514698092304478964634044671662189112373150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3739020410546173876781151319909763799976005565995576329063423 20855562009164706427026705555199787359935380738766744243715590073764499516825470681790989232286243304042468298850=2*5^2*29*31*149*4327*192469182644356977724194387888313920211967*3739020410546173876396213098738999938859396299657860304162303 42 Pedersen 2016 21434703385885130474674116350205571137666838713842426530276651770450450796086231595970330756774236771793139099550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3842852732994536964560022146999416776081563859319086763763711 21434719435871853038068624826406420702726544586038906412018035260403438611086381302182475690954865472107547236450=2*5^2*29*31*149*4327*192469182644356977723658994223847600639487*3842852732994536964175083925828652914965489986645837058435071 42 Pedersen 2016 23774368489388080973841640731350721356168473538796689386806612580132519079316893461312478842331924670237497354050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4262312161726771003013511258814172150083044568277679677311601 23774386291281194329431379539752830454377918005306763980941956781387784428596399483189055353349341736262182901950=2*5^2*29*31*149*4327*192469182644356977721761662784098073512561*4262312161726771002628573037643408288968868027044179499109887 42 Pedersen 2016 25005738165619669954060191370603410513913769475759579980297125099404311508605043213432361474821470882406257153950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4483074364050932368330733481491470931994827391393858708725759 25005756889544061199809130079636865775193098601926203695695719695373729337933723012454879926783897587932016126050=2*5^2*29*31*149*4327*192469182644356977720905698273021623951359*4483074364050932367945795260320707070881506814671434980085247 42 Pedersen 2016 30894391150363751084107723868325722250153681953397252405262330619064719744614449498997239625554241303623625755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5538802815650673137532707301308225622283787398218016423967231 30894414283623812501201470507584758551956735093824417909065171090023424859727284784703094226122397410061063140450=2*5^2*29*31*149*4327*192469182644356977717755683317515767675391*5538802815650673137147769080137461761173616836451098551602687 42 Pedersen 2016 32600298934352509168008837733181104341449401716299530298453766600541805553942070140624509001700326867919120961950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5844641075780492351494821164915017374382933776755087388069119 32600323344970917468822791328920916306289578964977766393074839599053983256608330809596171991939080260346238398050=2*5^2*29*31*149*4327*192469182644356977717055728025746048699647*5844641075780492351109882943744253513273463170279939234680319 42 Pedersen 2016 34225581247516075219408083935988806640812020210592868876859949558288693489831651929132009249635256804006987623550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6136024654390734931090064921987218266514493372795972137575791 34225606875121678401116519086527779693976689439759558607616343247231993178939787760726171810714331122018252952450=2*5^2*29*31*149*4327*192469182644356977716453761463454789330287*6136024654390734930705126700816454405405624732883115243556351 42 Pedersen 2016 34467264233169086453337337945134169724949877324899797990563265222434800394887428126952118828163017993728211227550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6179354021035786900602215479992540968132254573931577640361471 34467290041743310519002494547000325770716770615630382930989363204252656671288804564570003639224454058145564388450=2*5^2*29*31*149*4327*192469182644356977716369096367487146905087*6179354021035786900217277258821777107023470599114688388767231 42 Pedersen 2016 37954151969718572514324487687715002864136909412155838842779058782894982642636103863025035009446276329770871423650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6804489616654433756976442826142008210150080825986420001273633 37954180389222412314318379769640203617972720198006913866776346491685033735722701702986327350674368746561312128350=2*5^2*29*31*149*4327*192469182644356977715267587917942899930913*6804489616654433756591504604971244349042398359619074996653567 42 Pedersen 2016 38628111120124492525391181043102923600272163637866802579895767155968896441184097246796715011333760181934461205150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6925318242851778116072317066446630717707697143086770166548863 38628140044278908581467021607955100499947896840656644499196431774903442457218213940272457760123378274950999786850=2*5^2*29*31*149*4327*192469182644356977715077617147752499497343*6925318242851778115687378845275866856600204647489615562362367 42 Pedersen 2016 43711394181135737794088362837148073148842392551011108936062859581766698276082269298793130125677024033705434537950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7836658505038720640454414028522781068751120212291731100139039 43711426911576817466285705218929731372672531681634819996857654527139610100345948093708932055729394910551466582050=2*5^2*29*31*149*4327*192469182644356977713833497534035359825439*7836658505038720640069475807352017207644871836308293635624447 42 Pedersen 2016 53273261658259180435840670877408701834376971837932534598600660980909429776271247756779469285098677367574528437150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9550927553015940780427509227677581744048906044490079116962303 53273301548484246286331181377670016270040116044467172907866849515473661583621856350501890740347890876352396874850=2*5^2*29*31*149*4327*192469182644356977712136603401559844432383*9550927553015940780042571006506817882944354562639117167840767 42 Pedersen 2016 61304018407870666267455508052590145049783671816240258348731059377173568219593051531116402168385482049845581839150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10990696276084950934318559519758498911946047628085207802627143 61304064311406804492188048396308864151340956925583228119352193596115151890710865687974572187241807405379626992850=2*5^2*29*31*149*4327*192469182644356977711120415044456423181823*10990696276084950933933621298587735050842512334591349274756167 42 Pedersen 2016 81402889779199853594167481039075896982136846666558634244489701279621391702246163700937209335836553492160682413150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14594058608137514520708790560059457178740512899054552289200223 81402950732471593048074773759164274326966345597459376810309110837947037484043852173677479380001080164016088658850=2*5^2*29*31*149*4327*192469182644356977709456010553580953619967*14594058608137514520323852338888693317638642010051569230891103 42 Pedersen 2016 91532526279547575397230473703207943581959818923249188717686185982089924877787802900914395780236963398405210059550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16410118322555391911876131889671351609282218514820862470846911 91532594817740291272702565932708218033694941967413201343337349117678669860873868856469566967700050668026445876450=2*5^2*29*31*149*4327*192469182644356977708894193958708113111487*16410118322555391911491193668500587748180909442412752253046271 42 Pedersen 2016 102569703695221252430253338353785891954988652763382540282439101940692379566668052693528328951910667284813214299550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18388883628181089743611952355800508768991854569144639748947711 102569780497888068413453062049231719572059062152946360302851305379120483074230489517080661367631005723629424036450=2*5^2*29*31*149*4327*192469182644356977708408369419642401279487*18388883628181089743227014134629744907891031321275595242979071 42 Pedersen 2016 103507368227188558108814522781967713580861789698347034843533342960053759105239009131617881472194404259111802241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18556989836344222114902716558813012371905830094737685057246719 103507445731964613364438983270439762879374227639269388440338216534941018850654271172267333490027933184814049918050=2*5^2*29*31*149*4327*192469182644356977708371871081115918683647*18556989836344222114517778337642248510805043345207167033873919 42 Pedersen 2016 121874813942344517511366449439698412034860008611732584561528259629722161758433902732388482716711209960448199425950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21849939017581571270438212881498953274920113485474614837375999 121874905200390424393800456688381775349606791659524592545092191244289167664401035274056330258223153121353528574050=2*5^2*29*31*149*4327*192469182644356977707770171780821188735999*21849939017581571270053274660328189413819928435244391543950847 42 Pedersen 2016 143030012533509020982430842567341042945851389317743027529919692374329973402518550971621048841228844314622332443550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*25642681620991364998071436847426220805941328907658268409160191 143030119632252622098949333790579179276117259552284893464127110118464109706723113524882726636136529565171151332450=2*5^2*29*31*149*4327*192469182644356977707268647530123367244287*25642681620991364997686498626255456944841645381678742937226751 42 Pedersen 2016 153435296852819528559104494449770722043420839808532964942929028089864129471936177962252851257364466848925474331550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27508159979342643509818211484780401290797810159704271290737151 153435411742885088411204450387132403210939354598457971323492623485861441421224402106263272349503643291272356324450=2*5^2*29*31*149*4327*192469182644356977707072710071603010970111*27508159979342643509433273263609637429698322571183266175077887 42 Pedersen 2016 160983542399981364571159194693871857596045018001235726555291433053713667408817157482543685559843244035777191809950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28861423213641739972465820754035149515632752275773531421089279 160983662942060793221330374790902946790416692780638780091970970275197410796686280012555963442368898501037564030050=2*5^2*29*31*149*4327*192469182644356977706946424063492053442047*28861423213641739972080882532864385654533390973260637262958079 42 Pedersen 2016 210081911934099794164937998006434839484678711245281144520535077347647360937607145995440937381632331989491011201950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*37663868489092021423251508673305949628397591197645109446289919 210082069240307232210972467319802214911450761731698953574518926224195734109577132848010374397654611918752690558050=2*5^2*29*31*149*4327*192469182644356977706346477040171596229119*37663868489092021422866570452135185767298829842155535745371647 42 Pedersen 2016 220817202497086488522062229325811900562340507333753619992801215224518912573088878657451349278621328389741438849950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39588510968942242129645420826353569986102739495960609491566079 220817367841719646620648630482792428960019261257632863583995837575311995753897762983188884425800869781126027390050=2*5^2*29*31*149*4327*192469182644356977706250843944908669242879*39588510968942242129260482605182806125004073773566298717634047 42 Pedersen 2016 223432809390995296168491863163009839557952714626658411151300060843520199648742507501472993791508348992101994744650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*40057441745344574344283092316747931974809025879771252653846453 223432976694155948812489329428560396492962948733256555806843536085535842031356486260003828495147899624877141767350=2*5^2*29*31*149*4327*192469182644356977706228935649054653238783*40057441745344574343898154095577168113710382065672795895918517 42 Pedersen 2016 283999914732023318338485569206570566060262714873207392078405898878353322334704588656174967034643446331989984577950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*50916022902227062769204731764526827453012685816945212151875839 284000127386930577736658990233941651177065953702929005329281394275671799613177812039592714050998811246096906942050=2*5^2*29*31*149*4327*192469182644356977705834489576916908296447*50916022902227062768819793543356063591914436448918893138890239 42 Pedersen 2016 313305134443226753749487006040518300267219862595569793922308850308687188225727407108728052676370793301981757221150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*56169916162647056026732821345508453998754535532281389215163583 313305369041446164429641814838405558541663985681906078052080145736377396686020372770965072038159059084201459930850=2*5^2*29*31*149*4327*192469182644356977705698384215367903388863*56169916162647056026347883124337690137656422269616619207085567 42 Pedersen 2016 334335642131143822028628956967237132211884006669037154254393668147001356135085422270205321947310627568835845633950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*59940303953410386963774598160469185830308460856442955408527359 334335892476694235297224561866356124558914349519517403148295816415218027858893555204429218191258361187265192446050=2*5^2*29*31*149*4327*192469182644356977705615415275500092968959*59940303953410386963389659939298421969210430562718053210869247 42 Pedersen 2016 391633385579091288227148422117207482697089942089306423809587424358696190982923524904579506263529541979438060533150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70212747944791156466882168990954028770333645241729888514170623 391633678828338805043286066581410267017330874963162288744059424390607793301692075226186932394717325166933961738850=2*5^2*29*31*149*4327*192469182644356977705434576687369790643967*70212747944791156466497230769783264909235795786593116618837503 42 Pedersen 2016 528111584716467407058940011178155255673880943965189954975751273416157015657838058396444536700098919550581301761950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*94680808505619908490429233154481738431881719051745697558405119 528111980158558213541883987405733968321523414370613107873135360704021262637271275638728095777181160530200665598050=2*5^2*29*31*149*4327*192469182644356977705161883771712110939647*94680808505619908490044294933310974570784142289524583342776319 42 Pedersen 2016 615207366036471094229752279826430279415598266099322374299655597761874677565607429793756244138097341962215669019550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*110295499096499277963906773817992720261052126625261340484890111 615207826694586056095213417613529469857152689035495869357383983398605033394258639693065867173699528232533836516450=2*5^2*29*31*149*4327*192469182644356977705051102620993122217471*110295499096499277963521835596821956399954660644190945257983487 42 Pedersen 2016 721794165101780340098646252494547693533680580517902494960352016768208567996156764718665973834362246489881564033950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*129404574912261921332499901387734378670634877491645951941455359 721794705570503314634912208826979770763995554164975362253055288131658827199903185706432815264149610376367058046050=2*5^2*29*31*149*4327*192469182644356977704951908827394387176959*129404574912261921332114963166563614809537510704369155449589247 42 Pedersen 2016 897142487567881684675771784367851530454925783307137717793934305740864682494088613309752076254383476581869419009950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*160841342106278274505121572337346943090126911257012905446113279 897143159334817503059846743576711987553002248883812111567262984178857545154485159246378619198738252945770808830050=2*5^2*29*31*149*4327*192469182644356977704840005552323221422079*160841342106278274504736634116176179229029656373011180120002047 42 Pedersen 2016 960704640277470270183427304532427735053634122300413642388158539308756793970022697889832794417107449083814998913950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*172236880820189526990586880541081050673322455843461451891944959 960705359638799567239679334902417083263906892415043944152930766279421717852538524459713622701098894118793251966050=2*5^2*29*31*149*4327*192469182644356977704809529180902671093247*172236880820189526990201942319910286812225231435831147116162559 42 Pedersen 2016 1020578384029122056324377053036008545637050866822431587040683454936829173409780358620766012976128744635675026533150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*182971154846214189621490069519894959403459853225124579427890623 1020579148223019126489167462536355607755645304924431605824658185481835285320240553596027122307275458685125155738850=2*5^2*29*31*149*4327*192469182644356977704784293435700148843967*182971154846214189621105131298724195542362654053239477174357503 42 Pedersen 2016 1041172726921513514809137942202230609836123914199542505678408186023935867350044529992490944425924568929275508661150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*186663346216605063934896085449496923720773077562810957156688383 1041173506536147883371181571874466017992112508763451554951786535218561251072818475756143633850983683875299362890850=2*5^2*29*31*149*4327*192469182644356977704776284131960868785663*186663346216605063934511147228326159859675886400229594183213567 42 Pedersen 2016 1071669126928222923717174317259207158898711059180198192411782809222403950512985199305078585349620694792540235537950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*192130796453842786299641110819950774187440604404069509134559039 1071669929378107511602747546246863149096686973882068303054592739395902408321871109097609693822416508661914425582050=2*5^2*29*31*149*4327*192469182644356977704764989266920392445439*192130796453842786299256172598780010326343424536353186637424447 42 Pedersen 2016 1327681704444300828250632707170904588750154472196802333744253311343417807812608151396577372605054713945472595913950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*238029198474021226325502905096760240182135883136055061828684959 1327682698592591312813095666181279187898153857605758153694657492263799110835727022520291191274108131667662374966050=2*5^2*29*31*149*4327*192469182644356977704690632142628515302559*238029198474021226325117966875589476321038777625463031208693247 42 Pedersen 2016 1446685127557733371464497933766472312853496804915155585378595587022727624591350082763516225698654955943794144837650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*259364349304627185074610041760677375566922416337027203471559513 1446686210814015066576380629464058584296340934607715019339524778535742004320865502342914438243632114510190119354350=2*5^2*29*31*149*4327*192469182644356977704665028164939564763993*259364349304627185074225103539506611705825336430412861802106367 42 Pedersen 2016 1960886468315873770845751274651524536564770113841119847064940091219680193007695924693018614637862008578769643223450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*351551303892628708881974641020711254551635709127989418529625949 1960887936598462726502472016288830097601540700749687129097372940328671109502729882123750743521659590973249198376550=2*5^2*29*31*149*4327*192469182644356977704590121111836776437597*351551303892628708881589702799540490690538704128428179648499199 42 Pedersen 2016 2179175839071218985659613927668550501125759175071480837722688097432771698689668562095000331026045743369860064283550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*390686620574604630197299063695175082485444884983895040869652991 2179177470805638331799372595008356476982177725122162082438092955760304832865135935306351744674903769806989777892450=2*5^2*29*31*149*4327*192469182644356977704569010353325313612287*390686620574604630196914125474004318624347901095092313451351551 42 Pedersen 2016 2264874298398669169375326605607420077229526109629005349197590538513574839161956386548939503354641183907337111067550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*406050796729091398065406121528501167255604920484735035015414271 2264875994302818769653423857848064769649763844697666600702529693509349027009446758333840079889212997894912702948450=2*5^2*29*31*149*4327*192469182644356977704561834846047377772031*406050796729091398065021183307330403394507943771439585532953087 42 Pedersen 2016 4268400787250882593105616563537519461136829952975197310489133887399897255852141722438660005023300094428066873665950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*765246681304880774142752769955996372175925164192585762656876799 4268403983365833596745423727765396031467387377372466362896737443728549239388560541230696201148866332273685036734050=2*5^2*29*31*149*4327*192469182644356977704476189894612374124799*765246681304880774142367831734825608314828273124241748178062847 42 Pedersen 2016 4387389723241032200377693557116129806238359295355063919379958509346911278466472710507661926104602086274298315649950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*786579234857591218862441934096554663901226353082439855962222079 4387393008453126672372718911659717717371068188154715270839222876914414589648408836035759254289003659517158718590050=2*5^2*29*31*149*4327*192469182644356977704473564158061838274047*786579234857591218862056995875383900040129464639832392019258879 42 Pedersen 2016 7233057131983482458773962866995263251414878759974011770867840752506257992017399151743528029266840888544796219969950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1296755680130003108014356432961791818259385106863749528479796479 7233062547988959274635586032838389558342222190267708628748539421840070449394351846938936522229252612891339777470050=2*5^2*29*31*149*4327*192469182644356977704436507009004856610047*1296755680130003108013971494740621054398288255478291121518497279 42 Pedersen 2016 7824587902702437275277921348879107847008621163223431425857251700225268799057523597946356711811388695623906398037150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1402806396017426693999682639647832600207153716445137085754994303 7824593761637347034858632381896032278893770466303670606345161666837487687169994441631075869005596397732651823274850=2*5^2*29*31*149*4327*192469182644356977704432187743058867744383*1402806396017426693999297701426661836346056869378944624782560767 42 Pedersen 2016 7913142437284566477230851828205925359880901539209014943666806832154027947229335615678595596953933055825959346869150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1418682614554795640907231532349793443106458032041547985584479743 7913148362527793113353362337374215769711503398493144375656245371345090816293103441983215515953467050447428754762850=2*5^2*29*31*149*4327*192469182644356977704431596703810514247167*1418682614554795640906846594128622679245361185566394772965543423 42 Pedersen 2016 8789917324613855755862690859242745202804958006134793340621944682199632431549285698565016527232488791177325515649950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1575872416127373037194618181128767032149338577729908816986222079 8789923906373062434832284572061728563271828277295964514546304465002894122469281851324526327272343770847603518590050=2*5^2*29*31*149*4327*192469182644356977704426387512560398274047*1575872416127373037194233242907596268288241736463946854483258879 42 Pedersen 2016 10537094390662147045462295932008824834371414433249015097513407589820750272839657204342466118202751921294919884507550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1889109508445167996304914665040123241643942111043429428742179071 10537102280681524495363284423135857571927401978194443661681402540486527357529288464424043625601564428198456303908450=2*5^2*29*31*149*4327*192469182644356977704418591954090815768831*1889109508445167996304529726818952477782845277573025935821721087 42 Pedersen 2016 14322108986511567727050975140381510282282194363794440383788694991836813234314280192345082844024067185250235655962950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2567693831364340660656666257576835615165821651846402106203787539 14322119710693513906299977836898529143116960829450940843467365543185966179322616794320678567645143722721801853157050=2*5^2*29*31*149*4327*192469182644356977704408227279120206876947*2567693831364340660656281319355664851304724828740673583892221439 42 Pedersen 2016 19291748204370560970077807739569115269291403086881226958609319209864439350156554394486380654137952076774350261921950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3458659817995260588861588827795833505955098731861377000364552319 19291762649744353223171324158490869737391634283645820998423053220539476819438776867506801994805984749808369267038050=2*5^2*29*31*149*4327*192469182644356977704400794310903926075519*3458659817995260588861203889574662742094001916188616694333787647 42 Pedersen 2016 29007875074388468975571115884827890084521465678801476491835632727657463967922326927649715886203511167992264485323550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5200584771393823474156861661257953115685294458263370720945209791 29007896795053383811617698341104182140796921230009801173744042605431457583844921570085734892614345833748696307252450=2*5^2*29*31*149*4327*192469182644356977704393619315134756900351*5200584771393823474156476723036782351824197649765606184083620287 42 Pedersen 2016 30237818975096875154689320723012705333936854279328353854826279250713304580531524794805764880005115413187617778181150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5421091358080704422317777779731027301215522590357736336081246783 30237841616725468399602123662106049697473993210460889831408320767162521064875235159912117353637134417527848408570850=2*5^2*29*31*149*4327*192469182644356977704393039839876627520063*5421091358080704422317392841509856537354425782439447057349037567 42 Pedersen 2016 33710595233755145863780948131546166938294093083652160547708689739890663970370841752066598105577321229897919763125150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6043697022195071235642267437022524564285435085785853942147915263 33710620475746890324605238214174809244146313316625343751365971745440517850556685333822544318000447068179349237066850=2*5^2*29*31*149*4327*192469182644356977704391631926634587999743*6043697022195071235641882498801353800424338279275477905455226367 42 Pedersen 2016 46658277779655249839266297106456825831512065325658755313232613215832326032687653644636851405901034673398190772859550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8364981173494431029226418203540750518517007477795093947337622911 46658312716678887603852737994881773489857923934158006076056492631540797991715880477383505089861072342551245811076450=2*5^2*29*31*149*4327*192469182644356977704388230094408643071487*8364981173494431029226033265319579754655910674686550136589862271 42 Pedersen 2016 53338618530400663646543707134178293478916276473733801593937707439671203684023946215669796702603942133866219871515550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9562644852304265032334765073099331314786359337615759147430866431 53338658469563982162094933668892258823756066246654591673992347869813095463498090844519947870342664482981933834980450=2*5^2*29*31*149*4327*192469182644356977704387120806902776114687*9562644852304265032334380134878160550925262535616502842550062591 42 Pedersen 2016 56111503855630188677036746245319044732108972542468718942387517318204144528819607177962214114249735889031576086593950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10059772792845566003313154595495569532667706675792725182007010559 56111545871088749161338197851602027551107092069262774238580290949050732162758916240817052618461265674669795121086050=2*5^2*29*31*149*4327*192469182644356977704386737934370037884159*10059772792845566003312769657274398768806609874176341409864437247 42 Pedersen 2016 68243685804810949655592367770436227328864273051930773896223616845624066158281745617534985163721456662679686829197550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12234852509194579832026023697141511660383266340143363476153368871 68243736904666699806608695312851763491744360804705024037479788433207607291175838269416343614508344134137302133618450=2*5^2*29*31*149*4327*192469182644356977704385428630338309390631*12234852509194579832025638758920340896522169539836283735739289087 42 Pedersen 2016 71976250727216882062085670774187530842120232746814723478321696366833706204375062861685287463855974295711452797101150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12904033558958607934019392005723435078022907466804126896849753183 71976304621961666468205152873724863937273106359437206420856702102667408713712062144424876866342274834414814848850850=2*5^2*29*31*149*4327*192469182644356977704385114599969816122463*12904033558958607934019007067502264314161810666811077524928941567 42 Pedersen 2016 79360033282323275258484391445369014100124457169429227457937739425706061698589316793953196282954979010986269904801950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14227811567961193069503046760784165105115309203263375934266401919 79360092705934488942652802136751734865704922780499447955409280802731932613575144681697012249437231687950519332958050=2*5^2*29*31*149*4327*192469182644356977704384580400059666261119*14227811567961193069502661822562994341254212403804526472495451647 42 Pedersen 2016 82576725809865723417543794212050802892737088039684163911204336063073751153937471287309272349592403570619093774721950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14804506073508191656758654758874653480027067733088290160670328319 82576787642088403664968486653280075315426734575609196085570300539138832958825698974288021357191461507429222682238050=2*5^2*29*31*149*4327*192469182644356977704384377554257988011519*14804506073508191656758269820653482716165970933832286500577627647 42 Pedersen 2016 115933253149281878107237893302163099091886253930930866890304619343857045639270943797157539847205247400946137325797150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*20784725157570365938443997211661182121798933629830135049604333503 115933339958375535771472996280199479152496384483838924585721429669232301021313277351741120490175125511487666233114850=2*5^2*29*31*149*4327*192469182644356977704382937658265192451583*20784725157570365938443612273440011357937836832014027382307192767 42 Pedersen 2016 160554415676165445732138910338446189897228121243987526633827993380841794650161410875452014036192826980796881362480450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28784488591607132406263920969788914078356020203854955318335339889 160554535896921173487150127938701415347419249596199655552035687140783154398552355879304240644606788553524846207439550=2*5^2*29*31*149*4327*192469182644356977704381946993817599442289*28784488591607132406263536031567743314494923407029512098631208447 42 Pedersen 2016 169561080613060226223147669960607161309918079344028756788619390012962921541852608348183170917950713495979443877049150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*30399219915144079409866621381870868508791317400842703284010395343 169561207577872545259472311952667549358185911841355177654349459057064199635768551965074776844804609003637455981382850=2*5^2*29*31*149*4327*192469182644356977704381810273974869993167*30399219915144079409866236443649697744930220604153979907035713023 42 Pedersen 2016 229027076846896551908123321741816787767992711759306013028902572108925387394834819518150392488250955181236590740933550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*41060392222194608622662889991223981615223132555508209742583545991 229027248338961374264564326526206221994788075436245899807993046857263004536123806518604810075617467338105554205242450=2*5^2*29*31*149*4327*192469182644356977704381177466403327164551*41060392222194608622662505053002810851362035759452293937151692287 42 Pedersen 2016 241642514651374061255728399739186908857138509722877889287577302765748186616889169374998813743101996336135136025985950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*43322110930034664963904895277348714048419250601638611845562611199 241642695589690861818732306322125655540444450125665173762840629880597350835019481120107862738070603447140595327614050=2*5^2*29*31*149*4327*192469182644356977704381083264837062643199*43322110930034664963904510339127543284558153805676897606395278847 42 Pedersen 2016 260555543434998572355942656314474378238574569142922534281576366914248773656674831257701625954271349825678937283611550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*46712873239263350776598740551982185919693156055100263765297674751 260555738535109702227211679839173210323205937575607312577435497441076075367621831670889856958968804832700730319844450=2*5^2*29*31*149*4327*192469182644356977704380959127223239653887*46712873239263350776598355613761015155832059259262687139953331711 42 Pedersen 2016 344183282709076289494952614780751046003982437978552549649671313233068542795919804140430948717495994404244873575139550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*61705806924325091953998737405054134380635912745175218834035620511 344183540428393331532125887310056057923014228130390474252725537998068243380750823662397442471737053346559144461596450=2*5^2*29*31*149*4327*192469182644356977704380573758698624563871*61705806924325091953998352466832963616774815949723010733306367487 42 Pedersen 2016 395876693728966708718882644962210716558480758008829855797809724914151100225623702190861504090372532726256616817674150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70973495972283088594717313013086159078962625519351315625201707843 395876990155540183313054329747267911222764018798827611583647524966437266002748413897651419586123632489737371040757850=2*5^2*29*31*149*4327*192469182644356977704380416974800925305667*70973495972283088594716928074864988315101528724055891422171713023 42 Pedersen 2016 460936013861690994060129007590521865712074283980239852710190002530324964606911043199756042634978026264425821223985950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*82637449593560684850202710192671649954827679424830832984909771199 460936359003714620245310991083024963265244066025049905292707801661536996129990400782981551767606409642964362609614050=2*5^2*29*31*149*4327*192469182644356977704380269633358227403199*82637449593560684850202325254450479190966582629682750224577678847 42 Pedersen 2016 520366053776931396389832011542507660493711814604787165741460190710580514801660523433422191827750172785650861558485950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*93292175586207080285969023671478682922248689334616467342371261199 520366443419283969936952200465706087269836556023866888257572027558079115760405153304915619107142439811318616995114050=2*5^2*29*31*149*4327*192469182644356977704380167239856335293199*93292175586207080285968638733257512158387592539570778083931278847 42 Pedersen 2016 844990093694423221124303663328175196351414258862548624547384797938260097400119462402975486808569038037354372962061150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*151491365774867917857617314574555010597085140879942901721648316383 844990726410423080669604747427348285915932325019073717034712978053383143949749382461752040982336632706192183093490850=2*5^2*29*31*149*4327*192469182644356977704379862144163344793567*151491365774867917857616929636333839833224044085202308156198833663 42 Pedersen 2016 953009131025451685074828734843254510655557630891379906030866760855753882971838883931304004877719817953755080184692150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*170857215880184891548398739381721659341865393970062966405760179403 953009844624498243961915365889622750740611276908840367706853420515005184568650405056387947456083705956688379489419850=2*5^2*29*31*149*4327*192469182644356977704379806711263685856767*170857215880184891548398354443500488578004297175377805739969633483 42 Pedersen 2016 1142168456332593675598453505854822401955535615077077436599750454080684522494712448076097561472751539643148810339377950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*204770044863236200526869401829789537846451988054583668949887291839 1142169311571326353394212974167604809201967986751101517887534125640911464325435178824272679173645195357439531400142050=2*5^2*29*31*149*4327*192469182644356977704379734896041872936447*204770044863236200526869016891568367082590891259970323505909666239 42 Pedersen 2016 1234597786322843455633487899877799424057114656312911063610935141891618014996800067392252460273265334617118891016955950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*221340943791363256492697533935076307583915136592120824046266278599 1234598710771282114050630996340126643320686476561214358674773687994695190708748958341108803550988265205225976003844050=2*5^2*29*31*149*4327*192469182644356977704379707808467134374599*221340943791363256492697148996855136820054039797534566177027214847 42 Pedersen 2016 1243555665470489055881082367658846161470743030850785212166465532111949345536706788118054412706394857550967497029128950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*222946928709588574030612929885810275088427630510453952951703505259 1243556596626454233033037680118215729541327525860174057139047848673241136368170359428582111540620015651398392220151050=2*5^2*29*31*149*4327*192469182644356977704379705397282606352747*222946928709588574030612544947589104324566533715870106266992463359 42 Pedersen 2016 1318250067289886891846487269527359064399355450830119858243476223947272505240865016008181117154014586884575408074561950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*236338277355918908935118147942418753008083341307208241651513381119 1318251054375907916684945485196071147219836706479798607986399596800619755835663668165648524616748675506943988420798050=2*5^2*29*31*149*4327*192469182644356977704379686567686930779647*236338277355918908935117763004197582244222244512643224562477912319 42 Pedersen 2016 1379627141913265676995154463575959052030344318389823497935380241369663231650655538480267483178511151997914623353121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*247342071283619253071532438220359321132264554834002541409904456319 1379628174957526246389508609524900040619579173044429483322406082447544968196257029758094036867629755295890714287838050=2*5^2*29*31*149*4327*192469182644356977704379672621270568619519*247342071283619253071532053282138150368403458039451470737231147647 42 Pedersen 2016 1526458848358930989647664906696168429579441102218695920061877648926631788437649340008915609456352082271229650460955550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*273666327525790533040046824365772676716316491491439740313928351231 1526459991348586952575627290048615951181368300920019610096092018197921614332988021544192055217893233345244953779940450=2*5^2*29*31*149*4327*192469182644356977704379643808236737842687*273666327525790533040046439427551505952455394696917482675085819391 42 Pedersen 2016 1557890807924148178318223662578134916481837400151643491198342874674965604788755551138750412251873683860174436960513950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*279301506587708808453319180898589375677796369616876824254024616959 1557891974449587427059689528975257276145924274110107201672519880420299986418643494897212720542518582392541780506366050=2*5^2*29*31*149*4327*192469182644356977704379638346065448373247*279301506587708808453318795960368204913935272822360028786471554559 42 Pedersen 2016 1561763051253353468773072566984045578015497952391652485297721553278642950467240009375162977246527091834828186677531550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*279995729437102436166433525904224216509501497389850833833853681151 1561764220678270862904007314641374436714441506950825332389686414517989958575647942526586327935193436879519082385124450=2*5^2*29*31*149*4327*192469182644356977704379637688367548517887*279995729437102436166433140966003045745640400595334696064200474111 42 Pedersen 2016 1747645776827437381844256761440801355743398232422310355406463729769295458895261754049810452111165577823881578307249950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*313321123641494621340056725371776301899055872425323214729007494079 1747647085438571804876894529722866362336645852264645935124113420248277112470306784182766902962836926714042060742990050=2*5^2*29*31*149*4327*192469182644356977704379609544326880850879*313321123641494621340056340433555131135194775630835221000021954047 42 Pedersen 2016 2088045248435062822936029544947266355986522857191100171088060173117792413265374308699412966604433057170654837126851550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*374348562007572224520922748059815751963607944700612096181250155551 2088046811932252877961547398279498044311811910153825133413507490868468066718674493623911240070317710351810250099004450=2*5^2*29*31*149*4327*192469182644356977704379570995467408761887*374348562007572224520922363121594581199746847906162651311736704511 42 Pedersen 2016 2952047427992126950080629575228461752370719186947243369650224197008589780394429835592637330187535522065826566963483550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*529248449225535419360184784911348293253619121847615759889152916991 2952049638441283659720820740538341559977015231571023204074011004825247952093463092616298019054125328043143187070692450=2*5^2*29*31*149*4327*192469182644356977704379513070262965452287*529248449225535419360184399973127122489758025053224240224082775551 42 Pedersen 2016 2984063677871269135254380336460473389721611860746959712814051434607014535763384781734723607952815184318600208178767450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*534988380921036088011800919226929745333463381738764844654458346429 2984065912293717017418275895342431880317746768002966692240294315198865262398732645747816611742211527451537671332272550=2*5^2*29*31*149*4327*192469182644356977704379511568314548919229*534988380921036088011800534288708574569602284944374826937804738047 42 Pedersen 2016 3898058663170805827776460679536728570321324082997809357985892951062592356478123924120759630864476977279291212554485150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*698851069569880498233177776107443751021082788649324056793124766463 3898061581979088888191790860366167116495089784967235350211857853251560822380077793988924052054808256835997434519306850=2*5^2*29*31*149*4327*192469182644356977704379479096741398138367*698851069569880498233177391169222580257221691854966510649621938943 42 Pedersen 2016 3971764618503415475254498773041111164435073917561912009473644941200637185675438310685722793427030573871003204456028950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*712065207726530152902892773532881814614142654360820170265407003259 3971767592501620372481156697622877111835996968245230273725724386003776937108874685721509935048916411250558697337251050=2*5^2*29*31*149*4327*192469182644356977704379477129368520628859*712065207726530152902892388594660643850281557566464591494781685247 42 Pedersen 2016 7138933901613620827907581269396154790903770884855234110882251257606604006818030327274852254573187498291617835114779550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1279881095651111754254027906444329026617026365617434647158835789311 7138939247141024281865645490135104690717162171784030097874444969860749593404492838437344125945651513385145815408356450=2*5^2*29*31*149*4327*192469182644356977704379430968881022684671*1279881095651111754254027521506107855853165268823125228875708415487 42 Pedersen 2016 9955036345950465086316715137381892294883399888973749380937305813571847009838952231369318122583951224337515871365957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1784757080160358404776159522885459020666105807594962943309184080703 9955043800133445773411088666267156291989783707213757389790495835842090301211553547397727822460713744848382250554554850=2*5^2*29*31*149*4327*192469182644356977704379414593620722686783*1784757080160358404776159137947237849902244710800669900286356704767 42 Pedersen 2016 29135394757951943055527485604781388904611302229203076844503651823948180677665579763688800308068107646078644931807111950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5223446732936766424646022693876389023835932491344392984973216952119 29135416574101698116001926407237193705502602751648250549359886624034506893969345862124647502915259057708441171376248050=2*5^2*29*31*149*4327*192469182644356977704379387265552377294647*5223446732936766424646022308938167853072071394550127270018734968319 42 Pedersen 2016 35273696891244695624589137567863713878584878405433442730636171418849720794864056599658297271680467272660066384341585950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6323932739400633199340945091251624011423650173562299252299135963199 35273723303663685896733413923905575356868930733357998098055550134642154707184754471400864214717336426878927331268014050=2*5^2*29*31*149*4327*192469182644356977704379384797284170715199*6323932739400633199340944706313402840659789076768036005612860558847 42 Pedersen 2016 42849095638585546375643595109314823999253533082912728969448225891058214456049331524623205778275832952259671376023323550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7682064048971822616977736511048173595225036873767670374613475169791 42849127723350317416018422976204767532166498345043866273681232650968437558452733323366889723104407344894048715649252450=2*5^2*29*31*149*4327*192469182644356977704379382726051764260351*7682064048971822616977736126109952424461175776973409199159606220287 42 Pedersen 2016 43593690128198922069772787925662401730365212216235704895869575481900077332969517994693092993851257960590887700971684450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7815556307664222296627105585522446213240455515411687452885700877569 43593722770504959571439983474532367829847612129012090201575972914074838690226394802627948290043786211392352342589275550=2*5^2*29*31*149*4327*192469182644356977704379382561322598747647*7815556307664222296627105200584225042476594418617426442160997440769 42 Pedersen 2016 68486581841995134881136408433454300407288598806036453888104920064810001695293011618560184490769633658095691134753051550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12278399353931486567129334406551314786782049608629273893297724759551 68486633123727820839746259777131426212771042715421464966620864467730683837625782079221301475004059628719594932184804450=2*5^2*29*31*149*4327*192469182644356977704379379115743696768511*12278399353931486567129334021613093616018188511835016328151923301887 42 Pedersen 2016 391939178870722938851661230232773796202597692791063353629934893167696371884180614102832827768137663380440336725303231150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70267571124068361025475781366251242979039361461750460802083742667783 391939472348943919036033727893607797273952511317696139841337120532214916130750598380453616876370005064513756212371520850=2*5^2*29*31*149*4327*192469182644356977704379374136052103597567*70267571124068361025475780981313021808275500364956208216629534381063 42 Pedersen 2016 494884961098758559536249587096977512493845683747215020977287314862474785981100357683385168309945844349159724654631413150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*88723878797809043271003578351066886816920327098643513435799829780223 494885331661248361089467028863784080263742669899321756762751727111803971570779152471699843844652807403779814924379658850=2*5^2*29*31*149*4327*192469182644356977704379373916720306671103*88723878797809043271003577966128665646156466001849261069677418419967 42 Pedersen 2016 1769544216264747633699006477792435140514834238688588430825933385048617757931356777134862820773460843199331867371597963550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*317247115819926067184752986755480872528296347023789555900660200038591 1769545541273107429354847928861531216976684648812179627386955315679750540109296680058091121830659273104161153434161012450=2*5^2*29*31*149*4327*192469182644356977704379373315208159748287*317247115819926067184752986370542651357532485926995304136049935601151 42 Pedersen 2016 2292363648815933856893853960496178887758981768134871767389818434665287832171545880308921068897959490916227201510460353950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*410979137629240872879288981349905704204047942933748636906329331669759 2292365365303699720298120768780686365876083696615174396634727110330689354182185144713587489669801763551527563579044926050=2*5^2*29*31*149*4327*192469182644356977704379373261945510645247*410979137629240872879288980964967483033284081836954385194981716335359 42 Pedersen 2016 4283045412595246725515518643155376233447528698673390699677025126621577692236234920412611314917781155386409209672947046050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*767872196457347477838085369744789564864106531959132560805052432638241 4283048619675875121674730104897886051772816040001288059616030799827175614426911694850330627600025489072280238729407129950=2*5^2*29*31*149*4327*192469182644356977704379373178157550133537*767872196457347477838085369359851343693342670862338309177492777815551 42 Pedersen 2016 7361745719244063906081696806150435303815068328152809875731216414646033815284059805137301523991659310880605431869649589150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1319827204860556782433979619786553463220668086422101456663168880582143 7361751231609638629240849270391816565568939300145042837657487957192449495635912809350447553335548194558280022341799242850=2*5^2*29*31*149*4327*192469182644356977704379373137806959431167*1319827204860556782433979619401615242049904225325307205075959816461823 42 Pedersen 2016 14745084792162865497770007081018473961635106481810849824635306449883041090209651644578015243292431445076611334800432557150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2643525705567368483361438393084493987091010564075922006138833190852703 14745095833062796640567283662935277959518215999019929686993592064630246390408996319192677047418097642293754640975503954850=2*5^2*29*31*149*4327*192469182644356977704379373109698263324767*2643525705567368483361438392699555765920246702979127754579732822838783 42 Pedersen 2016 42250255787026667210189354847687074055750795801928726901772471234861831211636612711651383918682212928981482352031399418950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7574702947735195775474488073812449089801194487505706797045084694247059 42250287423389074409551782653488793064138342794436214211444638521542113458085914528767489644587097784594166021368480261050=2*5^2*29*31*149*4327*192469182644356977704379373091452850009747*7574702947735195775474488073427510868630430626408912545504229739548159 42 Pedersen 2016 346669893047152868598462012367450918275808633372950468464208402427784391938812954440347250152702381759189060285565689583550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*62151610962829423083122802682638403493079151006636952841106935787678991 346670152628406704993095960394606634199830505195031924279099328533741364457115989467545791571834341562899069112849080592450=2*5^2*29*31*149*4327*192469182644356977704379373082863838817551*62151610962829423083122802682253465271908387145540158589574669844172287 42 Pedersen 2016 1516057903114022507200193275587527700070445882371964892505497449363278529160455638706124656439545502447560015007439877249950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*271801627084615167916651901433325319563613659880993060352801469126894079 1516059038315605545693957516354772407022830393279106601676918501627639686591178380231613418203056983898137395872922372990050=2*5^2*29*31*149*4327*192469182644356977704379373081944357954047*271801627084615167916651901432940381342442896019896266101270122664250879 42 Pedersen 2016 6262035783314155410867011471455582520883179444244855380246270613916428560271633395358549123620583739327278689848080352139950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1122669201005352725670036111273466045105547094416178441673366085164367879 6262040472233305306477047616818979453963883863971420761611309355746032408775443063006385751088289354600713320185857424500050=2*5^2*29*31*149*4327*192469182644356977704379373081737767452679*1122669201005352725670036111273081106884376330555081647421834945292226047 52 Pedersen 2016 11963564336001442717933072698578978252775610440450501193821566017724939348454739701367945109855530914745065491088266341593722290508503104200319719876786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8123283447102092663591152197469264308524134545992714002492943 11963582927205444170274116789258099944264878093852847565283207397405928549521020988379484947818516234890434371792113031010019132106079533984640578180942=2*7*11*37*41*97*163*298829524019448877061*2567383290137907451047767853988800534373061974043506311521807*4221642085667437204043255675318214381523563275239372989686927 52 Pedersen 2016 12244750480522087229574925849199060716104471955163088871566359186194029114672013484759382822196313671931823244605501705924995375303925453278599513675586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8314209385993514771071577616220426690271100667548810872782343 12244769508685244694811096926104821991551415389324651542096038781727172890868920274846149343839284935326118361881031487120421811457719056422839931594942=2*7*11*37*41*97*163*298829524019448877061*2447568889170154361472029475313257362234958830893912495955087*4532382425526612401099419472744919935408632539945063675543047 52 Pedersen 2016 12995782524103861671462348761850956069717715918938836401528623439665431801445950579860202729073513322936715372673411414108441339259945758714860027153286=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8824161603955186127877283361624777206785862515823192718768693 12995802719359830418649752512592393871215841250085098445723820224411467248602716962063944034764908311031443354427880578641535180981119835374138175288442=2*7*11*37*41*97*163*298829524019448877061*2244639600992641042584362566618621046006923658929881291070607*5245263931665797076792792126843906768151429560183476726413877 52 Pedersen 2016 13074030148241672426999278876623976222643458718739493407517117120911286709925193867269962039358266320757700310307814732833533908380929801965268964110286=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8877291892895997622638067852773982258927837383421703671222193 13074050465093304650278568749926034588185018415355767487688005860056942186308150755577229697737642728835527999902914164855452742546020145716736760123442=2*7*11*37*41*97*163*298829524019448877061*2228881813713713090404739755037519960042024127527394344869007*5314152007885536523733199429574212906258303959184474625068977 52 Pedersen 2016 13190769559418020282824633386307626633957863317035671037540926059136989445976451775076859716180069258591304478199901246014117868608906690701958795127218=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8956558180082632367850265007917231638858300013712424328847759 13190790057680990066920854995143631539688267786476985902164039342164715304783948583473277345815881372905237808891484380812653822906103795491874249741902=2*7*11*37*41*97*163*298829524019448877061*2206629526758459503472541303570280769546791474274295895905679*5415670582027424855877595036184701476683999242728293731657871 52 Pedersen 2016 15944879824202174007630328738039462587691759426643596543680953372497574478461593334223624654759082021938562413915212565107742416264107977629971166532518=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*10826604405193882480840705413566036051975033984191644743327909 15944904602312214201625721937766487306249518826581905839024445936566981103906661242089473070973099688674126904942480331741324463806489131548054086413402=2*7*11*37*41*97*163*298829524019448877061*1903524231496920174002436943400004806346433198124773715910821*7588822102400214298338139802003781853001091489357036326132879 52 Pedersen 2016 19161857024108000799249592507641681785226221300474667300482956695466694325579634110503632958417448954784805076595097928355069473291383040922341372064658=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*13010938179290008270150170886878059577224856906620282523048479 19161886801353558783211953501922527322236837912816691098474952927787942516606617949841128899124414730700901597728739312998251876844074436593831229525102=2*7*11*37*41*97*163*298829524019448877061*1748567648576814335500700634825554521489024398588159441361439*9928112459416445926149341583890255663108323211322288380402831 52 Pedersen 2016 22189086014300539782906611187122036079976172100978627364924917238694791375567549305205065209624743752536428254069192260012943085537435588976051921797586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*15066432550028490638199717290159503897407801849959743707193343 22189120495815672881667226513294677184812651081291360701726598033897264324806916388978158436591910936733725299008778287651023919738546225775429039504942=2*7*11*37*41*97*163*298829524019448877061*1666028248926055510806658880714057637172648616096872094751887*12066146229805687118892929741283196867607643937153036911157247 52 Pedersen 2016 42391947903436844954565677220765155003185811270773100475894546223328240868273176245994169083898071606992604352720988842013487401819999009192411876480178=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*28784215056889819562747078641548384901569237176044541183412239 42392013779903870762785511536769119470723572966533941581102090688533841511342591521647663032024336833728039572494007965821975672276610238578615371770702=2*7*11*37*41*97*163*298829524019448877061*1478778932098743198911390025137697809365401296555999259140111*25971178053494328355335559948248437699576326582778707222987919 52 Pedersen 2016 60361366534130996779148464729183131942458315604129495788713775833593238855269598795601651451698132643394278733655771519126289124185849792584231963924618=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*40985485248374678766685473017066534367722483279514837463091459 60361460334811757571129047525291849552872006465028396265615345650081619715835131790875634826069059494754505357671101157083512437390353303230238311638902=2*7*11*37*41*97*163*298829524019448877061*1430786742836404088539434150544262178621115983536046733035779*38220440434241526669645910198360022796473857999268956028771471 52 Pedersen 2016 83709872259913541656843570740881752827533044304378755381880252079004234709644750646316885936806343284875892310357623208634439976142174920321330363140978=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*56839166036972304165651253485327589517038703273974937389982639 83710002343830709750324384988602943760748080197161882217394228287679737749201094418186378210368138599750275896957669201163991613846714453616140297794702=2*7*11*37*41*97*163*298829524019448877061*1401733534098639072463687414185321196523212307286731820039311*54103174431576917084687437402980018927887981669978370868659119 52 Pedersen 2016 122390689678404376926708119198116910120633346612014839450129417825042341880850204205354768967263656505519661455254892874193826464192340517888127107499186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*83103516278350653326220141877647141230270192144012119503024143 122390879871746075472892342854077170590051652588033275088393561116069742457035918676036086050221860610857859385896749130892891030385849081083904520452942=2*7*11*37*41*97*163*298829524019448877061*1379297978764237148108537177304873886755016688660799180801167*80389960228289668169611476032180017950887666158641485620938767 52 Pedersen 2016 206754528694498477541135352463297638662516010631857805110942724803902049704315863839875819175281018369677978060696268083617823616872776851875705102409786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*140386727014397324061160268814016416572604257123708103525534443 206754849988012118498699708340739636318194223613165165269159738822594158709936419624844292164887061072748576894509523394179685325814470280558017719295942=2*7*11*37*41*97*163*298829524019448877061*1360371570162512847214638937067234108980488791803010466990827*137692097372938063205445501208786933070996259035195258357259407 52 Pedersen 2016 263448168994248798385177246297456337317971648717458569644816133056055246116928614310863830676754850558122539474566289231825287652166985307427380615341786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*178881819017793256376281660956494233677715465200757582199100443 263448578388850275335865951260324273186838265018799150775159534593145579780415212431487336205419871181217054939642259542148694722704508143304036217755942=2*7*11*37*41*97*163*298829524019448877061*1354622288196853909975216897275836801959702829153490474998927*176192938658299654457806315391056147483128253074894257022817307 52 Pedersen 2016 364266960299969719589983142989086105603151104347078073454698808305358392878762959404015304372201862553110222867402879137660822770666346719710704129279586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*247337974354884793512150376459040118915928750950282719249284343 364267526365498330198312075416716278751428473133107679287954684591013903661923575629058003818733428941481718581780800658747380959023358146050668168214942=2*7*11*37*41*97*163*298829524019448877061*1348893094172039193350553089398650307147713951864876060605687*244654823189416006310299694701479219216153527701708008487394447 52 Pedersen 2016 510480253661096723496296778010683105073955632498082113509981288952476211021389159983608043392869032817954069548992957654397270645984935415877775410592178=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*346617084856471187698899850514352797839595794806829448284068239 510481046939944730975511726676040568090555047612359268882444957816684520798012393094056787471772994053523760000775228761552361963047269827312639463130702=2*7*11*37*41*97*163*298829524019448877061*1344652604797779320053522826817660344618180172885156448628111*343938174180376660370346199019372888102350105337234457134155919 52 Pedersen 2016 671725224530477186566050948092155351166706578337256118828087049698743752651912350242050030978165467938770926233584933165955776806533317822164699794309298=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*456102733615015172048948453089363677261471324067213672667062799 671726268381651588439867554396162300051088803565227498250061231941941639385677228459989350768760894218586374748259044533755131403820678574881557794324302=2*7*11*37*41*97*163*298829524019448877061*1342135747188466232965180289701754034534933352053634167776399*453426339796529957807483144131499673834308881418450203798002191 52 Pedersen 2016 676175941454308965162128908957389318529393995706490726303367116260924503333970595401011680069109853445948686733430382516347113662804445651352880112481458=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*459124779060643933071776644687631183318288491887508877845796879 676176992221832371376940608973819046541239961682926786048594446102710604872240729548523398453853536246058319101610555345884732493737185408795878789729102=2*7*11*37*41*97*163*298829524019448877061*1342083450772233310107686223248975007420268556149481580070031*456448437538574951753168829796219958918240714034649561564442639 52 Pedersen 2016 754584246767554384160642482297340640334259356378256906276897610785507742537771820432862784831624368662756909696338320234293738952843274152660401107385586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*512364170832017507880213876648413631438577377388849998563887343 754585419380437463002143702496222984276080182541632423805601440715611039471429740315642750792217762281053769680973395340953263507707870938519420151644942=2*7*11*37*41*97*163*298829524019448877061*1341264111989045619523327602147583430879037554366342173944047*509688648648731714252190420378103798615070830537773821688659087 52 Pedersen 2016 916976782650760152240274732461846652585322011472700106873877494167922834298438150637705978462544652190081666462392854256651003629318302943511351766662786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*622629018466370460015227685810599531093906619017626867330435943 916978207619268872905036966104432572163650392501125148220482462296782867533151684501749998678790720294307114428477261134344392347557696559781779267010942=2*7*11*37*41*97*163*298829524019448877061*1340015688848239530991788007724264677181673618979898384092007*619954744706225472475735769134713017024097436101937134245059727 52 Pedersen 2016 1051605205481913446271925383575997543902991795992368831821818540930430930189174650379825887583870194611507011805810773680556862734878877977908088253932618=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*714041979351511565381767647151049041225116619517231241635495459 1051606839661022198222631036482883360506686626475813484478624937180310164758448885809037023313355996298534187577233448544558004207461444703021173498878902=2*7*11*37*41*97*163*298829524019448877061*1339274688477139389609632126228156254143595055848256936295971*711368446591737677983657886356658635578345515164673149997915279 52 Pedersen 2016 1102372814395978465780217985136636567284881191872373617515163327694550384417215874697826071136031842741109702029642457486542493171569516895792861553335858=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*748513284520955114943458390687096379388732295600413146192544079 1102374527467208953316273191354255948085254034610452740144547287957824369929404043946081647852831257318999355085915103189365008288990146504315561326961102=2*7*11*37*41*97*163*298829524019448877061*1339042508888608454915836431092823803301071941469833025532239*745839983940769758480042425587841306192803714362233478465727631 52 Pedersen 2016 1115291463586262044778921151434476416784205277673651977493496853255820144722329249644201183739233239435798813562653540488159198429768319447977618976071138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*757285072441261810622365655475580485286838068079552562449745719 1115293196732884428442123689470645117662960888810374855364528406479244987836090433592054732825877803063129767525647537650372242428724806210323816091689502=2*7*11*37*41*97*163*298829524019448877061*1338986818725459182857246443885654528239638930985164627516559*754611827551239603431008280363532581365970919851857563120944951 52 Pedersen 2016 1798667964292730105284000476412969077486946990311860600986862006948286708209399713144656376544884367237930799421573031337102522947455685560029346150770098=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1221299045235492629196707547296144513170167631783235318123533199 1798670759396439659080967432692770258432010315078221526964313638639193996569706507255585376538387451987007257418303042661421984605718493847562686639348302=2*7*11*37*41*97*163*298829524019448877061*1337185074456665577850377159481783539061083737201399384211599*1218627602089739215610357041468500480238479038749324084038037391 52 Pedersen 2016 2099967261705854611843087686300509443949062660841015743315487045246453257490956428812194837034786794364103625307787962544126734746217933509179028420391858=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1425881854050608739690740564207083316537948925248923184792872079 2099970525024265602506537782108305130240955057727173256968090920537467083960118261237988731983196907970594336116541008635326064734395711958920713872641102=2*7*11*37*41*97*163*298829524019448877061*1336764228101095611271966166774328293243517312716504800836239*1423210831751210896070968469372146738852077898639496845290751631 52 Pedersen 2016 2152914271894082136233602434933128899233556612533110850559355093422107367665629281056793011251013097073190753544625698825413216734564372227137921668079518=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1461832976923019114391038336359239189627187405572875903636326409 2152917617491372567044756284636975590192697875449205315189185993605590518601179089759745004605350930233332833133190091403006456473226004520441869337698402=2*7*11*37*41*97*163*298829524019448877061*1336702475425739186419201304518434286498475007983668508925071*1459162016376296627196119006386558505948061421268182400426117129 52 Pedersen 2016 2315789576409663197880433114028323116845661351884481856535277628558877146179453692299712702926816815909146041373248435645529935513156644445626618806699186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1572425625397490678543153560969740520666207952935569035112624143 2315793175112794664348807263042458986463101688422399458146042411810058018815151792861458188364952441707589891688031992126387570950921616530727244296452942=2*7*11*37*41*97*163*298829524019448877061*1336530261259201305196203244493405638247466396088331030529167*1569754837064934729229457229057084865635332977242770869380810767 52 Pedersen 2016 2867256578419812489079470164691803383827458538893564891771904490105350402044694847572742456685161325937433592136132667305392851832509185838251312908062418=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1946872792081036983891613490550949760978842297719911245413375359 2867261034094599433489124659087637864509434199354469917529559279266515764430615783501741456318667708584664104951533290790697413278908472947482337843097902=2*7*11*37*41*97*163*298829524019448877061*1336092743310343546822498468500279525232075907031395719830671*1944202441266429892336290863414287232060982712516170014992260479 52 Pedersen 2016 5086604849025807410297361835193847716992749221941487440688527436565128498945359503626078722256911496663068464273988581107042054886533973095285481318414998=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*3453814583309279540561360985396451093869499391411837028544263149 5086612753535347133482066844975479084640791981216106251057320910963765601775666198155213427357186158776962779905499897690898910459874447605444968711357802=2*7*11*37*41*97*163*298829524019448877061*1335292229583705727835662181691319716002358294584381352877199*3451145033008399086825025194546597524760869523820542812490101741 52 Pedersen 2016 12990313029923219553620088435096898454301669950953974317563519469650292225530761691098342176100938710030896673216495363441927955001331669265398586903647838=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8820447806771187268746087932601595367248682977027996304385606569 12990333216679674339815175732996108872543218224337861180611481509285080776139373813672724879658330809580025466995320332640849028238123128367262116316228002=2*7*11*37*41*97*163*298829524019448877061*1334663992030590976312757886464872613795351633237252805149609*8817778884707859929761275046046968245242260116098049216879172751 52 Pedersen 2016 19486537596427079813476627387111446241975285310069099205943799973079146433051816192359520429762199230628224132874342270370306697481412305141593375373344178=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*13231396919230777908957109240237986444563147020089757236691044239 19486567878221498468318741263272639489718898171380412127163100851636453469337457860883007546654380162008687365435255377143006597324127866472487854873690702=2*7*11*37*41*97*163*298829524019448877061*1334529320754213062460037388491210021788096690581773575476111*13228728131838726947886149074181332985148731414102465628414283919 52 Pedersen 2016 19598728732536084451269761601231592966287017488084045407164938613635040864871735259263190706448557997333878853395382109459997444904621269089734872557834586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*13307574918802639395570658189291705714174976321765536826108186843 19598759188673887734436886859270256954669921340269841134379467426950937112496260754845050420936251926980937474285340496152597325382299667989217888841739942=2*7*11*37*41*97*163*298829524019448877061*1334527779416828937142693561220859728897209841262696459849947*13304906132951925818625015367062322605053451602627564294947052687 52 Pedersen 2016 24512289557542831903343250488765252675442866943648835444619130943647816626521987134107652759005720173456338835990333423666430577748734980688014562474935858=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*16643892273321674799218467013228430296782230007307827453133344079 24512327649282292491284809429510027330180662820966228273790474723526659552879758172687331256828613312193634572419611895545104572044878751543212391374961102=2*7*11*37*41*97*163*298829524019448877061*1334474118343604129016436921098753886019713230618735724932239*16641223541132034447080950447639169293503582784780498882707127631 52 Pedersen 2016 38036982267075426411065982016717829082407296648320300347433365305423745834049973386806540909869775172479958787333501218670032837148636147636084382679628178=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*25827184921640260902697487470077748747288596155315769095741886239 38037041375989548168092895917086054196235721187366076705895594874360762250857347446626870832571752051140153170340546022705438609121145353525425650225710702=2*7*11*37*41*97*163*298829524019448877061*1334398024604536175429389147541917148799683762839283728142111*25824516265544359618513557952262044580747168962256219977312459919 52 Pedersen 2016 50338344687182193206924513599967676732969797233854615520054382849632276901369010417713366072642677453337378482062387847280401504038880230786300704595412658=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*34179833924692772846346241389440320432089142243172860703726622479 50338422912233598548899052186049231368322186750124968876120310393387973479859610498792316537409765988831490601800606217716465454685480237228705712114465102=2*7*11*37*41*97*163*298829524019448877061*1334364326453022411838005526913166672850958497178529854594831*34177165302295023075925903255245245016023663775378972339170743439 52 Pedersen 2016 64694745956291111487912901320111988426792390462549515776561615608811173193851226861671633493490584349898784449206323192267166289276367289357241443672340658=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*43927858302207508176273247324710094146225034774217912485743486479 64694846490980115177902231365525843917591087900053133577446825309990950445666051779608504034092952887214789838316202016275975996403968580075108518414305102=2*7*11*37*41*97*163*298829524019448877061*1334341205392242092578480963704481218709144559356542235106831*43925189702930819186172168715078227415613698120361846108807095439 52 Pedersen 2016 67119419066661945588777554030835477783995876111707331028025919545437108378035891748240688786780008735088978444259584360343769691123274797526706533567399138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*45574216058886902422434030394884635188380398803562450394043809719 67119523369257500012152656347572657401224368220337080385196015747320515499019767074409233256605070884573604088361661943719890802921220892409788001923529502=2*7*11*37*41*97*163*298829524019448877061*1334338276837232365378239565577824587739361264646099050053559*45571547462538768442060152026650895114400031933001094460292471951 52 Pedersen 2016 72048801031149190217428765898507034577025757576934353476193004986804601988833366503201724887787768543979962503128996611709847866691510711234772230975535538=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*48921275997877144920828004850962152316742336062487093540877547919 72048912993932221301456194759544353273803736283136296870581674430842364035575168272603274897227995223667727429318363748371655007493542532510393595458471502=2*7*11*37*41*97*163*298829524019448877061*1334332930813582844452577822048376987372435810823300550774159*48918607406875034589975052144471941690362336117379560405625489551 52 Pedersen 2016 98118642015543514115852042658970480031475974680794880692844577886185723704570645710980465773955914621628273539383013268736163144087636048358437076504976098=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*66622748718664509265902968984787577629848461726079511680393686199 98118794490478142680079163789928860996362669741286045065648554408976571511918952381465974830099172133484757565351755250241270957781302567145938769368278302=2*7*11*37*41*97*163*298829524019448877061*1334313590594315961871787659528176060547005439944799307701391*66620080147002618201932597068459887204395287211342857046384700599 52 Pedersen 2016 134849906816505768355597706484598167015175216007115429044748313675421586233633650955815983566099750234164963818147458705978487842388773262376073188892845586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*91563348941867458232510179446660863920594889103596911003282117343 134850116371288673498912571993244010264427165046813099999720670845379871551345664298471451887514875542146919800304360972203187477231314542668812610467944942=2*7*11*37*41*97*163*298829524019448877061*1334299032033285911855466812901692941876809242488519709070047*91560680384764128198589823851179799978260384785057712648871763087 52 Pedersen 2016 205419053094501247522950227526218550018269966696057750680954158561969164702988329117064602417949736577416469584752762183754210007872728356937992087700071378=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*139479936485188527413553774619276732321486252082227533680120067839 205419372312705338483250737540014867172698347728002923639517055231129184186133658711127882868304975518520044886989040135064288786409405970256093368468806702=2*7*11*37*41*97*163*298829524019448877061*1334285672397849231107377592400813509001419614220957853054719*139477267941444832816314167113016169258584623153316602887565728911 52 Pedersen 2016 374812035892640110184743657774903222032214620597169510985439092300341215601487351438111000506897683845012549886590670448361593778061244064295278753096785586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*254498101187036711423404924350409094692769366900926042907003587343 374812618345061961640984785389828492820715251171567424864259043290998835891765678775669191784659381559015636733581830320123936874796129337111386040808644942=2*7*11*37*41*97*163*298829524019448877061*1334274135205700283634871037612693222821646383405943273084047*254495432654830208975112789350703319750153917745245927129029219087 52 Pedersen 2016 990157154478207655261133551508373064368068506754984485697359750675318274383665299607677645867705835552133931368671987538217564888678853563334618180677989298=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*672318633235255248042413953125679097688798671946202895254712902799 990158693167943874329856215354541652564323661945812773714251920067203307340282150150861819503499582182295528774567429287883159491850709920017053463324724302=2*7*11*37*41*97*163*298829524019448877061*1334265440594121450985899608942725406451652791979384073922191*672315964711743357172954467097401992713999592784114206035937696399 52 Pedersen 2016 1282545366891314212032007086795669076891637465851703419385805200795816934667387178780583049490178016812051970781513681050334944578259614898854017441210923058=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*870850798007898694455983117645702036163937018238358108870857497679 1282547359948056109682316385698702932155754887758374182866468598921570425965509637244619498946428280275293130463600895760277689518713615204560749059075377102=2*7*11*37*41*97*163*298829524019448877061*1334264233260643482337291486981464958591822468721591634857039*870848129485594137064492280225546892449585798906592677444521356431 52 Pedersen 2016 1375108757853621522911405052505599209499030306117733410618124385128157406931812412523882060217865264274070648261419074190142890001462862835739670186785937586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*933701520459320110598036153167151326765039500394386239075193763343 1375110894752519162385245049681424496910289558712116083988863068600390593880098082330593732070253885009244427722469888442760884135979858535806609412611204942=2*7*11*37*41*97*163*298829524019448877061*1334263958045075169109079557049688812297313759181346345247887*933698851937290768774858543958926114826834575571330347894147231247 52 Pedersen 2016 1558302386077915286162227354951436793918325726762419391953384573051307499297924081295292082207465303766558705646598489801899243051956100227689234482393369586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1058090350240659015226608017360016955294401156270493845390702079343 1558304807657031832903037939743160412354086043635096814343139902806598358309775541365164442871915407276138005369167284270014350201160941204773950896007164942=2*7*11*37*41*97*163*298829524019448877061*1334263509749190062752380034539324347221875416736945540578447*1058087681719077969288536764851314253720661306885780398610460216687 52 Pedersen 2016 1611199456444401365310643864030015253986411595957488011117631368658011316639047925699936522851717669126116962352937518370177103345773014366665811930093299058=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1094007563876999773958155971442549649232462373676138806251686485679 1611201960224791599622774729143223477150067745667622895232715434313107082944346094480525385524045256860756149342944266520942081416687250965201584150935657102=2*7*11*37*41*97*163*298829524019448877061*1334263399271781950972637551635702416315750926487676131360431*1094004895355529205428196498676329851280653430415915608740853841039 52 Pedersen 2016 1683615590234177208380057231240070942216528744937946331535080780998217152662139093898026263592750548643307586634710186796693706726053010845861676168657213938=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1143178259532257016718003259902226922950795278248249862297916907119 1683618206548180208146737650212362951356763258343797071793412083008429388650077251220583269910411230055478433293269647509578159587255564068084030314631423502=2*7*11*37*41*97*163*298829524019448877061*1334263259285375099492875832314590629295780529335395599727759*1143175591010926434594895266897726446110773354958423817067615895151 52 Pedersen 2016 2745610732825191377044833328877294819806887621393003721522924054010141108869130005217213131174234494459986170560265938372614111061355179797619917039999322398=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1864275026383912426317666757592751280891604007116839405241848811849 2745614999464113435167230638190968402890995256026482602201828916458185064091589354489963975840973426209479294039309249629276420741502822128841184513145304802=2*7*11*37*41*97*163*298829524019448877061*1334262054574728897745002579728337965088291821365301971688591*1864272357863786554840760512461503390304246291315721330105175839049 52 Pedersen 2016 6383011750327031480718767497142314595462124128902875137136644438456208219072893928495320471924358710931550834869707601701075046024702160249632898132338386738=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*4334077390135036214856119124054078548017624426232828424016424333519 6383021669433934838529944897423049146141303255926934870005856899355389668580246734599562693957093199908427508567160348152245841493804347260279209252810807502=2*7*11*37*41*97*163*298829524019448877061*1334260966227246310117448029414771595190894892719344988618959*4334074721615998690861800506477380970996636607828638994836734430351 52 Pedersen 2016 7812011819353153813258358068265954045192218567632615710075142848928957842852643421733448137295836777206271914977983497682679252718973991914805205886112721586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*5304371215671266232713587509191445334419918032964244182841092355343 7812023959105264169094852126256969925345829457897586816632875840506926399101315079047451511527450993350652829235077083812126081331701691838157239388390724942=2*7*11*37*41*97*163*298829524019448877061*1334260815953155077074958391198177411775923445062611442441487*5304368547152378982810501934104385973993113629531502410394948629647 52 Pedersen 2016 8426327556452298387753287324973175561109618629872209872669201491095124996708711887582392812556040641529633578600537389929714991797610311745587982066595738418=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*5721492795688587941791005745125579489438949869980684294632422513359 8426340650842079336828249178451954063724361662796920021816336335922573050285729077576763453778436628336342078307208158929262133439503794980215931043374877902=2*7*11*37*41*97*163*298829524019448877061*1334260767016902319219644860179349708776544791905156087294671*5721490127169749628140678025352051147839848465926595679641633934479 52 Pedersen 2016 9069159150023371582373488101466061485763095236731579225805721794801575067631145345437596561581051531856880687529656816361735475467791286688417894688605295538=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*6157976697698970307018499795331871265487715962028662819481620427919 9069173243364047014863193011467026035152271630165850078199173196506930734643744097466636450138152221632558786530554544462202935246208263293456101205991271502=2*7*11*37*41*97*163*298829524019448877061*1334260722907405260479612557625240736949845437320304977814159*6157974029180176102865230815590645477997586384673928789341941329551 52 Pedersen 2016 9496120273075131250563722314211421794477697089550753737376324222668125194145730799760485421053104774904521489741934443527750061231272061502219646858542553786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*6447884130470104675454262590367046417404539759943320466377238806443 9496135029907147257685873676129987455234637267870735215847450181481915878774139468667147445635944410775434391516766374232068697569396731830585238575189615942=2*7*11*37*41*97*163*298829524019448877061*1334260696910878903183364564777579708446037954477102841249707*6447881461951336467827350906873813477575438686396069279439696272527 52 Pedersen 2016 11600576695873024475623728202250414350221601979935140412402785626489375857717641045971771376623163508093791994378252070289349306995513573087414112023807611378=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*7876814133631308679387632668253671018094883806647051397527123337839 11600594722999542152867047633601183819457675443322681056236001751731425161125521651130369228619505632571876976338772801868485304127577372326014935350067506702=2*7*11*37*41*97*163*298829524019448877061*1334260596737042017388507428577801336141646325053029523864719*7876811465112640645597606779617574278044155037491429634662898188911 52 Pedersen 2016 13626325574564575697136572416849409088489304816659269811034008986741796593507377359147781856251746848598435368120089087851796348458312510402348848445201158786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*9252301561298761540309140246354600119125852709113596127695196483943 13626346749675222664008883899999264204219168337366122889804574896968966627550509595143997980247844768740726617435890955909702823398844096515254520939245890942=2*7*11*37*41*97*163*298829524019448877061*1334260529537340813278549136199642671566349123952687104728207*9252298892780160706220318467676795757233788515255175465173390471527 52 Pedersen 2016 17203976314358365749622087824530336614637234059792510651626242065316088435525591223748679315179813048479903155105784432378194747052118265612134846511827774186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*11681533370302671938461807658758664279182186815988314621549898786643 17204003049085936353458309785879511711103808836029465402447539329345363954672205098539811764424422514142946160319970445463377583535579316934123168581150577942=2*7*11*37*41*97*163*298829524019448877061*1334260449511481188646080477714351836986374877796731464099667*11681530701784151130232610512549518402580957202104140114983733402767 52 Pedersen 2016 18841336809918225118054802087246553379419564504027367683013565362870028099926618920816702729202815169312275312436177547021343973432895762194016608927861481138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*12793304330608784603946124739406229335615622734468039175593484200719 18841366089080058115510727702280262289957953163887392811684160614947403331031024539110554557903844950162592319828987282043093310348393498732945913944175239502=2*7*11*37*41*97*163*298829524019448877061*1334260423023814004147122538772212131352232275888406896759951*12793301662090290283384112092155022401154098754726466577351886156559 52 Pedersen 2016 37112748814023053466660084629473719678658340610683968818791306233237761495724350595650721512961552312656538324138871541576500849043921567452358354396475921238=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*25199628609860717275589915984961675467132906819162865268666251888269 37112806486691906833522663234765982848722724144990332484569348391968317381725196703771429381291576247756895068157551348910626722754202030311055632997958905002=2*7*11*37*41*97*163*298829524019448877061*1334260286005964346141628023108797135107679319431104115678351*25199625941342359972877561343204984196086379083974249127727434925709 52 Pedersen 2016 44999884649225620757169483328508095139806152021728666533023762820459751958740048987737892258025651671616997777658424360088187755033415803429913684066169899186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*30555009178371167518119967647602948229622099999517917033077754224143 44999954578388206361059775450040082545553426387050821164961999649047631635286145881786994854177321988973736036222818842250056385001174905662927490799992452942=2*7*11*37*41*97*163*298829524019448877061*1334260261241747918283522192404479808490423113840228915697167*30555006509852834979624040863952087662892898881585506483014137242767 52 Pedersen 2016 82587759388786440466086805433533014709128361881933107894012226016623561402987323850219451585193585514894460697581837953543289678309500690770804776731369761798=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*56077249215546696077813414853055276598964573998475649850261020226549 82587887728956618625979736329469195183373012609489253751762529483051969361262984624452368400657789255523047560959517809289817137479898443118329148023150711802=2*7*11*37*41*97*163*298829524019448877061*1334260208207008203183076580056432526112985906334747436162191*56077246547028416574057203169850028380282655257980446805678882780149 52 Pedersen 2016 333520004794403550105873787360066884028949374012516043114148190010221305807139169570364582523652279092002219917861032482232974185433269332840222916730197275058=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*226460731779648300919589661578328351210632812631240824274397106273679 333520523079613003872421489956736294541907884684426997309144641930009000823202250834810275512071207921013318234597364378893905579773553068070657992019343937102=2*7*11*37*41*97*163*298829524019448877061*1334260160436638036692412600963249884172575222902640886225039*226460729111130069186203616385787082085133535831156304661921518764431 52 Pedersen 2016 466979398180377508631115568411412054196233613367195123831435756155734853461142839474416943360693440855421187848354426285239954910696052945073070799537811774898=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*317079919398353812621711592453408892286051074247673417211331295475599 466980123859532333865254415828676294048003343897752565545201412804640434581175092732571357806378064257767213073376044638189083031581002887999701500361736692302=2*7*11*37*41*97*163*298829524019448877061*1334260155943298702430027609170256701005210185103433362342799*317079916729835585381664881523252614953544980614953935398063231848591 52 Pedersen 2016 494381346938679014221049137617530026654501260941431563534371490321788955308213726983977420672307315157254665550963782359767068774347895930228034458362253299186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*335685895887886147507152110013668953239753959553202671450417690924143 494382115200061434445865741186475007645280041819168313064646663594009397339324013715740783814810399749167631070626764864967133938618343937319071388278219452942=2*7*11*37*41*97*163*298829524019448877061*1334260155320910530934497251834948223526473575766000366253167*335685893219367920889493570579043033242556343399219798974582623386767 52 Pedersen 2016 1450166804291906018907364804702201390804799711859305471898152804333459043204496506641658606681177978046365541429248458524845531364451821294775169334080297944498=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*984666079940071090512492013596301971895631638307618109591854469440399 1450169057829910039533371098815475657080506750962535993339627563226975556365065382660564992083766401964809012469388210740617771249180308242796522371325096180302=2*7*11*37*41*97*163*298829524019448877061*1334260148330220326064901942316084464788120578953464852430991*984666077271552870885523679031271361417297780891988233928554915725199 52 Pedersen 2016 1689675372406671872963130130089112049786190732111891095485333390829790603599501331244303358525450150859091436306752649897586848829146906810999271207029950910378=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1147292863410529196103177314026580066649427522057293421543471587812339 1689677998137487739627138089629472086785395824398719079083525136116118242618833153540634439458933628348007481481477008158281137708218086021823988146916474351702=2*7*11*37*41*97*163*298829524019448877061*1334260147817666486329394426292359567979570892005178695263219*1147292860742010976988762819197056972194818561450213232828458191264911 52 Pedersen 2016 5330538075865786428844092525337464311444209328427590664849020537015870984327335096722421229532752757261692703652212771640992310993130074955197713217219729847218=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*3619445718657834622970807816275190156086661689627817460163766212207759 5330546359443992942876457646351708336086224765728828602246826924034690675181588294744477118959633866707000389609644421338205252506506398700734903215093371341902=2*7*11*37*41*97*163*298829524019448877061*1334260145697989681890192491774655445911143329878545353737871*3619445715989316405976070125884868996149756851089164833575386157185679 52 Pedersen 2016 8281207151918879969510836189358485146624935474947998370645110796759642787838329596993944995772350738381601245957487868364216967108280055985032811031131206834018=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*5622955758826120304477008939292980033103031149451441276320363467991159 8281220020793674775601127907405810204739252857900102604355504296839355058011157913299521956294926545025522879916111838125784229317263051064724102820750164895902=2*7*11*37*41*97*163*298829524019448877061*1334260145347483667186101758682043663305691775843953979893879*5622955756157602087832777263606749606258738093518240203766574786813071 52 Pedersen 2016 10521541447333906270981769845709399409633632043045111077484855846786828321734249022109969847136127026978746406244338081467675463381712813858242158720966658488818=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*7144147101706680561225227062035781176815350228153014594342514324008559 10521557797655429471689635349231182633501501998942525387784663344297709288856388240941192242796490117830705936263226205511672140234955606555581710152943237989902=2*7*11*37*41*97*163*298829524019448877061*1334260145212655858481538065660207141382537902006687306780271*7144147099038162344715823195054114442992893694142967395625992315944079 52 Pedersen 2016 29444180146239658811085835919569931433264944229711587743115395953252416990342613992677715632011574816507755190607770770058255248839695776993694607140498935915098=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*19992655573028202815917355334645030060360188806461391720298706918980699 29444225902064961390735743489675804450521866649359136631006250869094439566617376259720639329388289555332404270267570493334716789256895351045712206752120739323302=2*7*11*37*41*97*163*298829524019448877061*1334260144892366486185130031101854428257853145962509398604891*19992655570359684599728240839959771361096084985576029277626362819091599 52 Pedersen 2016 136201219658300780916556350271867702447423476125382333498740202673053782594335311151663526061272389940755054554584818169949999512406963580004340840072206513705138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*92480892989052209433709801103812103400085322353382292188777858677512719 136201431313004078178565148642108745633315485686895278872429589556474815993817319151965008388378325574159819118261510277693285599066302864318210989939215877959502=2*7*11*37*41*97*163*298829524019448877061*1334260144752776030033824848116191177363282372783047175852559*92480892986383691217660277065278149883806881783391500519284976800375951 52 Pedersen 2016 750720035014654291082763939216004509763959575976786439426671736149198201801903690587666421259747444266353234903178217935399030679406357310330541271716782884893618=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*509740363537901168319703512370130032957196568672822860066131645023650959 750721201622608823104043341574782711167323156610628733332598619832848751245302270746129970862479498474346573458346290019919411185264460582378978436785480272333902=2*7*11*37*41*97*163*298829524019448877061*1334260144721261136157319854489988492126563450837905428387471*509740363535232650103685503225472584434544330788068787318583904893979279 52 Pedersen 2016 784035008644580379077475028517419305453647557204293786390336276422546003983773652492832558466531337956387710343857251397176784538375033489195453047299641069367858=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*532361295413047701841230693818098685276803492665000738406686734360160079 784036227023516673877517281118718954684939359396016141769143626030977404867157819413204773055577579776003595102423821443156216896183139135459389079965229255921102=2*7*11*37*41*97*163*298829524019448877061*1334260144720964334938795482976090460597815233666619275455631*532361295410379183625212981474659761125665152811775413876310280383420239 52 Pedersen 2016 1190457162209091617543157786746152469810288917742305753945213595207135823800720337228406201360154267482879211429906197634082180965911419237529778753352053142884018=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*808322727964646827187884828889826385345310951910976255813005331969766159 1190459012162110302642303472270330521755029396915712053344240848083405969968910080429724495530237883339755634455816544548272522821814711857754215312904544977645902=2*7*11*37*41*97*163*298829524019448877061*1334260144718681009513382132698594230693863657364952084468879*808322727961978308971869399871812874544450108287654882858930545184013071 52 Pedersen 2016 1249432390659132138152018867715447383872274962575089690358686239857549012956752001134255866026548407815368022021672199565229631890895448601299825836742604275220978=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*848367022758601015280058802237637676535958342710352931939664675720022639 1249434332258793274744313903373906904656392629551235343722293624054762373594905693082625067003826225361632355840708245727984812151761437415917750606303053030194702=2*7*11*37*41*97*163*298829524019448877061*1334260144718473095976490350946382178005617436470909913459311*848367022755932497064043581133161057516849711139719805206483931105279119 52 Pedersen 2016 7957228227227180154831786443892867462150728522389119409426540915696315376066888164424109954885188792468029988101353448876505726376006925763204316993480670365231686=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*5402973438988683591100632028707054417295397438893201527275928246756327893 7957240592643464440832047478893615249765448779326567283928106276673899022621980029163509285522292363554278006427751788411261154189814110656743776483124732890240442=2*7*11*37*41*97*163*298829524019448877061*1334260144714935201071374285691892754113823981285829853748367*5402973438986015072884620345497482914341543296746460193997932582201295317 52 Pedersen 2016 27447795664064918672023431737762014465011328580219538343903071954758464325030625903908987575344327503507237632466480864407788554833425736287008139865188474867144098=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*18637106627694258179057354479897961124676155687682536348853795607750170199 27447838317537934671391361020100665231941256808610750678345216537862129934751375810022812715434660082584291296553146368246434905433192127305767021353912954460318302=2*7*11*37*41*97*163*298829524019448877061*1334260144714467256014588156312203884884692775871640740992599*18637106627691589660841343264633446407851681234405024146781214132307893391 52 Pedersen 2016 38329755380727261401953077667026283323472572538919897062452770393340351623195909427108370609749079370204836000016160822280446385067143826727794671582255333840459186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*26025978435102435181481946918890353816496892939195962241897333588257504143 38329814944606519733057200017277918140911492889457803960182564542247051326924267433498576077759389556930661514403538591736140927295205678150420310111075670449252942=2*7*11*37*41*97*163*298829524019448877061*1334260144714413018065182171366752362755818319876295088813967*26025978435099766663265935757863788505657363937440578914280747458467405967 52 Pedersen 2016 114419192709745615860419250959702118866840150183828411467564932437329876515398159292493172754071137538382522189118013105634781832733016604252990743688094705801518258=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*77690854336184589650930355029176998682022378944336401860976501110041355279 114419370515497614627678508983747436075207197003559507860351538668311802689851115311904752986154913117351548524467253124775658832251238162763459007267313775176033102=2*7*11*37*41*97*163*298829524019448877061*1334260144714322041588614273159225574962087465288028394013839*77690854336181921132714343959126909939081057469368812264214503246946057231 52 Pedersen 2016 205624153698131893048284179568205511464656088498206121749766107714851446170305750310514197683031851135637152413378253623329145307071741194589821652374262251736558898=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*139619200193868538080113103819591774452381724161480675921454194790143067599 205624473235059322290291223476250030193946161240595912501221235749953652952124083221805224014978780942782877122404455454020032475858803919692458423491521991206212302=2*7*11*37*41*97*163*298829524019448877061*1334260144714301714034675495605990438931760972298864688944591*139619200193865869561897092769869239648217955921649116651185186090752838799 52 Pedersen 2016 342446334869825731219761552637791757184614368799675889680599295891540636647565472135459994065344039574207567784044572592920962656867438341196938052518872283001099186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*232521727257964240314534988138973466160592308802322313402037263808029824143 342446867026421567477964228600649222043054329711552426472619301749347453288853580693303560119078361843227058277754047304133861231022160480606750106475040429228452942=2*7*11*37*41*97*163*298829524019448877061*1334260144714291525082434250356167662218716972299494963674767*232521727257961571796318977099439883597673790385267467175768254478364865167 52 Pedersen 2016 2927909639216102941840184527118951248503831789588554680517075390002585161956743453323536166175009797625455205225778722473551618015355348815030170094875602689321489378=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1988056338300612702333774698400073054035277475395094892703525024598599926839 2927914189144859264175805505747599120381148113694109663997001454676476356999313268990611213696639882640358341062715472663711756993088252847225813991394270987869596702=2*7*11*37*41*97*163*298829524019448877061*1334260144714278003489617996031090493932246620241178630560911*1988056338300610033815558687374061064288613282055208332947608073585268081719 52 Pedersen 2016 5576240988175038306439626756030275975287465522136584112664750074722504765574348182276228741972342798861280535544342092588759866252902756039436720235108864999785625058=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*3786278473881150713339299783025704634343320227919748079538508181132936698679 5576249653571976947504731999128740619856957128949171093052574647441325045238015613188399865044671220395567646687659481181306105844757988660891301653727255630613187102=2*7*11*37*41*97*163*298829524019448877061*1334260144714277152914282985602256464668246990315624538250039*3786278473881148044821083772000543219931666463413890783782221155673697164431 52 Pedersen 2016 7062167820030063435865965460297261886452042868449446687316137924333155609412220309574104323096473014534420555345218281932940762301623905656128053016753623026436322738=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*4795225682071374177489095599413315342620261305931535602125558683349404101519 7062178794535565911649077136131135814128726897974076876450423879716320079543375955143217532941170410072974948157888132584848154151016796696375557481547693737102887502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276955054501870743165613952696501725985244962959*4795225682071371508970879588388351787989722400516529021919760247529457854351 52 Pedersen 2016 8073505070918181393220295291119056951721770256344074420853299986979422852995337492557498432262638377472332951088548374910555027833374387377682186919774925916280484786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*5481925641953312998647555976188029734408732374769735265157572375371365196943 8073517617026980133228164328687065229682449363375108891831404511975328548141224240212607669717826942150165338494548621662417467217581690188432372931649907425408420942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276862043244512495133156170756765672640070813327*5481925641953310330129339965163159191035551717387186466891509992896593099407 52 Pedersen 2016 15934261351576771490546691626176315129038887865147847051051497163975732064610535983653546312089075854443818654634833120457160839685692427607020220076511401147880129218=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*10819394441633786107489492117471977152591533655184928740718745121696315698759 15934286113185860528318736488767590535022521432483136416376790130288168749118206162424168039935639727215327675983132041201880733621518950361859010674584222666234051902=2*7*11*37*41*97*163*298829524019448877061*1334260144714276541630383271393620198568943877881678178753679*10819394441633783438971276106447427022079594099315337544265570530183435660871 52 Pedersen 2016 33497214906081427726323809124145971813690359180182458762091016984850426499388072010271691263483777509714277761577877214195837282355249868577478100311652526288907311218=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*22744674056021219463008505670728747146730415178964127247829428291489365139759 33497266960263468226109527854869096811142731080437456618589877019388818163066417006106940610850319409616010870392464631892481882266678923529197134137674653666066261902=2*7*11*37*41*97*163*298829524019448877061*1334260144714276369087685357080814252336718620233278984421679*22744674056021216794490289659704369558916389935900482283601511348375679433871 52 Pedersen 2016 35302697842800697787738705128090198859474653328533944984862638799333476893556751296035145328254647318734853843018383630719937669236490585154088639723943825576866865586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*23970600480785936243970255022270236770766707586275251183742849731746412627343 35302752702676815317743822438222034956130256153986667812290371909938007546037671768428323038532772211586372737344689815769816129023950416216877487079666065242531044942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276361081669230996320589961277729116592430332047*23970600480785933575452039011245867188968808427705268594955823905319281011087 52 Pedersen 2016 44730902565961914063273069014536045514522105144920432578676689622514605239454209927055894843606524069613982210861414176872006103297583340152229810650417603829632591938=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*30372369820803805670093702315638789099687673757528158035803092166744636746119 44730972077130276353395943596032029787624087375055553007322764446042125804605445443980204345523866749399053255700356845222044627510295460117815991679614142300716013502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276329773828587159731809174048669253961200314759*30372369820803803001575486304614450825730418435546956234245126202948735147151 52 Pedersen 2016 73261269944608386176939595386409698071594096954521554936878784705927100319694698535359148303238088669143730276527834877645794682787569840133204128099402510681842108098=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*49744544747742106443122187663340540786823577257399467921896680164278114352199 73261383791550375449266753805958525684268179329340318173361005354916666101354261316697563533625398107587223728088346242278603684824276393476476100644624388849517738302=2*7*11*37*41*97*163*298829524019448877061*1334260144714276284121290514137230216644724489681737590709391*49744544747742103774603971652316248165404394957919858649662893772705822358599 52 Pedersen 2016 2456918268908820601595703200436302934090924197633940903790153430988496750443976572105213818248402838716954333265990882526491126698822752417345843564412138524847819108418=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1668252282026875678269387308187570478128210355683330421331929039058618388948359 2456922086923876091787211691325812129177243944670132780534568561767544194235188258967447440451914087994548614736600319418681270175187296529266610905666216087578662227902=2*7*11*37*41*97*163*298829524019448877061*1334260144714276214679921066012060903665163511984984028814479*1668252282026875675600869092176546254948160621509020125039256230363799658849671 52 Pedersen 2016 11251615461116760595692137819798045968223777801641043807586696863717970543107985953082073129394679885584683423959523246335282478004709780343045026153792138532886430219698=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*7639868776682335609390428836010607620018023822315298651399697915498022178137999 11251632945962623298772209215007851285354854503122731395311062001617604285539787168264607754045329358620403860389263580476561013838893004173412393002484570508009717236302=2*7*11*37*41*97*163*298829524019448877061*1334260144714276213011694751248224921365160805807404799193999*7639868776682335606721910619999583398506200402904824337407027812980782677659791 52 Pedersen 2016 17855872594579240782270369109952244863967853228788936291892616433424909000586684221123903243611202056942062271790548557254444066419641957482816515015347273446650704843698=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*12124172212174406148459977416272824534683509931219277039578466815750486902649999 17855900342344096345023452423965749996603099687814424927254197907734895267290074099597654168672090225655551044229221224873909206004954610136524950384417936118413691956302=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212839322369852748853741705231048446779449999*12124172212174406145791459200261800313344058893204278793209252287992205421915791 52 Pedersen 2016 31392155019036861418932444834922387009064069109444485825795512897843752178322254487269291020222516184760520725344933486732628065630477897520383909845873503025289152954086=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*21315334299463097981033285333163179389089780687638904194601822057344106424409093 31392203801986625635414133946639024716971561385509215501898972407914662698862850515410934403760041109944912001535750522461680308657866257740789405792146602358629298012442=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212712692294435075733666544077231858434235397*21315334299463097978364767117152155167876959725041579068307768683402413288889487 52 Pedersen 2016 43803387342286569903483625724767405341599007434656160576609017675886923512915689859074097438065315700494995886824203968459211853924557644889151351455968741775611859332786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*29742585180389914756458767020959961740315890018139982303516213499227135709020943 43803455412109840253864202187451435683877523990351337174905583573268408720269938613109697005194347867124568503941113606862006769744896176606862667513383288064996145860942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212665363466882449194961643820417501991635727*29742585180389914753790248804948937519150397883095283715927060382099799016101007 52 Pedersen 2016 61119832872374654081689697640835520000961331665959000013762777044549849644434062586132948106664025716204229027443058252340461573187037937184156840863480935613781085420786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*41500485366867634164729892975136192453516475938119219942893479635167954923464943 61119927851701011327683946392914696981778283875539797969262396002585525431317737495651214906719958655481117333328427028870326305981313314904223428762039038205100785500942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212631447159363357237692763203542331957034127*41500485366867634162061374759125168232384900110593613312573207134915788265146607 52 Pedersen 2016 253178743904968984561908901751528436577538587160142986412158274702368720991191199610806927501924374905779372458825973767433080676951505610569175739616889262681013921016786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*171908859413441480043857036377131368232573947758643622926222344057977835632562943 253179137341034071324632828243238641525855228531356258589266257364497855571017591912178175257825964082360808963858251209339311281120880389282313723530427171296387884880942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212566364583914337139378996952709244878838927*171908859413441480041188518161120344011507454506567036394215837808558756052439807 52 Pedersen 2016 713750469680997950062076532273839440222015691826032865894549867334747350832713706997700725771858415675892662749646992711900855808510398695499692804135320840627495102001586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*484637956789627407650700981679669010878953052986685076405002353267774548870995343 713751578838788663033481554132682200335132942094950202356068180486579984075227570010148259716161096616615685642384262278263724988693161776909154448095766397796265489124942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212552999758412128072432748786434973004437647*484637956789627407648032463463657986657899924560110698939942095184629741165273487 52 Pedersen 2016 16830078354867116988535559150940843941519327415491620090964760720943624997470406275102940685771884807285276313201922775044969738365137528615437669622385062121295970875825586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*11427655928769586713002665527819329250982162353756782268893744311765513604105107343 16830104508562727099579474892295319584948593469511310457079770648892132738891434383596961619491082762601329706639968182279680850829847396402830430758583618586423178239844942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545964610758202074096757717253124808115087*11427655928769586712999997009603318226761116260477861817427020044751550644595708047 52 Pedersen 2016 31213892907671421847217000643473719806776821942270893156942127473394278640758353142848087713993861799839818332309354382008731038704998076138931174450153250603986498333025586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*21194293979218175743376763960332011600932175297697846791202048007367131446243707343 31213941413604472227714069912382643317289908779218537219726630422320564978651725730800085068344826475373137375608479601284471831215488565257099389812804758693685671505844942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545821035479310007082958283850596269395087*21194293979218175743374095442116000576711129347994205231802337539786571015273028047 52 Pedersen 2016 219206590322327426165413667752422328365482437910107483633200476963527096884052082758842508156202934883542963765228730290967077112648614096646624577472249836086435798549369778=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*148841701072525366454888435998027388925992416635887890716701051179660502460966737039 219206930966162715411791481227120139004609552598136973801135594246392979628661848683486621898928731568297240858187641174271372718480221917949572431734260293996516635912858702=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545676963638941033934131903718653798642319*148841701072525366454885767479811377901771370830256089526274489538460073972466810511 52 Pedersen 2016 542721341972005170829297341480348230844523548523014589147151849780270824796601261507823336991173889784329641452894086226368773012297670425145087744625409701132354274853708786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*368508846511852130910324914920287026392840055843618813453258384724972233937194008943 542722185353032861765278902215907916581381039415718126218008813454548408449147384774795455787410008274909422570735292929925153137525020143109319241355458561952003379366140942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545662704173374097378995678917006081188207*368508846511852130910322246402071015368619010052246477829768378219996607096411536527 52 Pedersen 2016 4540549232331397420172058188242609754802786592221489359002226972439758483967792013976470943389594696446197444760836721054069766856418533602544445561686161655890163306425615538=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*3083041757777471334971328928969593520451767549374425119651491626277263831510126587919 4540556288278495300237432286368606838030636370012056613375640897189069320222465152558969452672090283530340910047330671685724729412353739975170316326873524128732656367580871502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545654197133436887632585652238570760209551*3083041757777471334971326260451377509427546503591559823965211366182314883104665094159 52 Pedersen 2016 12447457158880638563955827223500538481235368048065189709281603678778593896471411503793326373456789985269412800022515375073613063718490403003596908982939321524246596405621580786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*8451847614758824557679688144521109197929401917788617350161294869534375957458539544943 12447476502047009451135330595115807151505416065296374139493107051211187898153072590152678330860356958925274248374641382080832373562857675084822384827781485452660098820610300942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653463536820257869095957716880517898607*8451847614758824557679685476002893186905180872006485651091644372929121530743320362127 52 Pedersen 2016 19227942201824107539668224991464014308958126884335925091636171894857732931571926851601829806683872013848714247499753910638649610253464492183074901699131829402250297159918608738=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*13055810143460802630640943417023150433793940260483925995827173419624429667579412294519 19227972081765065145897853442540299309415698987359769914686148337597048125320667665895936214726261558598309965299170753339979971822142551354570403559043496937234623633044217502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653314981920236931488503206943212706959*13055810143460802630640940748504934422769719214701942851657543860626629750801498303351 52 Pedersen 2016 116291284902016661689053119309076422926746250000674778934825282562700180313899513630281827744566799718196754876723054572660820344460116721819213796206306697472109086356246215218=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*78962008574989580926107547886570466163318326524419973166900073624704396077559530791759 116291465616972546400371337089361615161521470090184801099784925037116239195419667072837998657595949428752071039441042700346110986510610201411457398766444481571358545616264381902=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653087359553919723120130380161593289871*78962008574989580926107545218052250152294105478638217645096761274074968987563236217679 52 Pedersen 2016 258030821780096806905994968528874092030614002588590745006323625356186318010472783940980754910882881631867727222052306460701497051293144074193181807966000062878081786936688601138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*175203429725440124916227762647768440620358526164886269448431571945214180502478283760719 258031222756219946098944480666319902426505278933654317879430282975832821911869593513726479665299567704389292368851719704144019638234500879516266306159823205579911028662418839502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653062590357214829591576696379263636559*175203429725440124916227759979250224609334305119104538695824964488113307096264318839951 52 Pedersen 2016 11030297680446434707805262330413248759831161376401675876900015896647167879197628905994053140370169544596762092639514821133579126132340643504689717764630161685509786696867895038258=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*7489593573258343844419418484258483338671067402147650107052375578359295799800583894115279 11030314821367703198696191479603582222436090794364551937456972568294977253110553886102786311073630401839771383757595133307696718733096924710650170105477792674357013105108511633102=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042743673338428566833888241233693839*7489593573258343844419418481589965122660043181101868396146452847303219669202507959137231 52 Pedersen 2016 137666451778170016215889987980999810421150025523044277992328819180949201782053900350531651061871032843458263658696700925009002928694255162175583451973661957350262721166571879159638=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*93475788447563549277605154989997863502858316604777393075637885849351216413145437245027469 137666665709822597563408678923607741974701977094434903728822506521070141546990027278670148901536549543434297885757162982761745043511344867866301059744667187757688543408324993657002=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042306370770309752822325111221820559*93475788447563549277605154987329345286847292383731611365169265686413954294110491321922701 52 Pedersen 2016 528964590475679546218324673110697268254462101778321971605485425908778171860560778861402324679659963315188054067461487958406659306931214833924388780211044871088483705733824952068786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*359167985496066524414199684438016425506360203726940653289894928659463862753236272876188943 528965412478916615354151919067509430681015423916966280403783093036657762354725618285304100097649365966424536180888292808242339784257766551465064866949331333533032104086021231940942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042278193901525085210792735393504527*359167985496066524414199684435347907290349179505894871579454485365311268245733702781400207 52 Pedersen 2016 766687756331075693518850095437025575620883468346782996816976326418975584634661521369285459989149107730653825952716592253615931480105060577165160364219054835918395732012741947697586=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*520582477360726818627989213763548807478300717066409534047802747023235190055186986802643343 766688947752635610567719211118007137138212645225879014011490884580248060615817466134247246932500507178551672284455386567065864679357010372645898230663848535717567153366834604004942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042275120169203187072219161996847247*520582477360726818627989213760880289262289692845363752337365377461404493686257990104511887 52 Pedersen 2016 2437314363359464179413199780649955291248068296469862033486781839454031545012178102268527051364694883651449937653001449593892750658084281515560548091082178675223298501722568159426286=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1654941192039385793080679186562083071926048314450986160359255219690195404765835940851180193 2437318150910337168697821441517136703532105114663715108089184685357277941084285383414671369767825123621167327959798702979287244682642685073927582779448430443523610585651746356103442=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042270432154279730823699543794295457*1654941192039385793080679186559414553710037290229940378648822538143288164645426562355600527 52 Pedersen 2016 105382311845005861634325796732315928907862724143163665053908542073368464594361132266731781095264623807330203434549122052412545350188762179677904334153528067316576205490861452453298286=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*71554794656957798547361969145852546062015782437654381566381249811836748767351701353009716193 105382475607577168204106294195556176391535533085497447301105285258212791003658185568302657396822779118529310434886499638836443962920361927987114146694342368374020460869976751130263442=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268330478859594893672282167614607*71554794656957798547361969145849877543799771413433335784670819231965261663161319236140817377 52 Pedersen 2016 1171496311814096021878537565113779891996447998895075079961847773757339799337625222746967453889790727571117415270069832996234187388508166581275458364608894762635354006858585695262392498=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*795448273677378277206225408697269970545273165279872022014004081927096768441634983274186064399 1171498132302230510751732529494998863630380591602801219531714732529400814478673043105170100401544176762334952300082850921469889566920720967704247871294108672515993277761544275801620302=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268285195914316894422188312142991*795448273677378277206225408697267302027057154255650976232293651392508226615443851251172637199 52 Pedersen 2016 122354680912551300575996967186929955862268917281149638520930618708119452147001948510218584654505063876232752017884162770257089019329661341696450463264366893417197436606996851669348892786=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*83079066256317952409745345573846172678653398850954590131758958319662716226920222089514946800943 122354871049935903643492009166146479552054822596492758766189672077519694894724244610672169130186876280374240062011030280659849413116042424316186550973690776507313632517370653824047660942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280762681758430137443427913007*83079066256317952409745345573846170010135182839930369085977247889132560917652495242236817603727 52 Pedersen 2016 2204945770142609167384816495571172025136570404667163325896489926867094681584955660823178256200949313311563263145029179689175215434734203457607245352918510381596217381994133433395848459186=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*1497162465408174713260293015670492185606826613531945210160286141656884838196525939842746661504143 2204949196596086874143224754478092673858271156676920245423689624673016333550618917572404861992900709523316502300499654879867097944412464039566680948775778159087160804922336659517689252942=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280722203187486044108268557967*1497162465408174713260293015670492182938308397520920989114504431226354723365829157088803691661967 52 Pedersen 2016 11737873012889806544268180095836102191153610518310002082406590825976735445300605501989501368723353021027816016929609455995441338890756058507987894574212940145187964676457289973460014144178=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*7970038599856168762718083408298158258796432117910417345448278449053687797561908299244198751444239 11737891253372792797178974828806346248534815071236741593738834932874757614196572239367877866457094676256572351438759294054433201278440009386965488756107565242339126888144538938377797690702=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280720271759026877119475483919*7970038599856168762718083408298158256127913901899393124402496738623157684662639975657244574676111 52 Pedersen 2016 112222342744354982994984409918126454729551734534621928829502299299865089960430374475817846194900928046299900173463945910801731629710483268666008664046978297577655882747569403479032934704938=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*76199188937945168083222600707198794649349712536753061920877066177485885742896592354930854556077619 112222517136234266232438921676981452835768370428150794911880297706114896220606486339725930074072185528107263757272205072565194042917743675907563935109206579078111867005370866192320502028502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280719871749923735194490654259*76199188937945168083222600707198794646681194320742037699831284467055355630397333134485825364139151 52 Pedersen 2016 114401312748830676389711608307654942888033673349206586009453377585103237821787731859460898467975710742220305171575898949495961517178709701362947470042145420435312981679304679431170110960718=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*77678713807956051299809036287317457365726948214564368908406700853926082816655146482859877763377009 114401490526797477403879261067628374552226491992394034125228168799941897728235853052555279470904941508945790658561103363995853400460925356347513589711799958662636989750453833740453729684402=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280719870859943052227053001871*77678713807956051299809036287317457363058429998553344687360919143495552704156777243097816009090929 52 Pedersen 2016 31698045793086395929323755547777999971362978808609759845641584008936190762168749277381805862202105327840170436901651223791495913334429528493863504197283068226335931117732419969074073775714738=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*21523034729842388449127111527624386725243743098858516934888279149651360078477433829527766246491397519 31698095051385949121636143800789956529203768580115587613603725590103938063811380181334517322979886784359697482551609319154554403427782313017778362167992654777003021105430640835083306772647502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280719825189164696841644382351*21523034729842388449127111527624386725241074580642505910667233367940929548364981131066359570145730959 52 Pedersen 2016 3338320635030705356881529504050080677893741279412551254613456524146332333164967224616814528859440792457569252906731506389116392802784611290498043059018958986550567144373016723452190060459185552138=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*2266726202496262896454226114555821838416441515660496225512183930779382043542394811568504543953273808161219 3338325822732146586150749556880986790016174568051517277036015735109658228163041873642757637538113303623639811567988624587022775271949691491323570256762012038889711958299978597994624602828875744502=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280719825023738968634752453059*2266726202496262896454226114555821838416441512991978009501159709733600333111864699115971508274804354423951 52 Pedersen 2016 420372141917910695989805043489109425171477288503005700788881407464409508497086339772130059698091066048174318609878200108900638266220264415434086595204987433356951927577338841955820866625361922664150535688478=2*7*11*37*41*97*163*298829524019448877061*718121*8190097*25404257*8929901504100872123202272567886868354201*285433501769083803687788179358279421849397934145301938086600582026013611676736806258598430290204535100770136810818889 420372795170070957738261596589133468392509271567455335111098655958070508983594108340278245482689597564275253343058586516708374450972620844361808659961134852400038656608700081088474535548175023720761881407202=2*7*11*37*41*97*163*298829524019448877061*1334260144714276212545653042268280719825023737397868288855369*285433501769083803687788179358279421849397934145301938083932063810002587455691024548167900177752002066662433820679311 42 Pedersen 2016 49426155333205448979719332328166947033016825062302592191264647244359180451556912340441114540850056639521417261007507699450747607297108819427629043825803611700116822740028652341115979680481140074892462717605376816567104888129055272135305327226656517830361585946458978917823006371611500508872704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*45057074488009678364703346909855763639506094778051258825864822231518654940483977600318620207364450795614553441233917714043573324746749 49426155333205448979719332487871468301227680415953759464249954572235737257547987989744834632103427140792728524041644389563637485604845375182744290883597355633235067672758265246373055090715374335268641644519802394213126987219431992538441179363226949040295829376780242671219845012608734300471296=2^88*4290596688195509276523450038396965093254924043523620187577302831913611947764214186977312136812054077344486536755148864325438301798399*37221983997609801024372356573134552080678939216522037444601516397238036980050308521704831650384864728504280315649031804388398134722559 42 Pedersen 2016 157576047117172855096340461230483310464692101363792375956819123332604960872145053801251168694604018672672331312949092536820720691829379211065591141390158885530866915637361279197506151290554314204067246321980697664210460697755499323231067416024474678956681393625040604321810687872695646713544704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*143646934393756479848939077438089956472240951445731074081433677808806711069705282292107180061943514553816596189645815232490171435978749 157576047117172855096340461739638979129019417539635613191021487357221745334917782050088301761951648058491425174096938743220312357985753001661454009403594348799172982370155784031949946980370856374612830369337179645679962653617026046646213942029292691970088739107718300579437529031256699930935296=2^88*3733667594677232131000253007779606167123586421997267259905518646024306701683043093176842184166025621692927863253144947717115691007999*136368772996874879654131284131986103839545133505728205627842156160415398355352784307293861457609956942357881737562933239443318856744959 42 Pedersen 2016 222414041129477823049546911945381385322716315443360773197597784442909511541789750236790477506128121818238444079156358179693540485332678196935189407711421093097775113075449982448370704951449665004743986414618812264671176816929724678612768141887813056013033114232605076579305662326968222245453824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*838180852392938234391925151785464438822985858474426332660604143959814304036779116068205748784342652298843330590643789032381463591882749 222414041129477823049546912664039911814418490971254927629077448226843687413124003718088141032062138444639925928973986567691129000599024090578930489470072275367656691237896760886389847653142843867448407213239896917694726986980282492456868146507758113022325108282986081035649694499844677148082176=2^88*859162234739390360361584524274944156093044301315852948034127639717340552928644054427924079768032625790955494803305494754113125089279*836464287457528707663232759261060093984974434831997475303191295686023604237424713093704098833438779674494924942438925671437392077619199 42 Pedersen 2016 32743591690410912802499965143595017401188587290027733315084060181033066281250601093939749491242248043880728583316050907209934214637423468186587022360084051608177326826975407369358459543403796721653810456472424204789820155138527053333649798241231905986725615800577729220793016556447492338429722624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*123396218395662684348963588540499305944300756667312222466560122320949837602241588034101340194590220313597509666881111948097153301353111549 32743591690410912802499965249395268306111734801501491147001112574451477430737236651350319399304507073990666077910083818002085659543006643913393789400286054713088207221680942550298801188201594350516288018707904330667345355729830308775023394370706526891370832725921679940040955676200647771161624576=2^88*857414616022569831647210539615701742957959403735904135678059344513821278191678102404030357500802374397217210396889891303869271019519*123394503578345991642763610521959560841875880328567373558015065540971250421716970597078862438361583671224554999517313500339659473692917759 42 Pedersen 2016 166146444919825241630676677661081942956108639382441230591543816019339752195996360140992917935027554947488654103743813580320263780254212377918763995515535331451181170275089799806990737670019146624143180119026846953439307245621292354189872833038845460089544249847069588163771853546400523385258901504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*151459742199314345291658172510087216588306578850914960776422261678147068586979208619715546729214912058440253018269464165264721193474199549 166146444919825241630676678197930060465049719176474585165961679350990206807374407211993920732022600241170416102518918703607020514776323262756999664487903925403571828612854042992581198163053902538725827845989194651254211641194621623389328154906130104797009161757643617159832348596798766756602576896=2^88*3544659711881011048966932019757814401292748344135774372729459597918449258610254822111771150475030027372291758443002784241542055854079*151452653045800259912545398037769134527439713871052819400855846215546783131707928910001798481644269496423114939922191425435149914530119679 42 Pedersen 2016 7943764255760593898403948462689055766140602777997067492992676735668796063559113507690997323148184708862890735799460257772324606771718459111305283220691408704649259143489836684787631606082523629848257893903275171883435714259166825767358606469744614887815986931109564538922899795592930403021051735834624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*29936559136686198225508270081111363342516056451599177031099990037766721821995868610968423093753586500150429569658566877926339535257871849623549 7943764255760593898403948488356742418706595209462424909136403386849669156784694485874827194771277983776263012068359507207930958057456112340816590499386913904017310098705328162322065413346264998250021879178799632598554079822296821249361148719421303258532140611396161047639573019002014346024070808600576=2^88*857402700719249520435100487916274665215748595366616528499786314592593742528762915839474630301857910883362425943607563053238551838719*29936559134971392824118884192345454854470381104465049094620369099888214873329915622013901257840385998712731660217754298581174106014674908610559 42 Pedersen 2016 26374552633220046406848859484639286082262482302709021627730026432392234022737270125267708763481427905498086182290148596507144863676292023950367547607109283268557844657345550040863051264121665754459109848113494973202920689103090404556928501910811915541690539737886878471488462825483916761776099168354304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*24043144253717910301605345072043830352914775906590401143564845562587458555212123845148818503052987197688186883114964699414560934134451594596349 26374552633220046406848859569860061875071181662118835921070888014286144169021968838767894894608324791564656337026957781512966345500611155064288440972319080869965951925378798500880739935619882146420976885199515755827255108509888366537319484545729190438676060206298156173552702927262131550798654782570496=2^88*3544493803249442384108124187162558489348956032140698372323825242339635967093213442720461557943852851332245374175920610384601143050239*24043144246628922696151534624128165867427970951669213593418545996577630310505481865386150168696049219576802042016932736408903278420113563320319 42 Pedersen 2016 4895076270122300052643487199145307414106458608443709138316567476535622074011797854691657205705667611493257178653643834096010579870436756945872656953215753132894317514031094717606876484593716556459066896382319416133012783423838871355695269030843540793691950872709393215639670272555228885782037369091784704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*4462370472485729506508994539929231358593345669002103297724339664437094171471808875665803326828390660433892796494942042522272573209383366249418749 4895076270122300052643487214962151896971904391167206310426174202703896398389988157570497880500429956508915785000783141628570934399089560556882139611283423410905569572748140918012765119873452379083774338027878558985544607981022292864523136224310930588408588513002232548483075223620201725206988064917815296=2^88*3544493802209998898984206737023869035273495859855142697253622585354555466299441418808205639697543248348261139535926383387250524159999*4462370472478640518904580172966439611557997553501257570346478920546154545884087314186834430517945978374027721256827994793906909780666378837032959 42 Pedersen 2016 6345507515784027230825092572296343019479897584632664948354118937825626198919065926724903519459628218480678066556366246662090160798579483272630614127890461677201676677042512657470979339206906210948511191239765216698699448149425495020666433969687450898613715493800013984403887119802901810279966463307546624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*23913431325810014315536502012513085485139374438101115208713868684749085212967232053971174057023867287553598900800453296444455428918747032131735549 6345507515784027230825092592799783620519243568818815833253072855609263826276807519620628777635922003736674404894932506171619541151055390577996642740402566313492050837868908390295240894647143515222122923284261178662363223092592458209599328405014220519422404314083587779333685916188869485000584422884376576=2^88*857402700670197851719042888202320069311547373970320644946645745367066738328302838761884399492382391995739054353127807023365142609919*23913431325808299510135161678293035634251042717349885281998785359694759846587791627986419995265031677282970678409900107236700743245533708599951359 42 Pedersen 2016 9805537528785201627211070073297156327039923882646320524381486563916245526197198496840286408204390094825882941347312471740673632033634684489546219203131216745199736703524222777986199932949253202834881671498504933630232201579862479117976721032725400591374657022844041648671501917395525631753114806548168704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*8938765960067167886898168107358858053311317412928193662543036132760408007270052712642116161263490996972562652387950058654568755935939126578122749 9805537528785201627211070104980556871853378253537990669428059898891091642978125732144864846602422170484666865449313753313933229716819272306443039700198180459853641282130770639937226659431738817383612241300041143019108633529994327519678798868827315109096951020953117434135424632339763117138233062951223296=2^88*3544493802207179063976916199503029542055089736431003122872051634510815472144912004267069023660471350008251739901560251713928833269759*8938765960060078899293756560231073596813490136920566341288599528443849952633174891157301794367587451528734649048176020325837458638895460856627199 42 Pedersen 2016 9997074835200205587111982109012191713371819911225327806139047995942212807435092831728874769270879042207244631924153177902049862998519924231082612308061452556512540002393960652496097478216624359628086209875503006464725640283910464575824484639819454552018809944893660070579060267781723224165768534765338624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*37674585040816184752599729902148082977180232398547041380360006217768528411684294661739178574890526218040541608141088712739610323869076526885927549 9997074835200205587111982141314482673994336519425912286667480478194716956164997035091965551768626134803487478420536203277298927668098810211693532656841396240178131979561606459113971640641811604982103869934540835854017371198784268649775008570263610086668390037899602440522842516562389797035475996115992576=2^88*857402700670175394076695850244527441385575801759012519743509651277586186076972690138872661704652497951646093167094052707914387292159*37674585040814469947198389590385675473329858470423737425217134200839406181398943716306675843280313619507701115644579616493041671950178654109461119 42 Pedersen 2016 20288639731885383163457604476566473297814603983826350035818472726423455279444052310923604858613928829749366030159124213984596703074932527336872117263996378617487428391585504662998230462123170273208784338485290704062403762620882507259122878982691530732774619644426905323706668260424584884099576501060501504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*18495202499511648557497225564493497668581722213829072288350888724641796330900402058275005930879162944756587017161889492708589646331524793243799549 20288639731885383163457604542122603927848379047231082298840346556938895190230472225323449007528016628209032320018903159146740802460652967531231308060641389822844848004692459710900581408823684520144276082027625620318989188443816049199101738142686818941107753450942645176171908594839627018609166378541776896=2^88*3544493802205726625446884796950285878639941591391258678308931697172812560256171661894408199084392198567670183070778324987691485102079*18495202499504559569892815469804243243486447681484860115241491864769801396200862239702080304325632060137335092973556035936689130961207364870471679 42 Pedersen 2016 112342327160123286779254560591927565465597458747206128297280948189878079112821579701370319695283988823873888352513974176757420783335669307658656918834892333903324734688480561257149211984725875011324561397791644630165777823668822437121875139595989899363218311562998962570082725005161490037171234018116501504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*102411700219972424986685769110985785616357801816692271988733082927541476347637476292022808105472834534117233863669412268797988028890479969179799549 112342327160123286779254560954925202168501436608617783961153339276423472869023680528901489296898078355654435034470220096271735589648836907256376312373746696561291778974143906787539760341941576306548201666871926041110431753332540011333433050891283013578797796201569552672763664129973960071241307514413776896=2^88*3544493802204613415389183446081893260212338714331140192693801761029023686136995564189332479264096741387621279039553656893311371182079*102411700219965335999081360129506588892613395676966487418500746186155096542874080262324001655017008725217802234938258860930118738188256920920391679 42 Pedersen 2016 1313308133341006727977826588064036840236414991753741333363458891433665819213745778743183506532738696481389338036407379153450679655695287509086566200116196383568691344038490763965226178772833336138135336667022207419576070008768394522791020868590933545767668352314083847450294178610607273516262338329600589824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*4949281641879441380556184398235134163393479346058974044797779294725011897324325871129628132925044666019280699991724687215356369946791262305078218749 1313308133341006727977826592307564286360974731269768854481836742803577837166816891209436920852491546095961135293594341125966017618476201791218164648521100687172935170891830998891825514022642228841807667372235027311073016435700355181601798902265900169909279711918367879754112002623904038347753799812095410176=2^88*857402700670136665399936134909634305520699605357891416273143040953030041012427925425388969773001994627937902052106713644981005844479*4949281641879439665750783057962100432649344307023986605718832823829186245460650844740340694738199166904439791149731501827300916282211427365683199999 42 Pedersen 2016 6855403294586329078720648319445641694173711752941743002317169855151574274103627047714350759389977284200120572670672779488004634739832705006251176515504665732331970982081026408857764537231256061272408633210432881706403091823752386392209391640830931009933617983702410986564619592755654620877703605531866824704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*6249412174731880236259726095244934173140513682819125129857981337527877803258246821185851941576515074080304661202065341741235244832132348593523658749 6855403294586329078720648341596644414931382528255861960870793733345820742060558465266490575490172159639853356343069263015064224390132824424074771486433203587911855928842840915930225865610817880962855398936251398017544872332627810734308548438345484453613212207708278961473070351173946740527482686650026295296=2^88*3544493802204372084485313705067966091440367910709368146628757858212120158082465665612745753248873862870337777638791770061352688680959*6249412174731873147272121686504785880286510290606568117258552622558537488497386242059681189655957824858131244796212705616868776303316957503946751999 42 Pedersen 2016 7244511091189791079042387813209070345890688681854981856897291345333662577112689076876419460530148118248423551040573995176051581380435004630823525584131377927037320236739856500611176128824421937124044468234671187077387938893879810164630714877747065698003431483708850172044021825528115416553644924633689882624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*27301381022291802146277389931953004894382383723398016041152986417848663329078225939918431541302641120255648992619864639232169659370098776389447771549 7244511091189791079042387836617348166428088358633281592378897577301853692700018391840880973426147654973550543001896698538046355230411391866359643780251155244862225264291875286923485299647636083159223651332536457787291707336258730900547087242525281034485648487561764001907169879863542318399776660563297304576=2^88*857402700670136422184449363840217088294401393448670656882444477232999453741023480293933447279077706038455483877273009164765385195519*27301381022291800431471988591680214379125019753780245828372251856173597067913114633559731374520240752596330577702160043326532380539223421665673401759 42 Pedersen 2016 19009778081258314102683444307056808433708430328478630285863297978314262350025459108153930590567041707835595790906210593454197691047036059088406420310082454065954093271561440837752598474178383059448128960386785405608981747090309345874282433985928076709414205265793819370858246837359312078538773403337690735181824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*71639505829013557300623765533413510348924429119894127562957849266355360038325536368540132961816588664010702021830746474907669767025435527670903819210749 19009778081258314102683444368480714206178630959907054702604737865952608153698231925258516128214746709721502103163050447979022760771520491850692002115506160804636484125916830465427375957168215711985558411248312581577842432741536338389818854799178681449174779223624817975172239429398042769272465431736160853426176=2^88*857402700670136368351331298883211694134100540539179461104622647836264426166439435562121261835406989069674178755632721097869859225599*71639505829013557298908960132073237612242289820881515186905369384703176167842193086630509289224390308374854888859499487280545434868244940383075570810879 42 Pedersen 2016 45564253303410392591306499140607612410823951822557047703713802868230046046277318847455502012403198701843259787269907843414884084689030917917093608288149331405369420735772321573990707276664048831820299104411931789612931137967240307073874600708558683088219047708362354665346030805753705578660130279285893632098304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*41536549651537701752679363077836030689596183109434787889044890047818905707593365392844681709089238070970142771081421811349834358518872757574308783460349 45564253303410392591306499287833655215653339683784110277753676019063575329793191706218646538378763062299482359343390509350757907550344234805753694860072573361740369085481665913640023349910848264790423914503968987251274033202115746000987047705761174261677649103926264805959322097986108211907050303637469576298496=2^88*3544493802204368064412474345909808225637085661866409444964037715588668476784077332321496865474233019041818663242728148508470558064639*41536549651537701745590375473427294561376168465200733197835572867946895068943324674889007219635705847012169485439656802542229106446407563736101337169919 42 Pedersen 2016 55246368993055702685650539093217160256674217632144364900126360050015316005744626968826896512976134812530712377171372746647102016479957405113910106705477698062992811745137109101301307627657033504015794430582461952707629820426315586635247845394033329514312142852871010586569985615448236418915980779170958309064704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*50362803785384851359801722581646466533369641935838028963826732555394823526275172575695221777999349180287257052101049756558092747815398979503411121098749 55246368993055702685650539271727806135605510159191006491735471266048151457296279350058214977979746077961934144909485286570057119858926836990362398967886929359967770578834466709219298574175142600844832863016560920472699048740846951167066273979583118674860105923250741992132508742838346180560969561646156581175296=2^88*3544493802204368064306457580841013562010889569721472136806071581710746506101927507190253785593419357597971544890722730978997960703999*50362803785384851352712734977237730405255644056672768936243611467667750195783097991617469259227966781460526846340098409194334614094939203194676272168959 42 Pedersen 2016 5929056607026466050679467496777029620395638868235140963713675108611395118550718923489394416831290465606619627675925800182100491779777366553254725605696148950917342462493905670986245790115184225024047396034480770046636149948138387509907969887251666405982616357934125269917362087775515819134054827602406701482901504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*5404950949258713344057367152451766909081451097170277359234271684445288016962543166793903041687559378643207165605365028440405179785123894250980185218199549 5929056607026466050679467515934844761261764171215902663909148512624321128006265307041403472189397571753201698564356059025219953702593040670977837163737996373247274251446942033641556497411487517158255925264723303489701053991047382074709284176938108902311345780544459786898045687692207361594954367597179876090576896=2^88*3544493802204368063812189172063501363708120899504313870512233308160363013498443213846085972994219497108225760934961445068853036974079*5404950949258713344050278164847358172953831367699889611404991332027778101898344930483375672661391480537724603212203276953531167435359195760581595292999679 42 Pedersen 2016 4497969707440644705996569461249140165379566043289765794725548823104580340751226127237797345444615192551277163699767243893051200237135781069514530141386950458418546279475261543865807924612402086884705535011200050031828845282977227598252056849493962255631254469962132228112996799468339942826799144661534608598136520704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*4100366593086185597834970412594577731529583358460931705629734014409117637216077322285612684021439582143451074812963884040300521850458502473921191902399434749 4497969707440644705996569475782864141339390928167627292489029587135409649020812179472082419096790415194597563737392170719924731374377647949018304925939311153062103978177000278013424572449531496340786775237303063942315923013253536562524419505812133993924391952468399134471610182238776208297074742815389102515521847296=2^88*3544493802204368063807546437734723836867631661859544986267353462692205020720792843303840275009076929486081502669025019813058890956799*4100366593086185597834963323606973322793455743374195646659431574545937772069897368929147624810406191895716134496268707431381269982367003711856049106620252159 42 Pedersen 2016 13064810069372852149966591631750092381079025651308408628359004422985343818560905074235884057340576814774369471921154287103577935070843486749531700304070351648802178780048045478880371840086105006674998407292477729474874629181500238020515092882338148124660143593822711239077951358478035870325112266794014991381644181504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*11909931421915733603101190475866227428618542050670011450843798768112656358144552073489721030784386047545119544243501056288853855115840675842914831502153879549 13064810069372852149966591673964770490738399998561210184456209259663036554830616896452420121183011895136256871362840121147008679138894231059212911184303387162304716797772762596435525133300257863983139926663226125926536470316896655239640015240307024991976577310982045532389722576151334447597241131943114081727881936896=2^88*3544493802204368063807542419518291535689209212317137879311870809710088386557966480880036955784092071009820051908602453089527403642879*11909931421915733603101183386878623019882414435587293608305797506671926035405479075615908953689986820123747027730125104664793079509199937503416412237862010879 42 Pedersen 2016 224486123576876584603458923264200013906601037872157111209136227433223794488180199832599922686163931401560573054372915924738568454013772349776195023834380339203675323698893623895796425479924196530601057124942629827213747568266392305307060893574325993170162912909453643240959433405956611408034419212475299301714038882304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*204642419045946519751241491703867134792880875516898613051566866395577424068648824315591093025631517702353470643007633084857900437724183980597802117274304564349 224486123576876584603458923989553799883067605307214561071783769264397334366293472571416101026210007833110764470682806874100463687263265498886808711270979269864866036821087885678506863095438813730084937155848570706515653048690515939579988300729665373265542050435837973625923962210886408806054458552436212284421094506496=2^88*3544493802204368063807540432561406308030916230635813358610950918066982790963656324734292044283281248076093990620980866241407478971519*204642419045946519751241484614879530384144747901817882165914092792429675427234272018637172591642714069242254272239168634044662595843604529879890546129937367039 42 Pedersen 2016 2498121691488644019852823843212886549513365255985103694014990698633776311092598697325945943119667269956608216397922116408699614096198541669615344632079759972657094899208053694239618225014134033672320703807686754573661833408984636349330464753933194373716841830754757189422695993893856224527048675621197675171394621538304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*2277297402047734921556493348557579758274284645935394555939688119456270897774927917170606326622066071484614599708845201119239578533032230231438408277702562225349 2498121691488644019852823851284753076847670654351487829791782001244082066668848566280673606303630783642228529296998472216367489363604287107993245381128433487070024276425472949316813415494069725735355783115549925557392551339657839667286779207257253480590695825240533223017035441242946552357294373973699083183404137578496=2^88*3544493802204368063807540320810760522894627978953897207246008340656141731782895693415173672136545206230210997707423165983051659345919*2277297402047734921556493341468592153865548518320313936804681130989411400815429516238594983598918327032264014657195108815162382537034643694278196964914014653639 42 Pedersen 2016 6176849195583856360793906221653952587594191558339466984670821685682149101324351893302092999777697263365251248281236254491406517654670964898026602292791972270576392199657682721913816718392617291746156038534327392149429903768758581189302865500155963279123519798915635759592950874551662167219507864145079823036210556698624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*23277832179862909567802064792075096337813029733009963184970284716235152377235641847821994009264547021121460764818052275408118955285514106446009678048009704131299 6176849195583856360793906241612428764354857771256136533907844723660641753002583431215799565324382691123706424143606472559601899722791760242950094838673755069136600654507503391502440405425656757257576208167661327529784162040999499116224445705168194845256584881870525310858567087502204225290987484431668222387325109272576=2^88*857402700670136368330808002962980412158346712640549385012476586560502404282837628012821476504268056880447683942547966558159933276159*23277832179862909567802064790360290936472756996348347181877903622158426323482088053430796788630685370412864216731504927768010899847616269101903845299891381680869 42 Pedersen 2016 1520428795679986094569561334399391407742488269589938523578723508856580701825175659235172577964817746652377091323425499266183917119953591827203036044520891651295176741215209339536816038794928567340582255280340900577714880227174586567716149842731658676814357157892665526965282700556180911044113151433916534474124858888818786304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*1386028774417828804597732259084261816184759192267744431445114588773532270283842334663566327691599870815018529218374922868751462801307743025107848886282812904236388349 1520428795679986094569561339312161808343398642792979350472972230673383352308054799415106679024729804291000196920369241796158106047441814959992118576134820268111900335410122603192933634782746803784488084143236024846704505752192951549584662213701120379309749531569281916557773327467246601550710597695212456865252254890114154496=2^88*3544493802204368063807540309777141760259702843609276709972918045989121380710295673425891964619319102560654089450355082408395999805439*1386028774417828804597732259084254727197154783531616816364506487385306438349480719785662668770551514687625149467809860500366675950215416584429568794155074771348357119 42 Pedersen 2016 51537164605392107822113381839811629698783041661456712188348376501052655221764736724355907462353446670955763003941366295670316969131514184889806202939716547768472730078596950318654285755861737477465548121110777279729425155252914975264346440495788691331569113687230347419198932263188227131932803839431158202405091520722841370624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*194220941895100131950813052575150357738822786298094202862197412335460548154679691233043976269131541347657625752222159149433597464652620744929476199512113633212766359549 51537164605392107822113382006337189806339528221811371993002571354494825552178516178835726073887319189128606739767506412334679298404451788640761171856548147113476818405095973606341997926161272876960329214407461092768276980464681211737746783289079646052834344895314600113409465458282906308848635106137297437356581658494895128576=2^88*857402700670136368330808002899818233023450574631145653019916399254610182809207104919502839576269551133258689035588493288559041576959*194220941895100131950813052575150356024017384957821466200581409306241633212849775488893913870494508019688196517256134156204886752543071054220633762365754154695335608319 42 Pedersen 2016 79519078276312423352569934781032943044117054034724378357248263665449536607706781358197664396837803221209541210149995803503558055712906063223227608649688812257076268895832414578270666185940071233190575160254674034947541342432890204691609906478479741907274699272912773614302027608138077380841016950975683563148959748912268181504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*72489899506843119961983075192049250352953175659870266291948912913818645572838553374178791845617971521744923088736029565244602200389594438736921076555945430420297879549 79519078276312423352569935037972942568539969734132563579342560602223916053892881205909952501230027647850209867098988229476508588765592600391001174565531089285904903642643409058231861844063647962889041038749400345858113950979597118266654529134565968032688050000097782146203363266037775151729917641574178284325093476300169936896=2^88*3544493802204368063807540309777123978205182529700293670103677240784892331065068255222108473995006300690858411219600289534734898298879*72489899506843119961983075192049243263965571251134138676868304812448201795424505668283928055937728369846579354212882706659708037851303982091921027218610565948511354879 42 Pedersen 2016 85394212968028487494821473660265940270102596116237447973805819655557443596823853222663471979639251117017296211584874007414398339772709271912959139893459140015492421263736889570438827267750833388123333924646737395573354226087306479382923283777913539804078064980453578303659531419003204049791338760465747267959347713991931592704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*77845695029419380012076955069563836935692282965525933040797073448402281471155176784222988541053068581980690856041689619467874265265661046471019189928057557996293066749 85394212968028487494821473936189523830170970196641603751509221881583271814314980181533079009316299408270797880997990802083961707237679817393114365674709257274897836939808023819478344195045710107778637973360845823692056155721624821351757037662921540722335616488380639876763633167823169418912950306215099358115778828538317111296=2^88*3544493802204368063807540309777123954357272317108036632347815206006585430569290552421904834103309257854885692321791869314616391106559*77845695029419380012076955069563829846704678556789805425716465347031861541651341670585162507234860208389247617296245561086619994424413425798738038399142913643013734399 42 Pedersen 2016 783936703305298459589088640776624070594990360181205506839985225999981742365338243803687289201742760130575339288216824659374303683628557921406758889660469382321558822894582264167861033663930959807394006367567376646362013875233592771091578504265640908942952784163183651662178796062734938834521630521760630799111511014544773218304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*714639732679787103362199402771167923411358855851320087706511247652361665970792342555650598683748743416638645112003730341950334098385542547998960440130379538897102180349 783936703305298459589088643309660173887482137215760931724281134031183322030811662947237112882287942439336579193623265224516786676114022930443059880031864294426489252413966293795680373865651673382504578633701638718591087024742001165393348571774373102078495544153310210966881310066292705342390168394601518467465220462461893738496=2^88*3544493802204368063807540309777123666739533500604719890039457616077549931389567440522865201151566755187269775347562463197348673617919*714639732679787103362199402771167916322371251442583960091430639550991533659027323945329514958288124972082701052981398182608712779286797594942596262830871011811540336639 42 Pedersen 2016 4568954197732382509699673896820959616700153584529005443897980081283516106645591934243114937981901563731473284756286106272030854588992431253541716050839944157442179527674308841977378034736141747752496829243734252265243255709700451659205088662626425446946291351029506330456007096447250222858354045437415353403962728586153897754624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*17218382007502048922701132734070721463171451712777837370206879755357546257794656451540253671250502827057462250574748597212135768467036119970833189234508959832137275543549 4568954197732382509699673911584046851102494573424998325833764252843534886953655445613402951438723403768810417705021654919864964718822853079543931335176806538659088484833350079908422322981180333856581220443017784391120064710961909902618141411890775610374107046310132967566366039832111172485666806066118936718236204518522356760576=2^88*857402700670136368330808002899818225538705474892589953071179308612648590102375996650973569142169852558551131116333713054757520670719*17218382007502048922701132734070721461456646311437564633545263752328327350337571635534659308800602884371454414046613680487436328189026268854831904716617380587421365698559 42 Pedersen 2016 23402202846863677568120340662069153065635894550212709469510234142909589086473607711698845914824988984599922427376426470627707005543561202689762586607018499296418206523496964128904887067621266633285418099552476451694392520483438604257610529846430633299998300072020332909274415933071255793628185661856583036104879674370041497780224=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*88192625926155686571456267244205037944688038802057299442401437359977580464492523153869754904344681538550447405919613983179403482908278041648453016637565889503764759089149 23402202846863677568120340737685748713912866888644490391277562806739642601710166685358655877133536461338422778630385430230057030699025682674542783699439180934415599922924564039139666360059012192332074281797836015692003214981143822222937553686420871741682844444628996571258882192176004618980957133049026817634712374072437821669376=2^88*857402700670136368330808002899818225469986629814305969866355576086866746671216851302930458246783699246770826574898912702278076989439*88192625926155686571456267244205037942973233400717026705739821356948361557104157182942444525099605328390221412822638211802747153525654343844232036661109110611528292925439 42 Pedersen 2016 67102445411453216793951755037728443965205129684491461895310305937272301957829795198050812429712844044094521214551343226648991289211501038362319413623216511493756954645546673087093957270896318502693998844483860840293229620808179877283139947277778568542923917451551165077912978712222259124284903020311838817296775793675651696820224=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*252879650075150415744617890310721544286459367083789642317640233828218059926000296297789783915209609727792721994944737014194003300064155292556086470665225149170969326129149 67102445411453216793951755254548138884158149376176190192180422383125056017108760464205396085275903519546498922243519693290379519474003834084021252367083923815972038128474616376956146546243906150319532933672355341739126745490272589068163264915380990160048181071434544285292626663302168667551843818746701686521444184638137487589376=2^88*857402700670136368330808002899818225459129552856932542483466095491373516180458391789430841089726875706531883876928016893589732720639*252879650075150415744617890310721544284744561682449369580978617825188841018622787403819846963347422998227989232338519702330846587838588418292104433386739266087421204234239 42 Pedersen 2016 656521165850174849796903878364107691892244534580231626481712170317891124847797032183906177974417873918589561593876360911840008486151038977619943027296658369161988685111592163984622768604055080241768315902809585300922901202023765006977899906041010882659107226653334994173169142372700066159347684405137649986035844488008115040576077824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*2474139976108607593148475608682489376229552621317566467850387482839276691417107209976999019005951486262435442333259256760087759966186849445813201883761975319488677677583306749 656521165850174849796903880485441989243711356517730484651055589074129629121405790601776308384262202074111080357198713058365174247567158854866190746573276518136492401185890373372415853124251469804943852428716429832988403374421680401395282730768165339777175964341119957237148206536664392507111934203676460370740311171868288378445234176=2^88*857402700670136368330808002899818225453316002791092208531435808437972156040281019097665644406540646300527191210830994542399219302399*2474139976108607593148475608682489376229550906512165127577650821223273662198199838281655114909333576105992931001856790720148588574671307065168343906417362930627945319974830079 42 Pedersen 2016 12510084100574383264825768105704207300167096404067665392049429030912537653698506295682602331052487800850178193027611669922942562707384652074360108622659732422128566947984098900608803480542642662690205103346487489074764686155241126360922446257071320641313714487514029757708366642334644166592309162305445502064585001701424021323964433301504=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*11404241081890555264515468622313712764680283293542008526917670205192122868334617628194809553146612030335947752529505375756991443970962332429299207588042500218328985618670410599549 12510084100574383264825768146126469133772606650581595990412240328263084862581028712375667880088717297074137091884313380300473531564192736285973047273901061635052864960140317113800182818020396836305645880530087352336890229988678174146915292377684324690319750399126504197084931973373335054787560375308438247886096869260003459704389575376896=2^88*3544493802204368063807540309777123631579338122250989612876359282762000292368426439607567047422834431561562209960892779759352340807679*11404241081890555264515468622313712764680283286453020922508934077577042260233247531043239912890021223773585467400499070719110112726918864838932786260693701427699160529581181566079 42 Pedersen 2016 118842893073883610408167884434310759860698695769647656558722241765673545666068628645521030278603384871608998481590750420117093087361866260538507950316004573745567768721071326411255907390828500706339674400563075521810585048199293007771284570945351684200551139303452481498133818855477824364397938374447304221512082306643836521622766358626304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*108337641265072124815952944160974421634766505411294518830379106593050263300551805377284424800278393370527999891061085209025294875964765966772544695174397749862752202377950979428349 118842893073883610408167884818312857870187035245581929952597940025777251747624382695938344372619376228268608874127569305393345597499668099861143079521399052669082247450593927842153702554827541670567534373297557171475347404385617377506231996197039096778186851104543212356163006555500492436733165831054814036359845246153859408193421360234496=2^88*3544493802204368063807540309777123631579338120279628797807750990663416841989702457986880371795332797659563251272843244393211227013119*108337641265072124815952944160974421634766505404205531225970370465435182692450435280132855161993163379034245898030662354366137526341409174809679907749047909760171912655002864189439 42 Pedersen 2016 23652662268068506200386745120560795517047711022780866532656787559153651640347448500991562071086789568953354704725356100826704493913242457152302726083970351887720260963903769893878311526115589139472957091249248123598923722168296947776319904832379770492994171174216835032757958272045092518203596154158961962223491874760281268520101670104858624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*89136497500491655655254931611601669748178755177859814806794159623482773353757726308950675667480614401642421004158034972602248819658061615135076174902718720554928402649317847878197549 23652662268068506200386745196986669202246116629774337143500894139040736765963904968298342807194822498107362900577153648233452317321376144276569400629303244835924809413197332521013069557097190226575961404081515862436561875587886521141304075950658288193512315406944291303556985761117850475337426307939999352681429425358480097184976169468952576=2^88*857402700670136368330808002899818225453315408532579909154111074411904155822687046798116713038160219098347378782175019462566252380159*89136497500491655655254931611601669748178755177858100001392819350746111737754697090043303972730968817323888172449549709200000373691189772550902174685062923022744669763665323236643119 42 Pedersen 2016 2030856278767033205000134251625951025752200093336894283568185292608527689453113510077621723067029670086655657912168220123398586841988083364518297050784214941644371207174029525795572760255246537752166465361432567719128370850852510174269154594575390135675237763037034561377730814317740806369351418505886150743175313189612546261904757431388340224=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*7653405505246659306131762759587570978744767467394705272773991392575441106769739062926206581932344748145858444556621248275814016322417368759936463021096212444286733482143499152601649149 2030856278767033205000134258188001575274375319043403231515680804015444515044363800385951234306572978302068149373614855081479970024692991310774077680564304477054331781827882107802507948143787524657287635582238182979875258169081098463231770217348748252710603755775090746376538544187737689037955044176577316497065523646753602513384278065336549376=2^88*857402700670136368330808002899818225453315408532563606573149852934551336384381890376092434481350012949799196106019206657599664291839*7653405505246659306131762759587570978744767467394703557968590052302704445153736033707299210237595102577842492686134240365231206181606918941630845831084705194937225905070651594548183039 42 Pedersen 2016 2460741180218741728059121189676832813480517498030593597864970274812222547537989172536993631856584543251255852748007428526293113587839848246892442914360704993588290679919432717673350046202466504364526743904919553049310156389189672898668203024298269455296259865083558627947337240019706240212951419950705509125002637487078009909627058731901517824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*9273452923565393454397501261958733762355041113447299310648708852919583379346893183860836780949044905904624213590651596657900777063952408250192192518236632548707796817877793838156746749 2460741180218741728059121197627916394682857536478164874772859493701623182579458541115701471220786368466660807268974247715513805465056270831334057558505879831659545633779367636549262947575060185943805732248946339823104585710072835297179657297936798267056372153984411791523060423471040462152878578555678934339181801163591103173995055174098354176=2^88*857402700670136368330808002899818225453315408532563573012433654769154698476190220269037980830880899978015293820770481325801031598079*9273452923565393454397501261958733762355041113447297595843307512646846717730890154641929409254295260336641822436362754143955875114812065486340225797338097083260574489530278078735974399 42 Pedersen 2016 612110610444673272637995349590378086530625291752776572708376265436046965824957708201667638688112585156114420884922751285743618434686668895350215166112057278079922506894428790201312757695977970445608090624549828047121016551465152518115327031473037440749143113312241774707927877038739212388014340390211615646143096781947345366399548184853924020224=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*2306776094781721348370106146453454356702150588937217897714422048785063433277191876236445482950952392184608897583514616297979578953473823734420708214652653613889297281954803619947461297899 612110610444673272637995351568214140037783641202292672200752145457706145010783532574693752982039153273377375175173971144170097248420348112487774851856483243548909488583265914800693547374660885674268256499664689369821314182524081113056796538611566636485586021166112262112684637027127760549791300154070164010866190203465349842863843507584553189376=2^88*857402700670136368330808002899818225453315408532563415102738331670426599717689817677726578387405314386264773899393816535509908848639*2306776094781721348370106146453454356702150588937217895999616647444790696615575873207226575579257642539041073102055650554193732810025085982968258691407340670174369981003120894479163274989 42 Pedersen 2016 715450918316659725965225118304412621948032246999525190728313673427944286403604369233205627718071277488397018823669768104184409312031096506821036248438306506291758480906671664011237746716091997989445828844411610170241858177704111320976311611781619542384235458881993671293118179022135359649920650396056343875464968939268783587381342342631940685824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*2696220335346847711194723826763244455327902114248162118368292833052870395039306659696347248482383246384064644227317438468110468074578363067915496734201784212698201572647083102159981514749 715450918316659725965225120616159219076160214815711435492565762137841891402719059586965227900531308033827142713663005509577724405860354738942971257986216145087585264818949295835949309664287864461537103481997344442111743905529355688937224665282911615349013270593989799478310422789729879565181135993367239178819319068675482733915364949291408818176=2^88*857402700670136368330808002899818225453315408532563415010675537185798192693386433093953157417048114763392216860235976275588336844799*2696220335346847711194723826763244455327902114248162116653487431712597658377690656667128341110688496738496819837921267208953028955433009900236468181313670891855831310853240636613255495679 42 Pedersen 2016 27076567764787351727265074870024923390539175498444760152809324993922857821071755484257647143028498901134330708670899921044075018556502066852720968393746887281735481955839693059138558967611600895836736950122978908016700972565720260999026367506311086949523541023474727462607244887908382618600691635490522319243629988849831988912828001175312609050624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*102039693778832692425861356341125705522847867154545492780287550079771224089702677877062999870588491928597255157683279141719581061893587474131946705939444194745956314140072239800359590039549 27076567764787351727265074957514032412064038647182520002765113614161949901855735272841404072609370017839280324253733819459493346956452158708522082795788053342126801477643579088901263319710433907332679782540574682490044204713399246968721509191369064150606060915833185700604353952549209364838776713929154895576843045365619913599145920702530847768576=2^88*857402700670136368330808002899818225453315408532563414479773362878303227562856794156067323381949027023724551229020128804478459576319*102039693778832692425861356341125705522847867154545492778572744678430951353041061874033780963216797178951687333824785144767918587904971759902153511421655169164781609509494244805922741288959 42 Pedersen 2016 77010791970409624467056364305516746969691304652226522855800599534830910386086280523762987178236273470238626652657992852086662028075252035233053613421136489886099847608219664142406506513438767513503034822716808727272962409148580230166286583346662496822949575265672662605836553411106937112307069888757598397166219206666009396893470037491222214344704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*70203336002956936206664030072032061993853844550817059371049198441347937200706774444087614036667171285372434636073667107710397071833501123230835006698010483626115677189688816580636920778749 77010791970409624467056364554352036326242938561411063570645692936545715880050751234152653304476774318339990083320192622709525316400227595176226913687843892266929571236917504749370491297596790409444744979472584622284337071343361297615860480746833876494327641031727910091425301408424967222498688380877290706028384571064378316107596087280242100535296=2^88*3544493802204368063807540309777123631579338120047697658311404208336389256956924187643496561456974847704216285169194882731525233704959*70203336002956936206664030072032061993853844550817059363960210836939201073091693835986243939515601647319135784076259897007001802207122043950862025073503646156112803190756888519374798847999 42 Pedersen 2016 17305581064695372703634697398230962228487722726639364442554384398595489498556006269575184731423129601207218431574499454635935198077152131066844060290331490138642897800351618294091677111456804379934587803219709827051033378849619978553242430166168796983519287395736747026897198964014221134815001811032948477703581014408718744981718526335975551741722624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*65217135637211350042620083839533840715302013316179723014258176842556515254886004785608784822875376408623860701614848166839509112282847346304485239270181620092872432230848980307790945065111549 17305581064695372703634697454148310453803329152685469561727585174891528071266287905705655124640478952642677712571002336702406765635169321174496026687210809099697644293968377040615700457997597797667306452463873288845789635305958763244136549122752633840075966163498140734648351806431535693384365022009592587018859968085097067406374963240747123737624576=2^88*857402700670136368330808002899818225453315408532563414465387016663724829977526117443991270867812038724877306539732219763544041717759*65217135637211350042620083839533840715302013316179723014256462037155174982149343169605755603968004713874215133791004059188772028206444061266967522128177968055590104770907690221837442634219519 42 Pedersen 2016 1940966030410489754948267619073339264013288759813088821859061039069297498948847811886789562651171887333757633938211119760336623352979041096770605755442799680452367656606334943905434698624187646547503224096115954664728222358716390168708573324331591911470301630919571434847700275320954485706604991207456887255883443215602071049665379576033393797658312704=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*1769392145137140272003244923985924590164057196237192007612967761702914425061734936930965804673730747740869074004998180421906431937878523916085602626866090727941742277484334266506819077856480499 1940966030410489754948267625344938756120974140751132286564983731121548256985648069156127495996866897983227603502479794268867092328521343229671521966659960137830729544168515321492326834114998863505519870027617343757637643528767141017363318735578697911890550871421840019205505298026971220284484736273656595100573027306240244274739714146890902654781751296=2^88*3544493802204368063807540309777123631579338120047697657953502759328030062084641290846394512477338886582326764213804904881345300184309*1769392145137140272003244923985924590164057196237192007612960672715310016325607321850357703303633596171231020706146540916144736901803769819903119755933445857065394164131290724556607995668070399 42 Pedersen 2016 209575844071761016869323281235573018348904049345833538357840171191290004434148885573328508860168233498763737020215978866120030197994504318083153475268052267217296209649976880484091069771074631819151192960568609102467845441905544653104945896542487762013444504698050749332968281560031007594430027157398099114544780323060868220231354471263298936396825759842304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*191050150544178209212345002105851532993793754598355780985677153370143940790241948438639334340997723112465690072281215879393119367622007241467698320657734137573060327063212834317021325904550356324349 209575844071761016869323281912749092862955188439302494504655357611169031358286192442493179556865657832103305052594963863815883286336838914510366014375519710803841961190101054757908676869045453700928772777338888652990206606239652032165034128932983296986397637751498474166406319049300323979259825608126736712097936525465515042858565397988698788232349138026496=2^88*3544493802204368063807540309777123631579338120047697657953488558609446151015766151435320739202540553190688727147808526858070303703039*191050150544178209212345002105851532993793754598355780985677153363054953185833212311024253732896353015314120434227917027753627806645555077782477277585936978202987784106737518339475753716743164395519 42 Pedersen 2016 1282722392557576962344010673931435985100377683228382559040709225067949390141942623634896649363132097763368213190625996054451606071593309422832038022399395749249961742466536552662779290599472573518549459998170662260786521200101899234349079201214508117660100891752364568998563071934762377439006490146220718008934075267060824744167952648616267132851939971170304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*1169334697373810360734118773210686545113448748570991875041483557455195536118493843274666346995893585626369824886147052840763868982495394354306685210151385466446221498985995415665785836540004341092349 1282722392557576962344010678076135572644368852019112434720780369849859744504941017125540589832144788766373774754617113964884054806487926645725211686177753031010277211498645179970516829483650818985068322483343863436644024654305364540573842996715344622515878229779128649604311236779859574927987169903617926463621330319676605056984920759725145515906311699562496=2^88*3544493802204368063807540309777123631579338120047697657953488558499414555422287087385601670637350979953018973362382841009863886110719*1169334697373810360734118773210686545113448748570991875041483557448106548514085107147051266387792215529218255248093753989124377421628973786214943231129307375641338529267189853473665950200403566755839 42 Pedersen 2016 143350223794785032505527467040742929757211684643687315887699360870333047400645325346746323978931728668092986697957690690654244006460696979791505676442436357016331753223104392934183734887683005686488203302390577418669786181380481838615266940027289360349529709824989963466394302223642234900988596081523670959934256033861132040218226715778161685406005390217314304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*130678618797105677812810991377651884135278337233758740669655415952135819894663592940501813250774016434271239853045561953747464688756770237883405646061993147025203628198950966051182453236325421976856349 143350223794785032505527467503932484164179991494812920708829534570400214432254353591753016774812174065747260527681567657453600055423149057169194669785769010501064881819892988149990895567485834883531018035219604809720050604726718673721704379824449112433885101457666711215836360476204166272634268362960625368313473076306043047130700662781115117167502360362090496=2^88*3544493802204368063807540309777123631579338120047697657953488558478118656893691677098077915953451181827094592213004345645956384364319*130678618797105677812810991377651884135278337233758740669655415952128730907059184204374198170165915064174088283407508654895825197195925113213842499493258592689082645027358084870139711845349728704266239 42 Pedersen 2016 910753914240134088189169318168925748526039800587007640099963683480556311035964974714660413721549330585156535843349071237923835751546937600158716448134482901725957199337533076772286720604674746479008838961700547926161413056355905180766079549481110463945727441334018473492231222782760563781516411168049021061443875721799794956270786426152309272573059868736077246234624=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*3432231563625080156695576341516044465336309583362561257226485259873793576031357832444083065455211186088794762930961044385389339773282140620924959528081686393373778026786003668867143441953631800486825040023549 910753914240134088189169321111730360503468509972299672341319871202542384872866298815375842031509633410221805251072443796347727038568540269732217785386219913820297079406138900814671850894393632983902991178491154485495827190607434803060100203550254592403599340446593793532218373293000284732936640691507257756101461043913386310629168181614396583103712397901652427800576=2^88*857402700670136368330808002899818225453315408532563414465364472300684850332748643227646852509238718445684046893519586681546143170559*3432231563625080156695576341516044465336309583362561257226485259873793576029643027042742792718549570085765544023589349635743771949438055514550915431323178830072405303140924951864009241658554347615320507678719 42 Pedersen 2016 83699228513238499687840481145681819645170779794903311672123372232588092992774503407155428995367819062186101891216847145906306484917481233949508675891329868860330480723663443704459866376227170309203015808219388464420805479777443835568921898715024352379137402524799681922817736281614916794635804688909397214595092383983448897247297664108398375441960737662508676450620564045824=2^88*309485009821345068724785151*23384030812731256746353798481227926261464651792383*118474764497256966606507467162940622866688790274074738687*315425637444431582218289141342743517440781043249962068875749236778219387336973956793064614856663032201477454448054674825532750966908127951041964470020089199764630966891730781688999199434353478767027359253912316874749 83699228513238499687840481416128613050625709509577918358725492934135856368676231977117696041712786287720583045357014225251144351021898270319313089186342934043989638845225958184550870120055229574477376591938989257909155646251092857374469621516196744384724243145444283026823563659124049533673754957543331537510170611510473291361037600088861058565292924346565566905805938098176=2^88*857402700670136368330808002899818225453315408532563414465364472300684850332320269226948165309566209926957164576901596126853652807679*315425637444431582218289141342743517440781043249962068875749236778219387336973956791349809455322759464815838445025455918161056217262560127197879363646045103006551777591056745243592990949946160788567896937100274892799 42 Pedersen 2016 48077804685962362788603991271352928109877899099395431625425171665238795019748979860340334152827449894460747413904781281469229140902922931164577469723062427630434457803004407705462875085229949868348919687831632858728469500462475463505728196730543820950606528339637671024556140731840785330803041937380618842666536658206492431106219523704877874212572920683086881358842965026730191981127285364872709075275092066304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*43827912819673866472823327650028076624342436956941940757698596475504579138748712671661409686288598925173961905825741204662595227961535806814685340311975858024406843244988380423702725977746212896014152908775995413292580864159679029017992493107778443349 48077804685962362788603991426700693462765288157375740600020662184908299135183661910218334684064097424668711781669630768691984413346456228399827761869165406965610327867633498790629403555489293602651706293269594787363737359292979025339915561667273509421588331099497325382373779509127187389675455482852934284313977048590136474683865339364408631844734147878721607912627894661354863006243518841728046813477649514496=2^88*3544493802204368063807540309777123631579338120047697657953488558477926376987008986664330263393953738344665310137455749141902276708439*43827912819673866472823327650028076624342436956941940757698596475504579138748712671661409686288598925173961905825741197573607623552799679199604732210605760872837205191689528784211165132813823239550274607969311851806852753707780061825198021468613509119 42 Pedersen 2016 4362152975610615246082383297742894382375755723749346557531360938343176010477187512413996750183527813965754142126304188410181165509746077106671949028102904996511662561855335265429862912979380425041614964074585761524434953048137743129874669769344516165612392271650707069214153995715309233074012061284547076365509500905610218152757539853215567260645661710575832331823072424371773764831989962069840023054408224866304=2^88*309485009821345068724785151*23384027313754799643913747487242476005729167736831*489773511309164870975337004567383074375437420870093504511*3976555534719837798317929088067693454849989549455875689141593589824138969794744611702067820965828135690004144218642760936335547777464879849396678182918491045018152965284443984467374526741518936123383554791079138366527935133286601677154304966675520868349 4362152975610615246082383311837770829311697561586423622532825693796618993861787758128483588200796925306082842002376338661917084005808621314874438251283376904964057611011557201703272340112679432866617629863439692748352932867939185893663580820723365141385585609168222839184021862051648206536617936421062740732654969870756367547254217174541047188762809322112636078879060144273816738382553389579980536404677803114496=2^88*3544493802204368063807540309777123631579338120047697657953488558477926376987008986664330263393953738344665310137455748574913495613439*3976555534719837798317929088067693454849989549455875689141593589824138969794744611702067820965828135690004144218642760929246560173056143721781597574817120947866583327231145132827882965896586546466919676490272454805042207022834702709961511062025137029119 32 Pedersen 2016 2849228149134844911457797116669527280445781965=3^3*5*11*41*157*3079*3303533*38949713321*752358201618768671 2849229011687090462216773356989739178458384435=3^3*5*11*41*157*3079*290890607815376651*332795930506928927 32 Pedersen 2016 2908971200698757620993401664614810926480854065=3^3*5*11*41*157*3079*3303533*38949713321*768133763448554411 2908972081337130566535591088988974347360400335=3^3*5*11*41*157*3079*261499911631859627*377962188520231691 32 Pedersen 2016 3860439770908605243354206199779905211160989145=3^3*5*11*41*157*3079*3303533*38949713321*1019375554176062563 3860440939586864376131584961502766595900207655=3^3*5*11*41*157*3079*186173305271144203*704530585608455267 32 Pedersen 2016 6161051359722157606492055714560103279990276085=3^3*5*11*41*157*3079*3303533*38949713321*1626867796630790999 6161053224868929678942978150883947372988923915=3^3*5*11*41*157*3079*155957219349144407*1342238913985183499 32 Pedersen 2016 9326564776308318552234406141299574317624177585=3^3*5*11*41*157*3079*3303533*38949713321*2462743288744685099 9326567599756975506228436036692688885580942415=3^3*5*11*41*157*3079*144740739364973099*2189330886083248907 32 Pedersen 2016 9812515685744353606078004040929544763749471285=3^3*5*11*41*157*3079*3303533*38949713321*2591061953716921879 9812518656305851729032235953271716564577184715=3^3*5*11*41*157*3079*143792214659360279*2318598075761098507 32 Pedersen 2016 9945338037003092462591159852432487309895660695=3^3*5*11*41*157*3079*3303533*38949713321*2626134605009569133 9945341047774153084546524018042893623991520105=3^3*5*11*41*157*3079*143552265322571117*2353910676390534923 32 Pedersen 2016 10362308137163524395338370981731068510766453985=3^3*5*11*41*157*3079*3303533*38949713321*2736238414976755259 10362311274164734865755649611705001285675658015=3^3*5*11*41*157*3079*142846410927042107*2464720340753250059 32 Pedersen 2016 10394327357385415837627039543972036300031764065=3^3*5*11*41*157*3079*3303533*38949713321*2744693309313908411 10394330504079865619652401328356988869054290335=3^3*5*11*41*157*3079*142794983412565691*2473226662604879627 32 Pedersen 2016 10612111419193119131785337515487368743512264145=3^3*5*11*41*157*3079*3303533*38949713321*2802200682015047563 10612114631817751308221645318952572560380932655=3^3*5*11*41*157*3079*142454908927704203*2531074109790880267 32 Pedersen 2016 11490666987860151687971115547844605948406666145=3^3*5*11*41*157*3079*3303533*38949713321*3034189295445386363 11490670466451578702623937598407177521697090655=3^3*5*11*41*157*3079*141235321778624267*2764282310370299003 32 Pedersen 2016 12523035023944771924328669165656602651659961285=3^3*5*11*41*157*3079*3303533*38949713321*3306793144060727879 12523038815066933981096116476611297855213894715=3^3*5*11*41*157*3079*140053033780608779*3038068446983656007 32 Pedersen 2016 13712645591843894402578028594991669877373327265=3^3*5*11*41*157*3079*3303533*38949713321*3620917959850938491 13712649743099121610643527293789335496875223135=3^3*5*11*41*157*3079*138940404669692027*3353305891884783371 32 Pedersen 2016 15274947434518459878221949850517877909837448965=3^3*5*11*41*157*3079*3303533*38949713321*4033454458585598471 15274952058732289234165457681503671036096477435=3^3*5*11*41*157*3079*137772782490257927*3767010012798877451 32 Pedersen 2016 15326505116040802106474415876582021677538874545=3^3*5*11*41*157*3079*3303533*38949713321*4047068617410177323 15326509755862786248337799094720190170930834255=3^3*5*11*41*157*3079*137738770014373163*3780658184099341067 32 Pedersen 2016 16712264409668293075269033737805444594891704295=3^3*5*11*41*157*3079*3303533*38949713321*4412987847271306973 16712269469003818406761003078510066974968084505=3^3*5*11*41*157*3079*136911315963950813*4147404868010893067 32 Pedersen 2016 17285317438084725796177302507795132168037743921=3^2*7*11*13*41*157*3079*3303533*38949713321*752358201618768671 17285322670901682137448425032404417682647532239=3^2*7*11*13*41*157*3079*290890607815376651*332795930506928927 32 Pedersen 2016 17647758617572462900693303431996519620650514661=3^2*7*11*13*41*157*3079*3303533*38949713321*768133763448554411 17647763960111925436982585939866444373986428699=3^2*7*11*13*41*157*3079*261499911631859627*377962188520231691 32 Pedersen 2016 21386272010943157838630708255815356410710527765=3^3*5*11*41*157*3079*3303533*38949713321*5647191557604363191 21386278485249875768272145442069871807298662635=3^3*5*11*41*157*3079*134973052524825527*5383546841783074571 32 Pedersen 2016 23420001276845538476348850945331424947710000813=3^2*7*11*13*41*157*3079*3303533*38949713321*1019375554176062563 23420008366826977215198282099783450681794593107=3^2*7*11*13*41*157*3079*186173305271144203*704530585608455267 32 Pedersen 2016 25906423973649093419776682290832854531746235665=3^3*5*11*41*157*3079*3303533*38949713321*6840768633114309451 25906431816349994459083191345457842610564266735=3^3*5*11*41*157*3079*133805773947842827*6578291195870003531 32 Pedersen 2016 31800231613613546441834673962649035288372114385=3^3*5*11*41*157*3079*3303533*38949713321*8397068895708955019 31800241240558021023879447395368132640230509615=3^3*5*11*41*157*3079*132807227011156619*8135590005401335307 32 Pedersen 2016 35092561310515909122236387301944043488573152245=3^3*5*11*41*157*3079*3303533*38949713321*9266431094959183703 35092571934153601828614339399223359407109612555=3^3*5*11*41*157*3079*132402014437005143*9005357417225715467 32 Pedersen 2016 37377044915647756146051804668331293231941008249=3^2*7*11*13*41*157*3079*3303533*38949713321*1626867796630790999 37377056230871506718920734115362614062799471751=3^2*7*11*13*41*157*3079*155957219349144407*1342238913985183499 32 Pedersen 2016 39798786988088622463894485552361403537388809265=3^3*5*11*41*157*3079*3303533*38949713321*10509142208937829291 39798799036450947157341739271593489973092701135=3^3*5*11*41*157*3079*131943765797180171*10248526779844186027 32 Pedersen 2016 50152234863000122802714736236644555332643409285=3^3*5*11*41*157*3079*3303533*38949713321*13243041011000179079 50152250045681373950297218405201050632467886715=3^3*5*11*41*157*3079*131247682474442507*12983121665229273479 32 Pedersen 2016 56581159642937132550222063923884084193586677349=3^2*7*11*13*41*157*3079*3303533*38949713321*2462743288744685099 56581176771858984737785845289268979239191050651=3^2*7*11*13*41*157*3079*144740739364973099*2189330886083248907 32 Pedersen 2016 59529261826849078543539891181639238233413459129=3^2*7*11*13*41*157*3079*3303533*38949713321*2591061953716921879 59529279848255500489462231449848413825101587271=3^2*7*11*13*41*157*3079*143792214659360279*2318598075761098507 32 Pedersen 2016 60335050757818760939719703104757089680033674883=3^2*7*11*13*41*157*3079*3303533*38949713321*2626134605009569133 60335069023163195379582245709460221318881888637=3^2*7*11*13*41*157*3079*143552265322571117*2353910676390534923 32 Pedersen 2016 62864669365458714665052783955835148965316487509=3^2*7*11*13*41*157*3079*3303533*38949713321*2736238414976755259 62864688396599391518917607644343674466432325291=3^2*7*11*13*41*157*3079*142846410927042107*2464720340753250059 32 Pedersen 2016 63058919301471522748270706566763686886859368661=3^2*7*11*13*41*157*3079*3303533*38949713321*2744693309313908411 63058938391417851425891234725365732472262694699=3^2*7*11*13*41*157*3079*142794983412565691*2473226662604879627 32 Pedersen 2016 64380142609771589399497714260623370377307735813=3^2*7*11*13*41*157*3079*3303533*38949713321*2802200682015047563 64380162099694357936544648268312273532977658107=3^2*7*11*13*41*157*3079*142454908927704203*2531074109790880267 32 Pedersen 2016 69710046393018253573691434323590609420333774613=3^2*7*11*13*41*157*3079*3303533*38949713321*3034189295445386363 69710067496472910795918554763670210298295683307=3^2*7*11*13*41*157*3079*141235321778624267*2764282310370299003 32 Pedersen 2016 75973079145264949674260592938316722753403765129=3^2*7*11*13*41*157*3079*3303533*38949713321*3306793144060727879 75973102144739399485316439958108540321630961271=3^2*7*11*13*41*157*3079*140053033780608779*3038068446983656007 32 Pedersen 2016 83190049923852959375640040142949463922731518741=3^2*7*11*13*41*157*3079*3303533*38949713321*3620917959850938491 83190075108134671104570732248988635347709687019=3^2*7*11*13*41*157*3079*138940404669692027*3353305891884783371 32 Pedersen 2016 92668014436078656594546495759808459319680523721=3^2*7*11*13*41*157*3079*3303533*38949713321*4033454458585598471 92668042489642554687270443267788937618985296439=3^2*7*11*13*41*157*3079*137772782490257927*3767010012798877451 32 Pedersen 2016 92980797703980866112611456317930931510402505573=3^2*7*11*13*41*157*3079*3303533*38949713321*4047068617410177323 92980825852234236573249314507969153703647061147=3^2*7*11*13*41*157*3079*137738770014373163*3780658184099341067 32 Pedersen 2016 101387737418654311323298804676019697209009672723=3^2*7*11*13*41*157*3079*3303533*38949713321*4412987847271306973 101387768111956498334350085342961072981473045997=3^2*7*11*13*41*157*3079*136911315963950813*4147404868010893067 32 Pedersen 2016 110597572123708115421855516491147002259340235665=3^3*5*11*41*157*3079*3303533*38949713321*29204046187617909451 110597605605121043311457238761412832475290266735=3^3*5*11*41*157*3079*129820778990603531*28945553745330842827 32 Pedersen 2016 116511847000979331524975915683253881613027902245=3^3*5*11*41*157*3079*3303533*38949713321*30765750964363833703 116511882272831918554874777156009858352734862555=3^3*5*11*41*157*3079*129761705043652967*30507317596023717643 32 Pedersen 2016 129743383533055157554359630085279828891643868441=3^2*7*11*13*41*157*3079*3303533*38949713321*5647191557604363191 129743422810515912994184349015223888964278553319=3^2*7*11*13*41*157*3079*134973052524825527*5383546841783074571 32 Pedersen 2016 138774978066393540751127270708458762271725322385=3^3*5*11*41*157*3079*3303533*38949713321*36644483159208950219 138775020078006051578704844011121629407287541615=3^3*5*11*41*157*3079*129584968714007819*36386226527198479307 32 Pedersen 2016 157165638773471166746645205897719317492593829701=3^2*7*11*13*41*157*3079*3303533*38949713321*6840768633114309451 157165686352523299718438027495777578504089884859=3^2*7*11*13*41*157*3079*133805773947842827*6578291195870003531 32 Pedersen 2016 192921405122588848413797022040070814082790827269=3^2*7*11*13*41*157*3079*3303533*38949713321*8397068895708955019 192921463526051994211535314198566671350731758331=3^2*7*11*13*41*157*3079*132807227011156619*8135590005401335307 32 Pedersen 2016 212894871950463182008234082965127197164010456953=3^2*7*11*13*41*157*3079*3303533*38949713321*9266431094959183703 212894936400531851093593659021955047069798316167=3^2*7*11*13*41*157*3079*132402014437005143*9005357417225715467 32 Pedersen 2016 241445974394404309614293212350992514793492109541=3^2*7*11*13*41*157*3079*3303533*38949713321*10509142208937829291 241446047487802412754539884914333839170095720219=3^2*7*11*13*41*157*3079*131943765797180171*10248526779844186027 32 Pedersen 2016 304256891502200745003136066502310302351370016329=3^2*7*11*13*41*157*3079*3303533*38949713321*13243041011000179079 304256983610467001965136458324886373836971846071=3^2*7*11*13*41*157*3079*131247682474442507*12983121665229273479 32 Pedersen 2016 449558871071193702587845322888243275115009207145=3^3*5*11*41*157*3079*3303533*38949713321*118709098063483951763 449559007167004023738439562692038039206955029655=3^3*5*11*41*157*3079*128951553706912403*118451474846480576267 32 Pedersen 2016 538887664204171788341879789079478764382819007985=3^3*5*11*41*157*3079*3303533*38949713321*142296977529966682859 538887827342657204468278732199854099403644224015=3^3*5*11*41*157*3079*128905037735184107*142039400828935035659 32 Pedersen 2016 595745551661509268743475959292738693272412655585=3^3*5*11*41*157*3079*3303533*38949713321*157310692022515818299 595745732012690873506007856542189671612108304415=3^3*5*11*41*157*3079*128882713379632907*157053137645839722299 32 Pedersen 2016 602171528288465546967137417564824390195041759585=3^3*5*11*41*157*3079*3303533*38949713321*159007515149919315899 602171710584995252783699069347281944503884320415=3^3*5*11*41*157*3079*128880456122494907*158749963030500357899 32 Pedersen 2016 615197190894786705620969271738631536080938792515=3^3*5*11*41*157*3079*3303533*38949713321*162447030548628381841 615197377134599975507948028483357609272297277885=3^3*5*11*41*157*3079*128876025606070027*162189482859725848721 32 Pedersen 2016 670958604217162566892590133379625147039997429701=3^2*7*11*13*41*157*3079*3303533*38949713321*29204046187617909451 670958807337734329422840581819237850350094284859=3^2*7*11*13*41*157*3079*129820778990603531*28945553745330842827 32 Pedersen 2016 706838538472607944584853888478406881785702606953=3^2*7*11*13*41*157*3079*3303533*38949713321*30765750964363833703 706838752455180305899573648079793140673258166167=3^2*7*11*13*41*157*3079*129761705043652967*30507317596023717643 32 Pedersen 2016 841901533602787480556838775631316491115133622469=3^2*7*11*13*41*157*3079*3303533*38949713321*36644483159208950219 841901788473236712910809387000804551737544419131=3^2*7*11*13*41*157*3079*129584968714007819*36386226527198479307 32 Pedersen 2016 2265396888679537317101901320740923067088945157585=3^3*5*11*41*157*3079*3303533*38949713321*598193559767132297099 2265397574487437246221666228041294132711354362415=3^3*5*11*41*157*3079*128727092671145099*597936161011164688907 32 Pedersen 2016 2727323817831908462366261625522009202364389190013=3^2*7*11*13*41*157*3079*3303533*38949713321*118709098063483951763 2727324643479824410679866680331697437855527179907=3^2*7*11*13*41*157*3079*128951553706912403*118451474846480576267 32 Pedersen 2016 3269251829505308849274070720415504503922435315109=3^2*7*11*13*41*157*3079*3303533*38949713321*142296977529966682859 3269252819212120373774224308679114869715441625691=3^2*7*11*13*41*157*3079*128905037735184107*142039400828935035659 32 Pedersen 2016 3460231401151089078742755943813891625317635177465=3^3*5*11*41*157*3079*3303533*38949713321*913697793890361426371 3460232448673508814839940904691342030323999228935=3^3*5*11*41*157*3079*128707958006812427*913440414269058150851 32 Pedersen 2016 3614189680079822897043754153042614739185970110549=3^2*7*11*13*41*157*3079*3303533*38949713321*157310692022515818299 3614190774210324632603114329689284007780123713451=3^2*7*11*13*41*157*3079*128882713379632907*157053137645839722299 32 Pedersen 2016 3635441101490388743665610634281848338813226694865=3^3*5*11*41*157*3079*3303533*38949713321*959963114936507041931 3635442202054373618904293343468089782566881183535=3^3*5*11*41*157*3079*128706209961369611*959705737063249209227 32 Pedersen 2016 3653173938283357651600633666559934633849920008149=3^2*7*11*13*41*157*3079*3303533*38949713321*159007515149919315899 3653175044215637866887774354040177129990231543851=3^2*7*11*13*41*157*3079*128880456122494907*158749963030500357899 32 Pedersen 2016 3732196291428372680767213581881031318891028674591=3^2*7*11*13*41*157*3079*3303533*38949713321*162447030548628381841 3732197421283239851414884706132369496251936819169=3^2*7*11*13*41*157*3079*128876025606070027*162189482859725848721 32 Pedersen 2016 4109891985256469472626289599865483701409724940385=3^3*5*11*41*157*3079*3303533*38949713321*1085245119389211999419 4109893229451870918224551949439838783621182963615=3^3*5*11*41*157*3079*128702224931833019*1084987745500983703307 32 Pedersen 2016 11999970293705224515428639993955669772144761286545=3^3*5*11*41*157*3079*3303533*38949713321*3168674320584718610123 11999973926479007980219665642563272920484651782255=3^3*5*11*41*157*3079*128682153573925067*3168416966767848221963 32 Pedersen 2016 13743407791322526390418201345828266607006267289349=3^2*7*11*13*41*157*3079*3303533*38949713321*598193559767132297099 13743411951890452627078108450117184405115549798651=3^2*7*11*13*41*157*3079*128727092671145099*597936161011164688907 32 Pedersen 2016 17668191088966744690771744263065139832004193271185=3^3*5*11*41*157*3079*3303533*38949713321*4665406832228607092939 17668196437691768028005132905238680105126888456815=3^3*5*11*41*157*3079*128678800354773707*4665149481764955856139 32 Pedersen 2016 18462271194525686715602907383140187843130973030845=3^3*5*11*41*157*3079*3303533*38949713321*4875089121216582770543 18462276783644087606336972685019291574910071141955=3^3*5*11*41*157*3079*128678495034236783*4874831771058252070667 32 Pedersen 2016 20992070500316607077706052725804275860260320076621=3^2*7*11*13*41*157*3079*3303533*38949713321*913697793890361426371 20992076855285953476695641488460808317298928655539=3^2*7*11*13*41*157*3079*128707958006812427*913440414269058150851 32 Pedersen 2016 22055009349041691711571371181309879922133575282181=3^2*7*11*13*41*157*3079*3303533*38949713321*959963114936507041931 22055016025796533288019379617039744680905745846779=3^2*7*11*13*41*157*3079*128706209961369611*959705737063249209227 32 Pedersen 2016 24933344710555914800599490239183934455218997971669=3^2*7*11*13*41*157*3079*3303533*38949713321*1085245119389211999419 24933352258674683570562281826601688620635176645931=3^2*7*11*13*41*157*3079*128702224931833019*1084987745500983703307 32 Pedersen 2016 29993650992351075319134382440065380375189206900945=3^3*5*11*41*157*3079*3303533*38949713321*7920028912896394297483 29993660072385969452359405763359062173981459799855=3^3*5*11*41*157*3079*128675883348217867*7919771565349749616523 32 Pedersen 2016 40091024270267182574129167078189379090794813895445=3^3*5*11*41*157*3079*3303533*38949713321*10586309464263654905783 40091036407099054372653077773266658426884821765355=3^3*5*11*41*157*3079*128674830253293323*10586052117770105149367 32 Pedersen 2016 40618474004025737281036002975858319592176191258165=3^3*5*11*41*157*3079*3303533*38949713321*10725586177943245820951 40618486300533468102201093194191219080450228044235=3^3*5*11*41*157*3079*128674789633250327*10725328831490316107531 32 Pedersen 2016 44209880586372505153939614994462586637398703854865=3^3*5*11*41*157*3079*3303533*38949713321*11673921676592829145931 44209893970113567290606795297328087555902248823535=3^3*5*11*41*157*3079*128674538820153611*11673664330390712529227 32 Pedersen 2016 54065260552085651025543809369535114606895660867065=3^3*5*11*41*157*3079*3303533*38949713321*14276302236929861916611 54065276919364596110760775683635071117330741027335=3^3*5*11*41*157*3079*128674021736957891*14276044891244828495627 32 Pedersen 2016 63269435688814078007220268489807578841979415851865=3^3*5*11*41*157*3079*3303533*38949713321*16706727703334115477731 63269454842490432148121674215536521192697628986535=3^3*5*11*41*157*3079*128673684299741411*16706470357986519273227 32 Pedersen 2016 72799819781811695393600415963331063284344885138373=3^2*7*11*13*41*157*3079*3303533*38949713321*3168674320584718610123 72799841820639315079999304898217189050940220812347=3^2*7*11*13*41*157*3079*128682153573925067*3168416966767848221963 52 Pedersen 2016 92239427003329768157071267523355954977696112159081=3^4*7*11*17*83*271*1733*795713*3225245539*8696144515679304278783 92633332029678507380385708338474908816330874705559=3^4*7*11*17*83*1874005236684427739903*5616861665334828276479 32 Pedersen 2016 107187025939731584457348581862595181647492105845189=3^2*7*11*13*41*157*3079*3303533*38949713321*4665406832228607092939 107187058388663392703231139625114659304436456638011=3^2*7*11*13*41*157*3079*128678800354773707*4665149481764955856139 32 Pedersen 2016 112004445246789166074657638124383806248327903053793=3^2*7*11*13*41*157*3079*3303533*38949713321*4875089121216582770543 112004479154107464811777634289117035554454431594527=3^2*7*11*13*41*157*3079*128678495034236783*4874831771058252070667 32 Pedersen 2016 181961482686929856936081920136396640942814521865733=3^2*7*11*13*41*157*3079*3303533*38949713321*7920028912896394297483 181961537772474881344313728297711643855487522785787=3^2*7*11*13*41*157*3079*128675883348217867*7919771565349749616523 52 Pedersen 2016 220044450174256722229179261740037390005226614119005=3^4*5*11^2*79*359*521*14975239*1111048681*18264337023091632069119 221080928978657366233909423157314609600494391960995=3^4*5*11^2*79*7035717185974818673919*8116623892834782681599 52 Pedersen 2016 221710939834843442476124937073855094750110322863965=3^4*5*11^2*79*359*521*14975239*1111048681*18402660569912965824767 222755268331474829392992252350616807828777037648035=3^4*5*11^2*79*6690164249907001785599*8600500375723933325567 52 Pedersen 2016 226087501313891556158157077666021267159728842323805=3^4*5*11^2*79*359*521*14975239*1111048681*18765928054243124271359 227152444796293306304800340174125188778431551916195=3^4*5*11^2*79*6218604903788605820159*9435327206172487737599 52 Pedersen 2016 227153809680629068198411610221371022404049202416605=3^4*5*11^2*79*359*521*14975239*1111048681*18854434787156467087999 228223775811955629989143938688242006191466189583395=3^4*5*11^2*79*6137785494531725702399*9604653348342710671999 52 Pedersen 2016 228540006352596125478348992751151981291301470947165=3^4*5*11^2*79*359*521*14975239*1111048681*18969493190933724956927 229616501907719046464935055578564650051922591004835=3^4*5*11^2*79*6043541774499953257727*9813955472151740985599 52 Pedersen 2016 239445404209124248180908926298407592945406349628765=3^4*5*11^2*79*359*521*14975239*1111048681*19874673310972185355007 240573267629798408558456216159735872616695951043235=3^4*5*11^2*79*5534304643140292055807*11228372723549862585599 32 Pedersen 2016 243218880572954240949716946941015566484155204299033=3^2*7*11*13*41*157*3079*3303533*38949713321*10586309464263654905783 243218954203067596527428671824484394456434585376487=3^2*7*11*13*41*157*3079*128674830253293323*10586052117770105149367 32 Pedersen 2016 246418742291089472838285084720207138859202226966201=3^2*7*11*13*41*157*3079*3303533*38949713321*10725586177943245820951 246418816889903039820019965378093395754731383468359=3^2*7*11*13*41*157*3079*128674789633250327*10725328831490316107531 52 Pedersen 2016 248043620140634365722213807692707362842295051376605=3^4*5*11^2*79*359*521*14975239*1111048681*20588350540486737935999 249211983871866746154118747011849083338851572623395=3^4*5*11^2*79*5276517995846263823999*12199836600358443398399 52 Pedersen 2016 259602293730386505773874585982493715346174130555805=3^4*5*11^2*79*359*521*14975239*1111048681*21547754469174595712959 260825102462041647110396011412481075390983358084195=3^4*5*11^2*79*5023011423328696817599*13412747101563868181759 52 Pedersen 2016 263381292055095471470637113583298407310729542736395=3^4*5*11^2*79*359*521*14975239*1111048681*21861422452882089633401 264621901061478398797249192369946613703133658031605=3^4*5*11^2*79*4955195712643043357951*13794230795957015561849 52 Pedersen 2016 267857773090599974663486899416788073116217632436165=3^4*5*11^2*79*359*521*14975239*1111048681*22232983554492175435127 269119467735397902005135424634648968059901098315835=3^4*5*11^2*79*4882012712404499735927*14238974897805644985599 32 Pedersen 2016 268206608890659864600566997633073025600218803386181=3^2*7*11*13*41*157*3079*3303533*38949713321*11673921676592829145931 268206690085355641563014558137123731172473642862779=3^2*7*11*13*41*157*3079*128674538820153611*11673664330390712529227 52 Pedersen 2016 270474048823908955448509220118272231286643056381405=3^4*5*11^2*79*359*521*14975239*1111048681*22450142140862565978239 271748066953084221371338454313733951831553515778595=3^4*5*11^2*79*4842362182782266553599*14495784013798268711039 52 Pedersen 2016 295198721896929248216651413976123974688190323000205=3^4*5*11^2*79*359*521*14975239*1111048681*24502362778255547473679 296589201039166314859050882840828090629813266119795=3^4*5*11^2*79*4548922174321012899599*16841444659652503860479 52 Pedersen 2016 297947668536051858501324106001543748486143676618165=3^4*5*11^2*79*359*521*14975239*1111048681*24730533440299830486727 299351096084502408941577068710096592966870388533835=3^4*5*11^2*79*4523056931968324662527*17095480564049475110599 52 Pedersen 2016 300160664809459368500358514404867837391492464016605=3^4*5*11^2*79*359*521*14975239*1111048681*24914218644522669167999 301574516268759695247718079829344018659797647983395=3^4*5*11^2*79*4502980635594721391999*17299242064645917062399 52 Pedersen 2016 302576836773433928422854964325083921236297748215645=3^4*5*11^2*79*359*521*14975239*1111048681*25114768029071243319551 304002069165207051024770186893110421372322214152355=3^4*5*11^2*79*4481777602837981700351*17520994481951230905599 52 Pedersen 2016 314639357532945134619683669495742791828344088247645=3^4*5*11^2*79*359*521*14975239*1111048681*26115992755826595601151 316121408204320288338863041953163439433163528520355=3^4*5*11^2*79*4385799774965141981951*18618197036579422905599 32 Pedersen 2016 325705595550102625671610714374879208777779460351185=3^3*5*11*41*157*3079*3303533*38949713321*86004792631173716044939 325705694151575769556898426859478053269956523776815=3^3*5*11*41*157*3079*128672087262413707*86004535287423157168139 32 Pedersen 2016 327995914015986282888299110175179695281833675926861=3^2*7*11*13*41*157*3079*3303533*38949713321*14276302236929861916611 327996013310811883071948705814052764778473162232499=3^2*7*11*13*41*157*3079*128674021736957891*14276044891244828495627 52 Pedersen 2016 346988682777195829525003044848553695388876852525405=3^4*5*11^2*79*359*521*14975239*1111048681*28801081965132742045439 348623108979631985104290261139836688611941364434595=3^4*5*11^2*79*4188258893703382713599*21500827127147328618239 52 Pedersen 2016 351156920330217294351812902252440401204190891433605=3^4*5*11^2*79*359*521*14975239*1111048681*29147057950441174812599 352810980246987041381058855258917546972711866966395=3^4*5*11^2*79*4167483792319580140799*21867578213839563958199 52 Pedersen 2016 358054459517977753943149685962420022281766236221405=3^4*5*11^2*79*359*521*14975239*1111048681*29719574004608748570239 359741009021124139971879357615331262139288063938595=3^4*5*11^2*79*4134930599574762153599*22472647460751955703039 52 Pedersen 2016 363321842239072168578863860458876679994253984857205=3^4*5*11^2*79*359*521*14975239*1111048681*30156782273990191190279 365033202777174251332204901878259865189780298662795=3^4*5*11^2*79*4111480345426825507079*22933305984281334969599 52 Pedersen 2016 370635869132085613060890094394913809244144431521005=3^4*5*11^2*79*359*521*14975239*1111048681*30763868033545428956719 372381681045095907987952407408954434324796132958995=3^4*5*11^2*79*4080756553090714891519*23571115536172683351599 32 Pedersen 2016 383834576512138739910469628838165978308008456167981=3^2*7*11*13*41*157*3079*3303533*38949713321*16706727703334115477731 383834692711108621698604823574254895235698949184979=3^2*7*11*13*41*157*3079*128673684299741411*16706470357986519273227 52 Pedersen 2016 411345614088697478958500495292642415909196872531305=3^4*5*11^2*79*359*521*14975239*1111048681*34142896686269210409859 413283181748088423277423584996493545354227905708695=3^4*5*11^2*79*3940643196363655158659*27090257545623524537599 52 Pedersen 2016 413678049703604885887953671837913853596794121009105=3^4*5*11^2*79*359*521*14975239*1111048681*34336495707383330389499 415626603870838069523547200496434342147609846990895=3^4*5*11^2*79*3933894259178519327999*27290605503922780347899 52 Pedersen 2016 482855689010655244059735225725741631199104285693255=3^4*5*11^2*79*359*521*14975239*1111048681*40078443380979578016269 485130091690875004982951555814247730078020905986745=3^4*5*11^2*79*3775466697436978541069*33190980739260568761599 52 Pedersen 2016 483258692378283115773477122203841063925706204446105=3^4*5*11^2*79*359*521*14975239*1111048681*40111893846655796510099 485534993331548698042495085741677140640800393953895=3^4*5*11^2*79*3774729743529278135699*33225168158844487660799 52 Pedersen 2016 526253880671024769595980870999297505092669949274205=3^4*5*11^2*79*359*521*14975239*1111048681*43680621023042397434879 528732702530049850940913218330781446446327380645795=3^4*5*11^2*79*3704833413471666631679*36863791665288700089599 52 Pedersen 2016 528648851500913726526319832019163643758543894490205=3^4*5*11^2*79*359*521*14975239*1111048681*43879410651060395335679 531138954428379170362679458776770428489525102629795=3^4*5*11^2*79*3701388213376037049599*37066026493402327572479 42 Pedersen 2016 551822410125058020416388587538621921748005196610458=2*7*11*37*41*97*163*718121*8190097*25404257*999863059519456051919 551823267649012510795397040664027148827294927078502=2*7*11*37*41*97*163*247963921087062059879*602484492516756775631 52 Pedersen 2016 564991874994863897663044480939486840018123696696605=3^4*5*11^2*79*359*521*14975239*1111048681*46895988569776291751999 567653165032522229728946049934098234691003471303395=3^4*5*11^2*79*3653795955444101510399*40130196670050159527999 42 Pedersen 2016 609422898553142635862781193046473805100205283315818=2*7*11*37*41*97*163*718121*8190097*25404257*1104231058232062979399 609423845587413690287073545315222274130597182271382=2*7*11*37*41*97*163*226549587922729398599*728266824393696364391 52 Pedersen 2016 696841823652906786819444526588992678139047558039915=3^4*5*11^2*79*359*521*14975239*1111048681*57839922383425168404377 700124168559420714218075102183464455225744964712085=3^4*5*11^2*79*3532449761812347548927*51195476677330790141849 52 Pedersen 2016 743602447792208799382320489168626017306007274748605=3^4*5*11^2*79*359*521*14975239*1111048681*61721191817914376109599 747105049995657733905569439365139206740311931651395=3^4*5*11^2*79*3501911592505780204799*55107284281126565191199 52 Pedersen 2016 772838986924866729268327681772069166264966535092681=3^4*7*11*17*83*271*1733*795713*3225245539*72861678958686688903583 776139366940204238431198984984823700407326401979959=3^4*7*11*17*83*1252683510095092056479*70403717834931548584703 32 Pedersen 2016 814408716132910846256994088730577812247396021163665=3^3*5*11*41*157*3079*3303533*38949713321*215050197801274304072651 814408962680407263378342039891362802221027861178735=3^3*5*11*41*157*3079*128671856226870731*215049940457754780738827 52 Pedersen 2016 912475094848810708518177225635479551884882142591033=3^4*7*11*17*83*271*1733*795713*3225245539*86026285608614965126319 916371785645318085207861947133355981346603290036167=3^4*7*11*17*83*1245925683152996924159*83575082311801919939759 52 Pedersen 2016 982452146351036800400129349988291870450587768717405=3^4*5*11^2*79*359*521*14975239*1111048681*81546419806566664535039 987079806013547571951099183427528473697495574642595=3^4*5*11^2*79*3397912145501175993599*75036511716783457827839 52 Pedersen 2016 1017788299947841489375534403996422530232131218937885=3^4*5*11^2*79*359*521*14975239*1111048681*84479424560291089875263 1022582404045570370624905426520172962588090143238115=3^4*5*11^2*79*3387244728722441336063*77980183887286617825599 52 Pedersen 2016 1055968101391316940855776122985327835193200438528555=3^4*5*11^2*79*359*521*14975239*1111048681*87648460455021132904409 1060942044403051829884115681576930652719040006911445=3^4*5*11^2*79*3376626334987183413209*81159838175751918777599 52 Pedersen 2016 1090410842422326732671329979232708325165172220045405=3^4*5*11^2*79*359*521*14975239*1111048681*90507309336196076221439 1095547021614141743187238277480317167060276780914595=3^4*5*11^2*79*3367765532219993994239*84027547859694051513599 52 Pedersen 2016 1229052554632992476794054962558116414343141382768605=3^4*5*11^2*79*359*521*14975239*1111048681*102014979514965814185599 1234841780043416369759816130281687782293786207631395=3^4*5*11^2*79*3337671162403285315199*95565312408280498156799 52 Pedersen 2016 1231142542919340830753223255059112604206757334567955=3^4*5*11^2*79*359*521*14975239*1111048681*102188454694212329426129 1236941612834175219969379535657843033168736635352045=3^4*5*11^2*79*3337274998261372089599*95739183751668926622929 32 Pedersen 2016 1264987060760783328521118372505726312135630774246065=3^3*5*11*41*157*3079*3303533*38949713321*334028494837797194599211 1264987443712717231602803401025212263079181104768335=3^3*5*11*41*157*3079*128671801381283627*334028237494332516852491 52 Pedersen 2016 1324676652222884327045889532909040660541147664189965=3^4*5*11^2*79*359*521*14975239*1111048681*109952061066114680743567 1330916297311075021001941595183840236143995875522035=3^4*5*11^2*79*3320952925792715994367*103519112196039934035599 52 Pedersen 2016 1377791399509808066320034134484882665845074788523805=3^4*5*11^2*79*359*521*14975239*1111048681*114360741423999075831359 1384281231820264062863306548008457502864116645716195=3^4*5*11^2*79*3312764809875220737599*107935980669841824380159 42 Pedersen 2016 1509263116176820954571154616865126883956827083930178=2*7*11*37*41*97*163*718121*8190097*25404257*2734677695707267606379 1509265461549629313534106389262930972509013640611262=2*7*11*37*41*97*163*169112622252354303851*2416150427539276086119 52 Pedersen 2016 1590562419079451262029955834669692891522224780720365=3^4*5*11^2*79*359*521*14975239*1111048681*132021362298960050711087 1598054470040729883140730946736444862728877230671635=3^4*5*11^2*79*3285892061597669061887*125623474293080350935599 52 Pedersen 2016 1597830736498418701354189253353493561192449962016605=3^4*5*11^2*79*359*521*14975239*1111048681*132624654037632401567999 1605357023528557272720843966906687630245361749983395=3^4*5*11^2*79*3285110660460937862399*126227547432889432991999 52 Pedersen 2016 1912667542830522432431965580176856458139167750647645=3^4*5*11^2*79*359*521*14975239*1111048681*158757035624941824721151 1921676810578193287034770641811581629528785946120355=3^4*5*11^2*79*3257338917883822905599*152387700762775971101951 32 Pedersen 2016 1975947279670622595741105000540933866585195392797189=3^2*7*11*13*41*157*3079*3303533*38949713321*86004792631173716044939 1975947877852893001978517122947500189837736244246011=3^2*7*11*13*41*157*3079*128672087262413707*86004535287423157168139 52 Pedersen 2016 2601470286335019672122737232145427612342122330185085=3^4*5*11^2*79*359*521*14975239*1111048681*215929690694558707350623 2613724032384642939535700420151072993075678562230915=3^4*5*11^2*79*3221128743945295125599*209596566006331381511423 52 Pedersen 2016 2710209637616910450728667524753067357950328569325405=3^4*5*11^2*79*359*521*14975239*1111048681*224955376904376849885439 2722975580328247758549501927920806243885948207634595=3^4*5*11^2*79*3217170176538844458239*218626210783555974713599 52 Pedersen 2016 2724341934026151586619971012043108447848595287936605=3^4*5*11^2*79*359*521*14975239*1111048681*226128399102047369663999 2737174444313604019904250402204891255066296488063395=3^4*5*11^2*79*3216679938605979014399*219799723219159359935999 52 Pedersen 2016 2826965027600035194826385877879595501720759008583965=3^4*5*11^2*79*359*521*14975239*1111048681*234646417920069625160767 2840280925045160183966493718433728101759172575928035=3^4*5*11^2*79*3213273346973721785599*228321148628813872661567 52 Pedersen 2016 3057103110271318247645605062478073992392940043156445=3^4*5*11^2*79*359*521*14975239*1111048681*253748556149085452798591 3071503030715365907783300021479746134155178558571555=3^4*5*11^2*79*3206498192055282379391*247430062012748139705599 52 Pedersen 2016 3182103598252429872905688006008184303201396603831645=3^4*5*11^2*79*359*521*14975239*1111048681*264123964566475452740351 3197092310443915647151922709422634497829262705736355=3^4*5*11^2*79*3203244443327326905599*257808724178866095121151 32 Pedersen 2016 4263063850689237741127980853530545973454299738586545=3^3*5*11*41*157*3079*3303533*38949713321*1125691199233882109230123 4263065141254648735862732660006198073362803018482255=3^3*5*11*41*157*3079*128671731665025067*1125690941890487147741963 52 Pedersen 2016 4364648236412991471594740430228454584057116992647645=3^4*5*11^2*79*359*521*14975239*1111048681*362278650127098904321151 4385207107050829396564137292448132708606523104120355=3^4*5*11^2*79*3181934738954572905599*355984719443862300701951 32 Pedersen 2016 4539156558950657815222069522196010851107496259554865=3^3*5*11*41*157*3079*3303533*38949713321*1198595369274000088725931 4539157933098138417579770205486668369068477589123535=3^3*5*11*41*157*3079*128671729875833611*1198595111930606916429227 52 Pedersen 2016 4563875543988262799861494182910233783176932748529513=3^4*7*11*17*83*271*1733*795713*3225245539*430272851550386627144959 4583365403962589900778601539210415184545983212712087=3^4*7*11*17*83*1217278322501027523839*427850295614225551358719 32 Pedersen 2016 4650453469459959573942442697975176416257324171961495=3^3*5*11*41*157*3079*3303533*38949713321*1227984080550746775180653 4650454877300565141026783242352903560266255450643305=3^3*5*11*41*157*3079*128671729214666093*1227983823207354264051467 32 Pedersen 2016 4886030577152801798697623959880977229469774417170385=3^3*5*11*41*157*3079*3303533*38949713321*1290189828847932239361419 4886032056310112312955028590980763242064288785133615=3^3*5*11*41*157*3079*128671727914555019*1290189571504541028343307 52 Pedersen 2016 4932701986900778816684681491387621013638874820998205=3^4*5*11^2*79*359*521*14975239*1111048681*409428783374831001106079 4955936569976147534612214262242676656096652889721795=3^4*5*11^2*79*3175417892910180062879*403141369537638790329599 32 Pedersen 2016 4940746211206325800625764138298838727634202528392901=3^2*7*11*13*41*157*3079*3303533*38949713321*215050197801274304072651 4940747706927804064495275042007601000140902357817659=3^2*7*11*13*41*157*3079*128671856226870731*215049940457754780738827 52 Pedersen 2016 5014982036004105489182565111817094719239727453896285=3^4*5*11^2*79*359*521*14975239*1111048681*416258269625948004509183 5038604184077605750550920449370703978265538357559715=3^4*5*11^2*79*3174599228990379369983*409971674452675594425599 52 Pedersen 2016 5106204098028997483534990259572587929134651681005405=3^4*5*11^2*79*359*521*14975239*1111048681*423829969268654632669439 5130255930803509954014697219914104125738418951954595=3^4*5*11^2*79*3173723142537113913599*417544250181835488042239 52 Pedersen 2016 5290229707580926411361958115266372191655007757625321=3^4*7*11*17*83*271*1733*795713*3225245539*498752036443189029759103 5312821435869528232326969910089208195737667193706519=3^4*7*11*17*83*1216330397717716068479*496330428431811265428223 42 Pedersen 2016 5531565621938161129126470234063917277510820453658218=2*7*11*37*41*97*163*718121*8190097*25404257*10022804484200452182599 5531574217910234050999998708767141964496404697010582=2*7*11*37*41*97*163*154080507084781266791*9719309331200033699399 32 Pedersen 2016 5545223982313924957362836040751055935946985634110495=3^3*5*11*41*157*3079*3303533*38949713321*1464254361018361545901253 5545225661030106193024074050465063979199287651214305=3^3*5*11*41*157*3079*128671724863595717*1464254103674973385842443 52 Pedersen 2016 6382545827319462154809529644447814617364670511709965=3^4*5*11^2*79*359*521*14975239*1111048681*529770089466804838919567 6412609632441079969948209687602800319138319812002035=3^4*5*11^2*79*3164139687856954035599*523493953834665854170367 52 Pedersen 2016 7100615853509626532447683028680339687913386371691497=3^4*7*11*17*83*271*1733*795713*3225245539*669431539402496604601471 7130938768186535969585139363884473414507770577177623=3^4*7*11*17*83*1214816447870878350079*667011445340965677988991 32 Pedersen 2016 7674254835282085526361451459868072960289493363759461=3^2*7*11*13*41*157*3079*3303533*38949713321*334028494837797194599211 7674257158523817871723673966219621062680365368927899=3^2*7*11*13*41*157*3079*128671801381283627*334028237494332516852491 52 Pedersen 2016 7873016803173866301153609740597140343471704518559065=3^4*5*11^2*79*359*521*14975239*1111048681*653483567378123222504147 7910101196971199632760213672779363808075120459872935=3^4*5*11^2*79*3156939271106483385599*647214632162734708404947 42 Pedersen 2016 8252333609105993164185380956175590692873327802380538=2*7*11*37*41*97*163*718121*8190097*25404257*14952643059034165131359 8252346433111724737644975516954143957499507534139142=2*7*11*37*41*97*163*152493879047481838439*14650734534071046076511 52 Pedersen 2016 8590968129916481331396902308353452755660403836091655=3^4*5*11^2*79*359*521*14975239*1111048681*713075640649767118522189 8631434301041853358388080450389277883489659052868345=3^4*5*11^2*79*3154374458127389226239*706809270247357698582349 52 Pedersen 2016 8798595042900018071571734084723761153870704335971005=3^4*5*11^2*79*359*521*14975239*1111048681*730309285537390306866719 8840039202310757676236706086818918300435705668508995=3^4*5*11^2*79*3153711780471287051519*724043577812636989101599 52 Pedersen 2016 8980224950006402952687998955068074288175621842434921=3^4*7*11*17*83*271*1733*795713*3225245539*846637240555988381851903 9018574665095398267773533862102529294582901492384919=3^4*7*11*17*83*1213893270438959348479*844218069671889374241023 52 Pedersen 2016 9079130811283881799400876084851459883395288621694313=3^4*7*11*17*83*271*1733*795713*3225245539*855961882859822693871359 9117902900157691970771141369106991769603191224091287=3^4*7*11*17*83*1213855323681459121919*853542749922481186487039 52 Pedersen 2016 11319025637301500341073207451914205570622432185255405=3^4*5*11^2*79*359*521*14975239*1111048681*939512443276677913819439 11372341820237447116106322536898393771315880047704595=3^4*5*11^2*79*3147625887403430442239*933252821444992452663599 52 Pedersen 2016 11447108302722781708572379571368388161505548712797965=3^4*5*11^2*79*359*521*14975239*1111048681*950143681493400048493967 11501027795434617703424061097204052506827109860514035=3^4*5*11^2*79*3147388889532442035599*943884296659585575744767 42 Pedersen 2016 11617700754649380559738881046900015398614394425926058=2*7*11*37*41*97*163*718121*8190097*25404257*21050449579408519367719 11617718808386435122311731549742776077445741793353302=2*7*11*37*41*97*163*151582329323995167079*20749452604168886984231 52 Pedersen 2016 12066072644876131343109728191377678886341061646848605=3^4*5*11^2*79*359*521*14975239*1111048681*1001519543694934288089599 12122907654979174825641356482985530635922913879551395=3^4*5*11^2*79*3146315171146838611199*995261232579505418764799 52 Pedersen 2016 13297265555640255531876515825324710694551590860266845=3^4*5*11^2*79*359*521*14975239*1111048681*1103712179068511725370111 13359899872906577979027072088353302293186794949141155=3^4*5*11^2*79*3144479142645332550911*1097455703981584362105599 52 Pedersen 2016 14423273667432132744401693816541686329194911239508205=3^4*5*11^2*79*359*521*14975239*1111048681*1197174166536114315244079 14491211838263183770037276852434579544111159063211795=3^4*5*11^2*79*3143076575776543929599*1190919094016055740600879 52 Pedersen 2016 16072403789915557740208303513165319010861827811136617=3^4*7*11*17*83*271*1733*795713*3225245539*1515273355572904127557631 16141040389730143751883554949151871688697999695326103=3^4*7*11*17*83*1212359039933824561151*1512855718919310254734079 32 Pedersen 2016 18148109604366274287424336860429224490729578096232465=3^3*5*11*41*157*3079*3303533*38949713321*4792132602251333026743371 18148115098377940697199919537684120146907861528573935=3^3*5*11*41*157*3079*128671709159307851*4792132344907960570972427 52 Pedersen 2016 18235023927781037312329027109856343130445129383699805=3^4*5*11^2*79*359*521*14975239*1111048681*1513560657300762968380159 18320916645292959296831336637132852645661664149740195=3^4*5*11^2*79*3139622338639360377599*1507309039017841577288959 52 Pedersen 2016 18762996464306187183308455548220798048213385586798555=3^4*5*11^2*79*359*521*14975239*1111048681*1557383931818231568930409 18851376099088599746571515062928086925462916042641445=3^4*5*11^2*79*3139255220495270639209*1551132680653454267577599 52 Pedersen 2016 20722303540604552971022020742687253521160461309064285=3^4*5*11^2*79*359*521*14975239*1111048681*1720012185995524369987583 20819912130056293682129854671884679512661808687991715=3^4*5*11^2*79*3138057267968266425599*1713762132783274072848383 42 Pedersen 2016 21675580165850785282078665828921473116867566487051618=2*7*11*37*41*97*163*718121*8190097*25404257*39274613542018344966299 21675613849385340323384817298667863180247804424282782=2*7*11*37*41*97*163*150564892911489465191*38974634003191218284699 52 Pedersen 2016 21874402363994413039499395398939497395044892041535845=3^4*5*11^2*79*359*521*14975239*1111048681*1815639779318764187412311 21977437702496506365154190290688089008279449812672155=3^4*5*11^2*79*3137453572555986105599*1809390329801926170593111 52 Pedersen 2016 22115489942472261010844750770569949179200255070406365=3^4*5*11^2*79*359*521*14975239*1111048681*1835650757927465386197887 22219660879554089842723343985296936126179810832185635=3^4*5*11^2*79*3137335242748288185599*1829401426740435067298687 52 Pedersen 2016 23600456393777574206846099211945305123964538939042005=3^4*5*11^2*79*359*521*14975239*1111048681*1958907344099697134516519 23711621991487313133853275859505835153217019148637995=3^4*5*11^2*79*3136659958608441186599*1952658688196806662616319 52 Pedersen 2016 23705310790404912991923628819048333487307815352333405=3^4*5*11^2*79*359*521*14975239*1111048681*1967610567638568680355839 23816970285413885733274014084621553852962044938226595=3^4*5*11^2*79*3136615489580394608639*1961361956204706255033599 52 Pedersen 2016 23883078740354312364206827389739990548795498833162601=3^4*7*11*17*83*271*1733*795713*3225245539*2251647814312329531366143 23985070535686786295971575161032389789920336654847639=3^4*7*11*17*83*1211725418084684532479*2249230811280584798571263 32 Pedersen 2016 23914583462736899269485045434670907346188348763019495=3^3*5*11*41*157*3079*3303533*38949713321*6314809507953923828965853 23914590702444141835193686668255054012817146517825305=3^3*5*11*41*157*3079*128671707493155293*6314809250610553039347467 52 Pedersen 2016 25278506181586406211961038975048205812191371099409205=3^4*5*11^2*79*359*521*14975239*1111048681*2098190415505483084247879 25397575923374377979311529083852662075737036022510795=3^4*5*11^2*79*3135992782581781689599*2091942426778619271844679 32 Pedersen 2016 25862587360848042296176417178085312238956085080758373=3^2*7*11*13*41*157*3079*3303533*38949713321*1125691199233882109230123 25862595190278202330900578137370934978401004978792347=3^2*7*11*13*41*157*3079*128671731665025067*1125690941890487147741963 32 Pedersen 2016 27537549790967324079013888434655799163385477307966181=3^2*7*11*13*41*157*3079*3303533*38949713321*1198595369274000088725931 27537558127462039733317272579952454772348764040682779=3^2*7*11*13*41*157*3079*128671729875833611*1198595111930606916429227 32 Pedersen 2016 28212751048057088081917485701049403591961099976566403=3^2*7*11*13*41*157*3079*3303533*38949713321*1227984080550746775180653 28212759588956761855562485003607614932281949733902717=3^2*7*11*13*41*157*3079*128671729214666093*1227983823207354264051467 32 Pedersen 2016 29641918834726997578765585356611261858783298130833669=3^2*7*11*13*41*157*3079*3303533*38949713321*1290189828847932239361419 29641927808281348031927173451949963668523351963143931=3^2*7*11*13*41*157*3079*128671727914555019*1290189571504541028343307 52 Pedersen 2016 31775582509576395353397086865948271212665654216555685=3^4*5*11^2*79*359*521*14975239*1111048681*2637466873626500189786903 31925255531288954916981903402268343404469030623380315=3^4*5*11^2*79*3134076575332235047703*2631220801106885924025599 52 Pedersen 2016 32494290487788998260382322493141515974158563927708405=3^4*5*11^2*79*359*521*14975239*1111048681*2697121751197211534280839 32647348850896812665732974848259828513694963562851595=3^4*5*11^2*79*3133911839516555408639*2690875843413412948158599 32 Pedersen 2016 33641025492704478074667871980556406011411712846937003=3^2*7*11*13*41*157*3079*3303533*38949713321*1464254361018361545901253 33641035676915977571012715906154721473809011750700117=3^2*7*11*13*41*157*3079*128671724863595717*1464254103674973385842443 32 Pedersen 2016 34224421705267929290746819883310277823330589912998865=3^3*5*11*41*157*3079*3303533*38949713321*9037192887988385504219531 34224432066092071527123293748023248917799231415999535=3^3*5*11*41*157*3079*128671705913539211*9037192630645016294217227 52 Pedersen 2016 36502189811516273063804087787520718427672775211542005=3^4*5*11^2*79*359*521*14975239*1111048681*3029789191549406020016519 36674126645296377976940296621957976263466414876137995=3^4*5*11^2*79*3133112509422478686599*3023544083095701510616319 52 Pedersen 2016 36636964311833234518671858920295459928207778284307805=3^4*5*11^2*79*359*521*14975239*1111048681*3040975871758601933730559 36809535976043471139084795683245967601054728682732195=3^4*5*11^2*79*3133088678918815097599*3034730787135401087919359 32 Pedersen 2016 37523831863505710503238311214596053915053271694562545=3^3*5*11*41*157*3079*3303533*38949713321*9908424731534584043884523 37523843223166552363034443046072772528203332599786255=3^3*5*11*41*157*3079*128671705591364363*9908424474191215156057067 32 Pedersen 2016 57946873233210536717343899829647064460589963748785685=3^3*5*11*41*157*3079*3303533*38949713321*15301268643020746873389239 57946890775577456224610661102889056805454640167502315=3^3*5*11*41*157*3079*128671704413536439*15301268385677379163389707 42 Pedersen 2016 58842247429763510671179136519312216001111210011092058=2*7*11*37*41*97*163*718121*8190097*25404257*106617977930238026580719 58842338869755401607209066644934630714901483935931302=2*7*11*37*41*97*163*149835428785105759079*106318727855537283605231 52 Pedersen 2016 60346620761452621073984792305765227094473949447148955=3^4*5*11^2*79*359*521*14975239*1111048681*5008947141902586197013929 60630872390098182171797966348986353867615702397971045=3^4*5*11^2*79*3130555977400010855849*5002704589980904155444479 52 Pedersen 2016 60853188810526416312433805880627979460825818504123155=3^4*5*11^2*79*359*521*14975239*1111048681*5050993780961589537511889 61139826534551505414196013059832998803997340269636845=3^4*5*11^2*79*3130523438841779124689*5044751261578465727673599 52 Pedersen 2016 70551182268984433812918468568449288364801265572687905=3^4*5*11^2*79*359*521*14975239*1111048681*5855955782196999877912939 70883500602799716120046471105162187225852421764272095=3^4*5*11^2*79*3129990750409888298239*5849713795502307958901099 52 Pedersen 2016 79636413489994383199216904475580319657652037567138605=3^4*5*11^2*79*359*521*14975239*1111048681*6610056714176119805391599 80011526130079142422901929761507169489444636327261395=3^4*5*11^2*79*3129609589314766828799*6603815108642523007849199 52 Pedersen 2016 81590985637072820852690500047640895636562371333520435=3^4*5*11^2*79*359*521*14975239*1111048681*6772291955291802706107953 81975304928815980630559257251269093620205819349615565=3^4*5*11^2*79*3129538698136868025599*6766050420649383807368753 52 Pedersen 2016 83853094473208990532546880894954162793695630323386845=3^4*5*11^2*79*359*521*14975239*1111048681*6960053646774527350826111 84248069011471868490724385212789756252231653790021155=3^4*5*11^2*79*3129460784124882105599*6953812190046120438006911 52 Pedersen 2016 83866303094677101591406727632333739572656185186387805=3^4*5*11^2*79*359*521*14975239*1111048681*6961150001233424072034559 84261339849715618320469102606371544309280179316652195=3^4*5*11^2*79*3129460341538634297599*6954908544947603407023359 52 Pedersen 2016 89002380165935242194971379115124142438209176662302685=3^4*5*11^2*79*359*521*14975239*1111048681*7387459515205463800485503 89421609464879826472799002491959494457349810360033315=3^4*5*11^2*79*3129298214465487746303*7381218221046716282025599 52 Pedersen 2016 90051280808302006271755333685961975234427053610782045=3^4*5*11^2*79*359*521*14975239*1111048681*7474521355759737145903871 90475450760295892311601989120081043435997722634465955=3^4*5*11^2*79*3129267381467845305599*7468280092433987269884671 32 Pedersen 2016 100678654260693618920386014251432461337526694859141265=3^3*5*11*41*157*3079*3303533*38949713321*26584888010450579178310091 100678684739333715606208245470495898854793170863329135=3^3*5*11*41*157*3079*128671703495030027*26584887753107212386816971 52 Pedersen 2016 107492563882257339422895271269722660893086186851348505=3^4*5*11^2*79*359*521*14975239*1111048681*8922199185969025431251219 107998887781844043800701204369696191099211585201131495=3^4*5*11^2*79*3128842968995747001599*8915958347055747653536019 52 Pedersen 2016 108543647755391587074906622962390363094392760877968605=3^4*5*11^2*79*359*521*14975239*1111048681*9009442241102920871945599 109054922591733516359221588583805784290224618552431395=3^4*5*11^2*79*3128821754159722476799*9003201423404479118755199 42 Pedersen 2016 109192444474334543613553931442550522660248541883358298=2*7*11*37*41*97*163*718121*8190097*25404257*197848963009265716877039 109192614157796229923274983026595066623280550389261222=2*7*11*37*41*97*163*149641065872433477359*197549907297477646183271 32 Pedersen 2016 110098531599822064010374310286603961910426107117143621=3^2*7*11*13*41*157*3079*3303533*38949713321*4792132602251333026743371 110098564930159506896346178528616995557907693273348539=3^2*7*11*13*41*157*3079*128671709159307851*4792132344907960570972427 52 Pedersen 2016 114854433076525728565538828084462629989002805700968285=3^4*5*11^2*79*359*521*14975239*1111048681*9533255997343059838742783 115395433703358162520083511723572075979374951732887715=3^4*5*11^2*79*3128702551182325603583*9527015298847595482425599 52 Pedersen 2016 120245491114813575520750121425113155607979963901476245=3^4*5*11^2*79*359*521*14975239*1111048681*9980729682066129068137831 120811885326376522178801512583267867854754845096411755=3^4*5*11^2*79*3128610639797416293631*9974489075482049621130599 52 Pedersen 2016 127667506715506141778498732124842722538299900807524105=3^4*5*11^2*79*359*521*14975239*1111048681*10596778822202779699846499 128268860962870749134886126898892956804339645048475895=3^4*5*11^2*79*3128496813747398278499*10590538329444750270854399 52 Pedersen 2016 128234123085108241642637696550163408618774987596181605=3^4*5*11^2*79*359*521*14975239*1111048681*10643809648606344829094999 128838146274392783524998061052641568026324168883818395=3^4*5*11^2*79*3128488665791150879999*10637569163996271647501399 52 Pedersen 2016 133330319661192711833307895330348642416633872111399913=3^4*7*11*17*83*271*1733*795713*3225245539*12570109830079429749292159 133899701809212040139847657221221250013106670256753687=3^4*7*11*17*83*1210657391160138120319*12567693895074609562909439 52 Pedersen 2016 133757678876976422518316226227549668373902891783447005=3^4*5*11^2*79*359*521*14975239*1111048681*11102281036858302612155519 134387719757225958187181174442185295842210940480232995=3^4*5*11^2*79*3128412856494386361599*11096040628057526195080319 32 Pedersen 2016 145081806340603855568209275637003504566875982495651603=3^2*7*11*13*41*157*3079*3303533*38949713321*6314809507953923828965853 145081850261494460466841699120747327677757355541473517=3^2*7*11*13*41*157*3079*128671707493155293*6314809250610553039347467 52 Pedersen 2016 174993349664180112036876535906533392866616176476448605=3^4*5*11^2*79*359*521*14975239*1111048681*14524963081483000288569599 175817623567449919441553640851413851028390639369951395=3^4*5*11^2*79*3127998230419993324799*14518723087308298264531199 32 Pedersen 2016 207628158345292104363864040625415685461538912138859781=3^2*7*11*13*41*157*3079*3303533*38949713321*9037192887988385504219531 207628221200958567264547982071341043434648670590397179=3^2*7*11*13*41*157*3079*128671705913539211*9037192630645016294217227 42 Pedersen 2016 210444571001969713032202533223507555705053161428904818=2*7*11*37*41*97*163*718121*8190097*25404257*381310633204626258918899 210444898029755129979533515230833699391253578238858382=2*7*11*37*41*97*163*149532110973114186599*381011686447737507515891 52 Pedersen 2016 214354865183807622891926918450312964039889110539203785=3^4*5*11^2*79*359*521*14975239*1111048681*17792084722682361138027683 215364544247320612165891198422224238111909949576252215=3^4*5*11^2*79*3127751340798618825983*17785844975397280488488099 52 Pedersen 2016 226258279503775063173239198280100380779182596694831005=3^4*5*11^2*79*359*521*14975239*1111048681*18780103146656297177334719 227324027405347249057093654209382268527819762621648995=3^4*5*11^2*79*3127693603543929201599*18773863457108471217419519 32 Pedersen 2016 227644579971934643719645754701882727084656514947012773=3^2*7*11*13*41*157*3079*3303533*38949713321*9908424731534584043884523 227644648887210417669075621146174820004433551105369947=3^2*7*11*13*41*157*3079*128671705591364363*9908424474191215156057067 52 Pedersen 2016 227813397365938073194018685290492584647735290845024105=3^4*5*11^2*79*359*521*14975239*1111048681*18909182506406938592346499 228886470363422472973401011249803695943894975010975895=3^4*5*11^2*79*3127686506320830854399*18902942823956335730778499 52 Pedersen 2016 292093451313294851684880884599006915160968439630522793=3^4*7*11*17*83*271*1733*795713*3225245539*27537973155581873207159999 293340825482604295890878657275123342663041806923077207=3^4*7*11*17*83*1210530902245987449599*27535557347065967171447999 32 Pedersen 2016 351544364281477256085219658966525524394245780075966489=3^2*7*11*13*41*157*3079*3303533*38949713321*15301268643020746873389239 351544470705169901095971344024193611286424817016180711=3^2*7*11*13*41*157*3079*128671704413536439*15301268385677379163389707 52 Pedersen 2016 401797147686150345424357813636762860628828130370808605=3^4*5*11^2*79*359*521*14975239*1111048681*33350345870778608983937599 403689739055373851525956554662627926292640676387591395=3^4*5*11^2*79*3127239476202217140799*33344106635358124736083199 52 Pedersen 2016 462684428049128805138579063741276039471391661908018935=3^4*5*11^2*79*359*521*14975239*1111048681*38404169350935663040132253 464863817724348441526121724872848867210094651066317065=3^4*5*11^2*79*3127162467501508744349*38397930192523879500674303 52 Pedersen 2016 515390741412772556170247867334506157890441784455876445=3^4*5*11^2*79*359*521*14975239*1111048681*42778948491040915134734591 517818394457580717056257135296067237397734776769851555=3^4*5*11^2*79*3127110501511444315391*42772709384595121659705599 52 Pedersen 2016 541144322326474404844643095968421557430748879617087005=3^4*5*11^2*79*359*521*14975239*1111048681*44916571507603321123187519 543693282864988179714029062660478838139572299334592995=3^4*5*11^2*79*3127088791972201761599*44910332422867066890712319 32 Pedersen 2016 610783835848207954783675153125356932114328615478790341=3^2*7*11*13*41*157*3079*3303533*38949713321*26584888010450579178310091 610784020751957874677663355854341786385745236570863419=3^2*7*11*13*41*157*3079*128671703495030027*26584887753107212386816971 52 Pedersen 2016 617880670224211110258134840177167144213542339827691165=3^4*5*11^2*79*359*521*14975239*1111048681*51285914241835297659304127 620791083178635090993761961822486672828113501399060835=3^4*5*11^2*79*3127034837141324985599*51279675211053874303604927 52 Pedersen 2016 649646064799154995006443935674845070823749163335555869=3^4*7*11*17*83*271*1733*795713*3225245539*61247302233695297362249067 652420354043848895339910744315210286523645639474013411=3^4*7*11*17*83*1210472450797891615487*61244886483630839422371179 52 Pedersen 2016 763913902788365150013234456101191647896649955297735881=3^4*7*11*17*83*271*1733*795713*3225245539*72020240281245503456321183 767176168565397314353657683782407949547720535045032759=3^4*7*11*17*83*1210465308772183416479*72017824538323071224642303 52 Pedersen 2016 1041189667579355764120088223177317298538292955609816045=3^4*5*11^2*79*359*521*14975239*1111048681*86421806951143352301153071 1046093999503893473794971403123732034357037238568231955=3^4*5*11^2*79*3126880159883269305599*86415568075039187001133871 52 Pedersen 2016 1140166969690363575954697507996272830296214291273436105=3^4*5*11^2*79*359*521*14975239*1111048681*94637214347059111884872099 1145537515944204195718233881723858521959760232732963895=3^4*5*11^2*79*3126860562215372667299*94630975490552614481491199 52 Pedersen 2016 1144225028565562958068629724940811831615679707587229255=3^4*5*11^2*79*359*521*14975239*1111048681*94974045177818509011533069 1149614689557393212227424587751459003579518041015650745=3^4*5*11^2*79*3126859831074111790349*94967806322043152869029119 52 Pedersen 2016 1178101161512546667227176651383979651883638406514139395=3^4*5*11^2*79*359*521*14975239*1111048681*97785863920317083631104801 1183650389781564786243031872127329574491181011784228605=3^4*5*11^2*79*3126853924151710905599*97779625070448649889485601 52 Pedersen 2016 1307488337732061566843479230386156353492795557702496605=3^4*5*11^2*79*359*521*14975239*1111048681*108525380372869893917791999 1313647020434520641580477208764832915578579056825503395=3^4*5*11^2*79*3126834180524475590399*108519141542745087411487999 52 Pedersen 2016 1307820817049042108318956021718913891903986718608309289=3^4*7*11*17*83*271*1733*795713*3225245539*123298671676068611120152127 1313405816979500651128107754788152925380072663419077591=3^4*7*11*17*83*1210448422351529442047*123296255950032599542447679 52 Pedersen 2016 1320546329978579437583232151381798786471650824599780005=3^4*5*11^2*79*359*521*14975239*1111048681*109609232163026161707760919 1326766519945506330835246460874766974235340275017499995=3^4*5*11^2*79*3126832402914132030719*109602993334678965545016599 52 Pedersen 2016 1386568004718372044653700380470015790924236309660987855=3^4*5*11^2*79*359*521*14975239*1111048681*115089225488563715745483749 1393099177609179261066625848851272909082161664099012145=3^4*5*11^2*79*3126823927884790559999*115082986668691548924210149 52 Pedersen 2016 1391829001265141665129777072023160781398645882844540205=3^4*5*11^2*79*359*521*14975239*1111048681*115525903686679721374525679 1398384955110008088422002385867719507210838963112579795=3^4*5*11^2*79*3126823287134885049599*115519664867448304458762479 52 Pedersen 2016 1407838340866069028818841060429125771698232915963656285=3^4*5*11^2*79*359*521*14975239*1111048681*116854725993976762690397183 1414469703752861629047886320262628873054111244439799715=3^4*5*11^2*79*3126821366778634425599*116848487176665702025257983 52 Pedersen 2016 1598319219447091473663105155272709893770888817801242285=3^4*5*11^2*79*359*521*14975239*1111048681*132665199560128096209903983 1605847807386079186679800974313269774241366714173413715=3^4*5*11^2*79*3126801470237578425599*132658960762713576600764783 52 Pedersen 2016 1833657021381948417152219970598256627711945359233242205=3^4*5*11^2*79*359*521*14975239*1111048681*152198929792396755536353279 1842294124638575588216287102676001528757066011242277795=3^4*5*11^2*79*3126782597083365070079*152192691013855390140569599 52 Pedersen 2016 2003402193453230930822411817076673453185800702901507485=3^4*5*11^2*79*359*521*14975239*1111048681*166288278686665259714487743 2012838850040386987961123213447404343386917654708988515=3^4*5*11^2*79*3126771736843842225599*166282039918984133841548543 52 Pedersen 2016 2022345547661704920196905157531490604716664843656622945=3^4*5*11^2*79*359*521*14975239*1111048681*167860632842097841094741291 2031871433425537727167796971360656681769703466381905055=3^4*5*11^2*79*3126770637941493134591*167854394075515617570893099 52 Pedersen 2016 2216112904354460581497644286961060767581870223427135965=3^4*5*11^2*79*359*521*14975239*1111048681*183943893764640913793418367 2226551495519578153712409107346375438389673197795776035=3^4*5*11^2*79*3126760476466538919167*183937655008220165223785599 52 Pedersen 2016 2442394614909340665512954624955666588674205326815975005=3^4*5*11^2*79*359*521*14975239*1111048681*202725941757503731888401919 2453899064343675760497311361504502820174413094145304995=3^4*5*11^2*79*3126750650824202841599*202719703010908625654846719 52 Pedersen 2016 2882391538271435933432736238480040061771623808954926685=3^4*5*11^2*79*359*521*14975239*1111048681*239246981443097671645576703 2895968512073939164393822165554867009608169437728209315=3^4*5*11^2*79*3126735961732746837503*239240742711191656868025599 42 Pedersen 2016 3109509677079694180590402640755367187091735262745888338=2*7*11*37*41*97*163*718121*8190097*25404257*5634210938670750185464259 3109514509212253297173643944568070104327860463316826542=2*7*11*37*41*97*163*149422803460166024039*5633912101221374382223811 52 Pedersen 2016 3213952711933868900461118529719599138372172239314928605=3^4*5*11^2*79*359*521*14975239*1111048681*266767534743791450417193599 3229091443502092493960984662254580290219583820947471395=3^4*5*11^2*79*3126727550096228332799*266761296020297072158147199 52 Pedersen 2016 4558434531611349858647727245967881552617861400258516055=3^4*5*11^2*79*359*521*14975239*1111048681*378363483001348861556606909 4579906196856810762359570467050701512392921549946923945=3^4*5*11^2*79*3126705982449325896959*378357244299422130199996349 52 Pedersen 2016 4645153390296623614096557947744211910385717946988053765=3^4*5*11^2*79*359*521*14975239*1111048681*385561403512551987787870007 4667033528734196028667736877423133233584279729072618235=3^4*5*11^2*79*3126705019959584460599*385555164811587746172695807 52 Pedersen 2016 4758336227896804913475210600334204220969082796265968605=3^4*5*11^2*79*359*521*14975239*1111048681*394955912165337834786345599 4780749493218975450040563687539275849194517392764431395=3^4*5*11^2*79*3126703816522812355199*394949673465577029943276799 52 Pedersen 2016 4893323403018254460736416001954894858374939834884896605=3^4*5*11^2*79*359*521*14975239*1111048681*406160245009273750122911999 4916372500536004128471070758526748879358643209723103395=3^4*5*11^2*79*3126702454040685830399*406154006310875427406367999 42 Pedersen 2016 5399992581195862819775685601862354356536029210018837578=2*7*11*37*41*97*163*718121*8190097*25404257*9784403468487700553917079 5400000972705354789037709628903547060865290673143745462=2*7*11*37*41*97*163*149419441654635778919*9784104634400130280921751 52 Pedersen 2016 5886514296001916049090548447028849528993429622281127005=3^4*5*11^2*79*359*521*14975239*1111048681*488598012393788989141739519 5914241636067869492558685551986858316776688735038552995=3^4*5*11^2*79*3126694350664831161599*488591773703494042279864319 52 Pedersen 2016 7641201510635626590481226536307844426022223220672974445=3^4*5*11^2*79*359*521*14975239*1111048681*634242215793604485278946991 7677193981246251303573248262693952907997273423394353555=3^4*5*11^2*79*3126685182727596455599*634235977112477475651777791 52 Pedersen 2016 7795367942060694964189170545692045815226205369856602205=3^4*5*11^2*79*359*521*14975239*1111048681*647038483361202567821921279 7832086585216892302687159582667280497796644068330917795=3^4*5*11^2*79*3126684574478762169599*647032244680683807029038079 42 Pedersen 2016 10188372157458421429506005547457958863086641131884058858=2*7*11*37*41*97*163*718121*8190097*25404257*18460607561353971570138119 10188387990039741030892705227807731803062701846677415702=2*7*11*37*41*97*163*149417296803246721031*18460308729411252686200679 52 Pedersen 2016 13735001273451739509418773513629174367210889141407435369=3^4*7*11*17*83*271*1733*795713*3225245539*1294907827134093774639917567 13793656083160430211927259161286722975470999711951893911=3^4*7*11*17*83*1210426964774124583679*1294905411429515340467071487 52 Pedersen 2016 14133250661662183922202363965229090435540608627059245885=3^4*5*11^2*79*359*521*14975239*1111048681*1173101403430125713812085663 14199822732607366135675135939480749438770035733976530115=3^4*5*11^2*79*3126671055237774046463*1173095164763126194007325599 52 Pedersen 2016 14682424017352776475823940880052079791170588379589998205=3^4*5*11^2*79*359*521*14975239*1111048681*1218684408338870352343306079 14751582868117509290114171504141632921228834392920721795=3^4*5*11^2*79*3126670433290630329599*1218678169672492779682262879 52 Pedersen 2016 16341801001110311495736047552990988262101280749092683005=3^4*5*11^2*79*359*521*14975239*1111048681*1356417582048581900500932319 16418776041153223938004069832498405155285390798422196995=3^4*5*11^2*79*3126668808001029797119*1356411343383829617440421599 52 Pedersen 2016 18135524002920792127131519712012397669862267626095993245=3^4*5*11^2*79*359*521*14975239*1111048681*1505301870678420698286762431 18220948044385327181887295927561220651414545235868294755=3^4*5*11^2*79*3126667385645747505599*1505295632015090770508543231 42 Pedersen 2016 18425937706415651558087323000647341601876351978906496192=2^6*241*283*5783*234323*160381703*297766669*65229962962355133341327 18426016517965543289486325101293284362894333360663843648=2^6*241*283*5783*26679795601560837741647*27359761907486598851519 42 Pedersen 2016 18426171304286385848970932032234415053136347283490971968=2^6*241*283*5783*234323*160381703*297766669*65230789925991875546633 18426250116835424030190374610006658597475017727561039552=2^6*241*283*5783*26661473695147470176969*27378910777536708621503 42 Pedersen 2016 18426829462613513708926330236840288060171727753783317568=2^6*241*283*5783*234323*160381703*297766669*65233119883033191697733 18426908277977631299484882920477957520068212201670101952=2^6*241*283*5783*26614462928064451495103*27428251501661043454469 42 Pedersen 2016 18426905254146096092304082423720539608419204014033130432=2^6*241*283*5783*234323*160381703*297766669*65233388193875330690267 18426984069834389757191134151155854353298265980515052608=2^6*241*283*5783*26609410575070753093019*27433572165496880849087 42 Pedersen 2016 18427315322202526217830246018392790338187813297379576512=2^6*241*283*5783*234323*160381703*297766669*65234839882498139206247 18427394139644765847545750315391429247894525620699460928=2^6*241*283*5783*26583135392536264628519*27461299036654177829567 42 Pedersen 2016 18428853882683325949907163112581924915044656186338906304=2^6*241*283*5783*234323*160381703*297766669*65240286565580268904799 18428932706706307250738519892617665095814034281763237696=2^6*241*283*5783*26496706835484972750239*27553174276787599406399 42 Pedersen 2016 18430197397895361141353254042962423755964322405051277504=2^6*241*283*5783*234323*160381703*297766669*65245042765721437411999 18430276227664835122811881396462265277318850416596082496=2^6*241*283*5783*26432046861616162475999*27622590450797578187839 42 Pedersen 2016 18436051409903872920199232539376502164311157233480901824=2^6*241*283*5783*234323*160381703*297766669*65265766649226343015919 18436130264712168090930655395675948306470741201061075776=2^6*241*283*5783*26211449860425935567279*27863911335492710700479 42 Pedersen 2016 18442717342347523409257466980271474546278250468022923456=2^6*241*283*5783*234323*160381703*297766669*65289364825522005036511 18442796225667391544590371129820697360669170478573571904=2^6*241*283*5783*26021490331444439693119*28077469040769868595231 42 Pedersen 2016 18443221779517575328727736186030383846513099809120794304=2^6*241*283*5783*234323*160381703*297766669*65291150591784954307799 18443300664995025663035965827573033574941501105737189696=2^6*241*283*5783*26008699192026104514239*28092045946451153045399 42 Pedersen 2016 18456482095938033466754375745609389027607200758639589824=2^6*241*283*5783*234323*160381703*297766669*65338093654480451406419 18456561038132602126454771687319789971402766018082227776=2^6*241*283*5783*25721014650366926498579*28426673550805828159679 42 Pedersen 2016 18466486504619489637169966073082611748212416810953152704=2^6*241*283*5783*234323*160381703*297766669*65373510425021493043199 18466565489604985222739759321413123004417236007278143296=2^6*241*283*5783*25544620194162675849599*28638484777551120445439 42 Pedersen 2016 18468994631319995295492014571993143571612776758874108992=2^6*241*283*5783*234323*160381703*297766669*65382389485310615431877 18469073627033267982080643125073124610912529434836134848=2^6*241*283*5783*25504073034803628131519*28687910997199290552197 42 Pedersen 2016 18476547520895308087874951221801344118626092820565187776=2^6*241*283*5783*234323*160381703*297766669*65409127593031714980431 18476626548913852998641497209725163282441941651681125184=2^6*241*283*5783*25388992277598153307151*28829729862125864925119 42 Pedersen 2016 18478636228886867987061839216455295631196833036437754304=2^6*241*283*5783*234323*160381703*297766669*65416521862300366005299 18478715265839249357547051117405832954196334740193029696=2^6*241*283*5783*25358808752283945706739*28867307656708723550399 42 Pedersen 2016 18512403819119600802643235172392659246015778803395915712=2^6*241*283*5783*234323*160381703*297766669*65536063059893919783947 18512483000502955768786775951957118922278664581518577728=2^6*241*283*5783*24940258329124452323519*29405399277461770712267 42 Pedersen 2016 18518881999110878632616746847479827763249292020722064576=2^6*241*283*5783*234323*160381703*297766669*65558996570667018161231 18518961208202750458254531068391655655740484167979672384=2^6*241*283*5783*24871065265560611805119*29497525851798709607951 42 Pedersen 2016 18530554010716088656788658814354537176537216660103766976=2^6*241*283*5783*234323*160381703*297766669*65600316849549700623131 18530633269731570320778670903679888574703888012661201984=2^6*241*283*5783*24752950140990739292351*29656961255251264582619 42 Pedersen 2016 18539856257866823910666215408175546504204161712360762304=2^6*241*283*5783*234323*160381703*297766669*65633247886589832378299 18539935556669942280392190878503284447709485336267461696=2^6*241*283*5783*24664083433595937374399*29778758999686198255739 42 Pedersen 2016 18548529322673474913362176940716613072017888968005235904=2^6*241*283*5783*234323*160381703*297766669*65663951544939386372399 18548608658573086857230490732544150017028988070103436096=2^6*241*283*5783*24584901710955723979199*29888644380675965645039 42 Pedersen 2016 18575279357018782272897360869936643095066444629591674304=2^6*241*283*5783*234323*160381703*297766669*65758649778342106275299 18575358807333828589838034569154381590985850944184709696=2^6*241*283*5783*24359362061852472372899*30208882263181937154239 42 Pedersen 2016 18584343927386578175206637520795043781870627919068618432=2^6*241*283*5783*234323*160381703*297766669*65790739411921791755767 18584423416472668396193251792234660646169115513083404608=2^6*241*283*5783*24288370336306060177087*30311963622308034830519 42 Pedersen 2016 18594918801965645257016244138314586267918137575988187328=2^6*241*283*5783*234323*160381703*297766669*65828175698102435816543 18594998336282663139109707668830045652676621562086108992=2^6*241*283*5783*24208522243467716153663*30429248001327022914719 42 Pedersen 2016 18622558888136301372391790148984645545614536506457441088=2^6*241*283*5783*234323*160381703*297766669*65926024818506247714353 18622638540675689532658177214130620979833837602914852032=2^6*241*283*5783*24012976793040296236223*30722642572158254729969 42 Pedersen 2016 18623399650896624430201205157980041582663746231015479488=2^6*241*283*5783*234323*160381703*297766669*65929001216483372373503 18623479307032128961209421486788731869119710135112525632=2^6*241*283*5783*24007296069814871358719*30731299693360804266623 42 Pedersen 2016 18639327548070165061565246595258768097073713933457646016=2^6*241*283*5783*234323*160381703*297766669*65985387825363337248371 18639407272332583010162324887239666365255404066782830144=2^6*241*283*5783*23902334361881903229119*30892648010173737271091 42 Pedersen 2016 18643369493039407195248556286051781567545791152241815232=2^6*241*283*5783*234323*160381703*297766669*65999696780752225856567 18643449234590060493308682931801139549726634445543231808=2^6*241*283*5783*23876462251004188835519*30932829076440340272887 42 Pedersen 2016 18656152152870910025858767141951553984484220789462146496=2^6*241*283*5783*234323*160381703*297766669*66044948883557229513251 18656231949095645539487567115755235352032051813779776064=2^6*241*283*5783*23796525726907531745471*31058017703342001019619 42 Pedersen 2016 18658753924257682921428235093156576593368910684171296704=2^6*241*283*5783*234323*160381703*297766669*66054159456929385194699 18658833731610733244464854672249074022300278596733919296=2^6*241*283*5783*23780591194481129361599*31083162809140559084939 42 Pedersen 2016 18668720199173822311332373156952926286453397253666852672=2^6*241*283*5783*234323*160381703*297766669*66089441229505120423457 18668800049154693551973931818750205385113638874551013568=2^6*241*283*5783*23720546788126160855777*31178488988071262819519 42 Pedersen 2016 18671850565415048335240049705289542391126349187993274304=2^6*241*283*5783*234323*160381703*297766669*66100523090153259000299 18671930428785144001289052930274021075626497169271109696=2^6*241*283*5783*23702001817232220297899*31208115819613341954239 42 Pedersen 2016 18690636246604436530980628212575485672315645999270592704=2^6*241*283*5783*234323*160381703*297766669*66167026586894146183199 18690716190324779435308779496915214621759870602179903296=2^6*241*283*5783*23593673783739939969599*31382947349846509465439 42 Pedersen 2016 18698033979511590878702922092274094137847732871165291456=2^6*241*283*5783*234323*160381703*297766669*66193215421960654382011 18698113954873568818782677568909241019491004448433443904=2^6*241*283*5783*23552330531858557930619*31450479436794399703231 42 Pedersen 2016 18718731168161788817713744265788427113229864916832229824=2^6*241*283*5783*234323*160381703*297766669*66266485877477673246419 18718811232049927103798507143133911221339220467044787776=2^6*241*283*5783*23440279600527784102079*31635800823642192396179 42 Pedersen 2016 18728176671787892811424882861437168701092653675181434304=2^6*241*283*5783*234323*160381703*297766669*66299924059105576335299 18728256776076405403672094803467117615754497889071749696=2^6*241*283*5783*23390800232806693152899*31718718372991186434239 42 Pedersen 2016 18728260556281053010612827028161982476215024570779635904=2^6*241*283*5783*234323*160381703*297766669*66300221019969611522399 18728340660928356944889582427881874332692532027521036096=2^6*241*283*5783*23390365225270728095039*31719450341391186679199 42 Pedersen 2016 18791162431605740534076854063292380612811426889357941952=2^6*241*283*5783*234323*160381703*297766669*66522900975967911159887 18791242805297386440104884895295972082744747043848954688=2^6*241*283*5783*23083688726347901507519*32248806796312312904207 42 Pedersen 2016 18821610962868949503384702005946484587713256015596787904=2^6*241*283*5783*234323*160381703*297766669*66630692318704605734399 18821691466795266719779568260068664800580791621055244096=2^6*241*283*5783*22947439790285837395199*32492847075111071591039 42 Pedersen 2016 18832300959798553654639467976498444277852719225767562688=2^6*241*283*5783*234323*160381703*297766669*66668536151398286015203 18832381509448200656666252250346661223245877296237818432=2^6*241*283*5783*22901234747997526038719*32576895950093063228323 42 Pedersen 2016 18832342246071276558018002275465851793358347145444999104=2^6*241*283*5783*234323*160381703*297766669*66668682309606539969099 18832422795897513495080320141681540312755628254083448896=2^6*241*283*5783*22901057853659320720139*32577219002639522500799 42 Pedersen 2016 18867215163503492100282012746600528245536122840374750528=2^6*241*283*5783*234323*160381703*297766669*66792136494068514431993 18867295862488415877055867002569594612915747892143321792=2^6*241*283*5783*22755685810648537494719*32846045230112280189113 42 Pedersen 2016 18878019741369820550853797548222748419214787175075950784=2^6*241*283*5783*234323*160381703*297766669*66830385956607351283679 18878100486568160498830286833891763523476684562093559616=2^6*241*283*5783*22712197832398181424959*32927782670901473110559 42 Pedersen 2016 18892000808945392318045389335842825633946428829683246528=2^6*241*283*5783*234323*160381703*297766669*66879880562236631714243 18892081613943652483280999308228716116323035940436105792=2^6*241*283*5783*22656941471392215071363*33032533637536719894719 42 Pedersen 2016 18923473709094438661828308350600691291132334057595432512=2^6*241*283*5783*234323*160381703*297766669*66991298289993595585997 18923554648708807914982762154015737766964494978929684928=2^6*241*283*5783*22536500652005201765567*33264392184680697072269 42 Pedersen 2016 18935513251020399067245227198274577461616662096069762752=2^6*241*283*5783*234323*160381703*297766669*67033919668966383229687 18935594242130381422415244167415649275061917204490477888=2^6*241*283*5783*22491787376946441262519*33351726838712245219007 42 Pedersen 2016 19016816155045773407010699380980038849127558138038445504=2^6*241*283*5783*234323*160381703*297766669*67321741407149103682499 19016897493905106651791108360646714737600162722275154496=2^6*241*283*5783*22207262515048832759999*33924073438792574174339 42 Pedersen 2016 19042902901920418049916600295789350560715687778267866304=2^6*241*283*5783*234323*160381703*297766669*67414091525745722914799 19042984352358167849756574094686358844618635915767077696=2^6*241*283*5783*22121728282144636286399*34101957790293389880239 42 Pedersen 2016 19047826747522377956828674797613480688672407009087205824=2^6*241*283*5783*234323*160381703*297766669*67431522511965565002419 19047908219020434672985305473041341793900864231117491776=2^6*241*283*5783*22105867578181388395379*34135249480476479858879 42 Pedersen 2016 19065352095545734314166760586402417846203528689958112448=2^6*241*283*5783*234323*160381703*297766669*67493564282684668245263 19065433642003332418102614203590368561553922404850545472=2^6*241*283*5783*22050117029409118194383*34253041799967853302719 42 Pedersen 2016 19083260703563874736807932640107557827727371263490532032=2^6*241*283*5783*234323*160381703*297766669*67556962838369782327367 19083342326620296564200938572286563542038580994161139008=2^6*241*283*5783*21994243308839815715519*34372314076222269863687 42 Pedersen 2016 19095782744180678966437817447866170076101889938545907904=2^6*241*283*5783*234323*160381703*297766669*67601292318837028454399 19095864420796460677802175714680444757653711544787724096=2^6*241*283*5783*21955808773293755351039*34455078092235576355199 42 Pedersen 2016 19106848376554596099134219271168902783321448109079056576=2^6*241*283*5783*234323*160381703*297766669*67640465944701091163231 19106930100500378151098636464537200975744861838025240384=2^6*241*283*5783*21922264513339427909951*34527795978053966505119 42 Pedersen 2016 19177010564212172569536040054444761537608168572712261824=2^6*241*283*5783*234323*160381703*297766669*67888848250946921425919 19177092588256155385675593165504480617665282158994515776=2^6*241*283*5783*21718130476281627588479*34980312321357597089279 42 Pedersen 2016 19189328979064549031055380408243237289600612171858848704=2^6*241*283*5783*234323*160381703*297766669*67932456872520393056699 19189411055796942184492561766632454665750415196869727296=2^6*241*283*5783*21683715901104719413439*35058335518107976895099 42 Pedersen 2016 19309068828433666097467626220784820956842777420625244352=2^6*241*283*5783*234323*160381703*297766669*68356349868573773784287 19309151417318182141062117058354745370114954345252884288=2^6*241*283*5783*21368558988366573388607*35797385426899503647519 42 Pedersen 2016 19353480868203704236840101026688175515283619140180199104=2^6*241*283*5783*234323*160381703*297766669*68513573655793760856599 19353563647047708036176108401096268195839134328084248896=2^6*241*283*5783*21259661674101148007639*36063506528384916100799 42 Pedersen 2016 19469800797532302565626942218070928445642052295497061568=2^6*241*283*5783*234323*160381703*297766669*68925359737065834167983 19469884073900723290108324211376136148284356156038277952=2^6*241*283*5783*20991868210332982710719*36743086073425154709103 42 Pedersen 2016 19488869434473882006797601143040690853012692301629646528=2^6*241*283*5783*234323*160381703*297766669*68992864930085602926743 19488952792402810295859360176466510776511272133641705792=2^6*241*283*5783*20950151435055879894719*36852308041722026283863 42 Pedersen 2016 19510732474789756550102674511049572146761097860394181824=2^6*241*283*5783*234323*160381703*297766669*69070262636122154695919 19510815926231434100198586883946575547811184179498195776=2^6*241*283*5783*20903018908319983404479*36976838274494474543279 42 Pedersen 2016 19533003342921981408598693940861587324722813255351429824=2^6*241*283*5783*234323*160381703*297766669*69149104100071026258919 19533086889620772213987651793882439211537101466381587776=2^6*241*283*5783*20855750006381200128679*37102948640382129382079 42 Pedersen 2016 19602950120004335350617215163620817308455100807146532032=2^6*241*283*5783*234323*160381703*297766669*69396723827821946452367 19603033965879971298185161707924779769217361000585139008=2^6*241*283*5783*20711909201012177738687*37494409173502071965519 42 Pedersen 2016 19628566802539614282402992256906939066273840203550405824=2^6*241*283*5783*234323*160381703*297766669*69487409863974822639919 19628650757983104298360127370810063270672774952430291776=2^6*241*283*5783*20660889784099241584879*37636114626567884306879 42 Pedersen 2016 19658262501735693923296761716082290328270243272328611008=2^6*241*283*5783*234323*160381703*297766669*69592536093617239200623 19658346584193836656048703060564853513586049170595707712=2^6*241*283*5783*20602798665444836535743*37799331974864705916719 42 Pedersen 2016 19711637311306803393044687260665349864769834695790661824=2^6*241*283*5783*234323*160381703*297766669*69781489128568289325919 19711721622060055688144419686471540102486408778828115776=2^6*241*283*5783*20501096142921892069279*38089987532338700508479 42 Pedersen 2016 19860287534782611686384663783029097089056436877380851904=2^6*241*283*5783*234323*160381703*297766669*70307728212091111718399 19860372481343641612338218320984532996203027527250700096=2^6*241*283*5783*20234546828366815463039*38882775930416599507199 42 Pedersen 2016 19865871664238741784895526023726095354369057144678270784=2^6*241*283*5783*234323*160381703*297766669*70327496679965261484929 19865956634684249355666564771265343223644664454148839616=2^6*241*283*5783*20224974497866452538559*38912116728791112198209 42 Pedersen 2016 19964263088184037303386423840750436148026049992816570304=2^6*241*283*5783*234323*160381703*297766669*70675813766564893676299 19964348479470032926127116817037086888726413053313093696=2^6*241*283*5783*20061069173123656798399*39424339140133540129739 42 Pedersen 2016 20043383236574627106728634516884524212443999321401110208=2^6*241*283*5783*234323*160381703*297766669*70955908295881424800823 20043468966273875920649849002628742025861463477587464512=2^6*241*283*5783*19935387290178751446719*39830115552394976605943 42 Pedersen 2016 20043491438051950979244056888437476674399493615570129088=2^6*241*283*5783*234323*160381703*297766669*70956291341698184011103 20043577168213999910279542199785231144278789650702004032=2^6*241*283*5783*19935218923087111398719*39830666965303375864223 42 Pedersen 2016 20208965888907124488036214198242252917418324618699197632=2^6*241*283*5783*234323*160381703*297766669*71542090147299309085967 20209052326837654305586712594274069057108558424531481408=2^6*241*283*5783*19688085610799933412287*40663599083191678925519 42 Pedersen 2016 20316793159424081640154105304356684452719625074668531904=2^6*241*283*5783*234323*160381703*297766669*71923811228430717298399 20316880058554168594896649858771542739375264863505420096=2^6*241*283*5783*19537271123622934603039*41196134651500085947199 42 Pedersen 2016 20342201319506421394519963840162737613384894165000927552=2^6*241*283*5783*234323*160381703*297766669*72013759070842858869737 20342288327312468720559683317174953937166761589202577088=2^6*241*283*5783*19502805315445266073769*41320548302089896047807 42 Pedersen 2016 20351185006790431695243375086934380373873684242296275136=2^6*241*283*5783*234323*160381703*297766669*72045562368896847938591 20351272053021569232511192169913383714064725764373282624=2^6*241*283*5783*19490712891283601769311*41364444024305549421119 42 Pedersen 2016 20401654242533702714113960088727810462454742513757908416=2^6*241*283*5783*234323*160381703*297766669*72224229334493159132771 20401741504632209074268205918903998262958435951806599744=2^6*241*283*5783*19423668606617467852991*41610155274567994531619 42 Pedersen 2016 20490936146674115875274321202372788278396157308760038336=2^6*241*283*5783*234323*160381703*297766669*72540297661276870535291 20491023790649808336028538196689305059481688651649295424=2^6*241*283*5783*19308614070148743778619*42041278137820430008511 42 Pedersen 2016 20500056254895971242836226315079567967679257632548399552=2^6*241*283*5783*234323*160381703*297766669*72572583905320621907987 20500143937880254506243515545142627793551559780704065088=2^6*241*283*5783*19297106358151116292307*42085072093861808867519 42 Pedersen 2016 20529445601748168338402490075404026938309503808404250304=2^6*241*283*5783*234323*160381703*297766669*72676625612027853943799 20529533410436771926351818975658809186114722915267813696=2^6*241*283*5783*19260321602512855838399*42225898556207301357239 42 Pedersen 2016 20614651564451632468625318568736161315623984939427150784=2^6*241*283*5783*234323*160381703*297766669*72978264631972199421179 20614739737583776877779381871072480614170865309358359616=2^6*241*283*5783*19156169072448564182459*42631690106215938490559 42 Pedersen 2016 20809080318490648297026886666793077383255782738785870784=2^6*241*283*5783*234323*160381703*297766669*73666565039086132241179 20809169323234822090049733776453875718062157737609239616=2^6*241*283*5783*18931359187702150176959*43544800398076285316059 42 Pedersen 2016 20890766882518746162905912380440468519443789560509208768=2^6*241*283*5783*234323*160381703*297766669*73955744978309501981183 20890856236653264097979104208560198109625583022563026752=2^6*241*283*5783*18841790617906529790719*43923548907095275442303 42 Pedersen 2016 21123985115263949655137413674922651413581131042334461504=2^6*241*283*5783*234323*160381703*297766669*74781364652407209084749 21124075466921127143122941948540917399846575577974018496=2^6*241*283*5783*18600209505991957236749*44990749693107555099839 42 Pedersen 2016 21326137611627561895777243216068467246675998365398309056=2^6*241*283*5783*234323*160381703*297766669*75497008005849934490111 21326228827932813568426677942042788482331269255826794304=2^6*241*283*5783*18405972833955488853119*45900629718586748888831 42 Pedersen 2016 21350122756611257953579884841259205220613952588287917504=2^6*241*283*5783*234323*160381703*297766669*75581918209274124814499 21350214075505939844741070034295304099014951306434642496=2^6*241*283*5783*18383776019572087707839*46007736736394340358499 42 Pedersen 2016 21358733795490871073251055846906480176629101064328226368=2^6*241*283*5783*234323*160381703*297766669*75612402288626514495533 21358825151216748808734025820348054742745447872850377152=2^6*241*283*5783*18375848940106208316653*46046147895212609430719 42 Pedersen 2016 21381031172496915091143006617324857795963630687834989376=2^6*241*283*5783*234323*160381703*297766669*75691337597072472111281 21381122623593290022799537537738622194498845755546811584=2^6*241*283*5783*18355424439228166016369*46145507704536609346751 42 Pedersen 2016 21386276278441664894580279175662463268079315534179571904=2^6*241*283*5783*234323*160381703*297766669*75709905882277872038399 21386367751972443732211959845202767108398209517261580096=2^6*241*283*5783*18350641095215076023039*46168859333755099267199 42 Pedersen 2016 21459272100026682061193061349467955336063738860515989696=2^6*241*283*5783*234323*160381703*297766669*75968319582262294589951 21459363885775700556306093358779069583917855101240108864=2^6*241*283*5783*18284893612081831164671*46493020516872766677119 42 Pedersen 2016 21489162170997151444573074868792143599228723385744265408=2^6*241*283*5783*234323*160381703*297766669*76074133910597238237023 21489254084592190972109581483903168211879518686218645312=2^6*241*283*5783*18258405183934833126719*46625323273354708362143 42 Pedersen 2016 21546818692926942461442793474024238953447426769856581824=2^6*241*283*5783*234323*160381703*297766669*76278244705387832845919 21546910853130861659253750879632769497036229650067795776=2^6*241*283*5783*18208000815280104773279*46879838436800031324479 42 Pedersen 2016 21564737383254925999442444938907448366864407248807608256=2^6*241*283*5783*234323*160381703*297766669*76341678953622662452811 21564829620100793047031024704030817609257653596705751104=2^6*241*283*5783*18192517644511931044031*46958755855803034660619 42 Pedersen 2016 21652688197677601556630403438360065339000515553638469824=2^6*241*283*5783*234323*160381703*297766669*76653035067960471373919 21652780810707308435482479068813655314215719793041747776=2^6*241*283*5783*18117733504893269647679*47344896109759504978079 42 Pedersen 2016 21699571130802959849466376671313103922346657542607962304=2^6*241*283*5783*234323*160381703*297766669*76819006105096284640799 21699663944360676860110220840495187255627411250916261696=2^6*241*283*5783*18078669894811098918239*47549930756977488974399 42 Pedersen 2016 21826025815686909272353894450309669390997140458755879104=2^6*241*283*5783*234323*160381703*297766669*77266670400006185061599 21826119170117490696541284390424376468131424690890968896=2^6*241*283*5783*17975957024358455972639*48100307922340032340799 42 Pedersen 2016 21946186931517157518725819786516435873938952593481728192=2^6*241*283*5783*234323*160381703*297766669*77692054728337721783327 21946280799901705692967707122174779786416730895454371648=2^6*241*283*5783*17881763913566724551519*48619885361463300483647 42 Pedersen 2016 21978957293154476438351073654328697803753153282335901504=2^6*241*283*5783*234323*160381703*297766669*77808065620696324037249 21979051301704645071104925432656253526448889862311778496=2^6*241*283*5783*17856625207662778487999*48761034959725848801089 42 Pedersen 2016 22011898382752511420746383149638988607943082323985073856=2^6*241*283*5783*234323*160381703*297766669*77924680909896573573911 22011992532198539342093698092026929147703870213091293504=2^6*241*283*5783*17831585719577108508119*48902689737011768317631 42 Pedersen 2016 22063341984281926644195078704495942000464112834248284352=2^6*241*283*5783*234323*160381703*297766669*78106797243723400524287 22063436353762887557538241758203271929397251769057044288=2^6*241*283*5783*17792934829182035147519*49123456961233668628607 42 Pedersen 2016 22241746019417778734343669527641757629207057979366643904=2^6*241*283*5783*234323*160381703*297766669*78738368281771271270399 22241841151969729033470483420302289449425714318451468096=2^6*241*283*5783*17662998016068955079039*49884964812394619443199 42 Pedersen 2016 22411254064516774684060088241986139925087555064303467456=2^6*241*283*5783*234323*160381703*297766669*79338446480221862838011 22411349922089723437875758809209920578185108372998947904=2^6*241*283*5783*17545085509283508093119*50602955517630657996731 42 Pedersen 2016 22542835428307014437979322600296822699142157684770981312=2^6*241*283*5783*234323*160381703*297766669*79804259814844448692547 22542931848680694552446789990018517827564241200474520128=2^6*241*283*5783*17457018913014522083519*51156835448522229860867 42 Pedersen 2016 22581383421037326383922462769574355110775732381905494336=2^6*241*283*5783*234323*160381703*297766669*79940724193381660140041 22581480006288751159020201252813604175065798791477919424=2^6*241*283*5783*17431764211357464450761*51318554528716498941119 42 Pedersen 2016 22643932099244666154636381331517529717065776246335046336=2^6*241*283*5783*234323*160381703*297766669*80162153790497275470791 22644028952029735715866667222749689027799485097431727424=2^6*241*283*5783*17391293817198188581511*51580454519991390141119 42 Pedersen 2016 22711437390331103739974467353125871739154614147916190656=2^6*241*283*5783*234323*160381703*297766669*80401130373805604757211 22711534531850277431069970887861877294930404798658800704=2^6*241*283*5783*17348305500151624458431*51862419420346283550619 42 Pedersen 2016 22833642848999748689162694896037304429284407694901079488=2^6*241*283*5783*234323*160381703*297766669*80833751913602615036003 22833740513216966645998997591917017292760134979834925632=2^6*241*283*5783*17272240210218231929123*52371106250076686358719 42 Pedersen 2016 22851077156782877793396584753696386256416671700657988032=2^6*241*283*5783*234323*160381703*297766669*80895471391280640650867 22851174895570239184477993736782716025134599522927763008=2^6*241*283*5783*17261567725589558587187*52443498212383385315519 52 Pedersen 2016 22961173609893630536208898446198810486394193398972501905=3^4*5*11^2*79*359*521*14975239*1111048681*1905844991431088009072526139 23069327983939290595243607386985244241644101602873258095=3^4*5*11^2*79*3126664662232987738939*1905838752770481494054073599 42 Pedersen 2016 23085748442830866728604738744660287270866203647163326656=2^6*241*283*5783*234323*160381703*297766669*81726235043103292535711 23085847185355897442654674704213793099281491705448144704=2^6*241*283*5783*17122055874551588574431*53413773715244007213119 42 Pedersen 2016 23146890037164495719945455351936576121247561865514016448=2^6*241*283*5783*234323*160381703*297766669*81942683399620491894263 23146989041204782214275830361426695157915707683085361472=2^6*241*283*5783*17086922604053331777719*53665355342259463368383 42 Pedersen 2016 23274607900470278173165515450875998259877969613447597504=2^6*241*283*5783*234323*160381703*297766669*82394819493088699894499 23274707450786304679592525510246634735240377135777362496=2^6*241*283*5783*17015067283286281198499*54189346756494721947839 42 Pedersen 2016 23316403335712570093346221811964221083332105285831143104=2^6*241*283*5783*234323*160381703*297766669*82542780195891952620599 23316503064796325131581249459127043007057035642611224896=2^6*241*283*5783*16991990387878941179639*54360384354705314692799 42 Pedersen 2016 23381093162565424480107262692441209608764894622365421504=2^6*241*283*5783*234323*160381703*297766669*82771789708291618063499 23381193168340960296806607071452742601106112871235858496=2^6*241*283*5783*16956685801946065067339*54624698453037856247999 42 Pedersen 2016 23545720554308625244493941525504909718539254185853459904=2^6*241*283*5783*234323*160381703*297766669*83354589826098326628899 23545821264229594777563930671214447297208452706903532096=2^6*241*283*5783*16869030734823720909539*55295153637966908971199 32 Pedersen 2016 23569217409086367916929045073265337787927032846877139985=3^3*5*11*41*157*3079*3303533*38949713321*6223613236744970673276483659 23569224544240289541628195614427185657462826053611052015=3^3*5*11*41*157*3079*128671702254800459*6223613236487627307725220107 42 Pedersen 2016 23610274130336563278411289800632532951114721855854647488=2^6*241*283*5783*234323*160381703*297766669*83583116994727786581503 23610375116366540606731512994894041032881120996299597632=2^6*241*283*5783*16835487963146784558719*55557223578273305274623 42 Pedersen 2016 23758195331735156747210136462091939712524449230828717248=2^6*241*283*5783*234323*160381703*297766669*84106775255290434494063 23758296950454733368541182410895472591794753581802404672=2^6*241*283*5783*16760309275987578972719*56156060525995158773183 42 Pedersen 2016 23764250930673128127562652518401042290606312225815884608=2^6*241*283*5783*234323*160381703*297766669*84128212779976150463473 23764352575293754965625680547150420817541372272892882112=2^6*241*283*5783*16757280273832064406719*56180527052836389308593 42 Pedersen 2016 23809628866785905425318545743015443538936388960406638784=2^6*241*283*5783*234323*160381703*297766669*84288855952611752611679 23809730705497358625544344117704032025203966103902711616=2^6*241*283*5783*16734701317199200292159*56363749182104855571359 42 Pedersen 2016 23905827639793664983070890320812951714182438980844352704=2^6*241*283*5783*234323*160381703*297766669*84629410799822338993199 23905929889967184278559178523976483368159379376202943296=2^6*241*283*5783*16687518104280838449599*56751487242233803795439 42 Pedersen 2016 24061329891958560839780654249673418534425501291923730112=2^6*241*283*5783*234323*160381703*297766669*85179906861998169217847 24061432807247402895919463773646250278368662873338155328=2^6*241*283*5783*16613146047399105906167*57376355361291366563519 42 Pedersen 2016 24280949216077959634165508381170051214339001761594153152=2^6*241*283*5783*234323*160381703*297766669*85957384817605162457087 24281053070724113964172352904776301645933199330329159488=2^6*241*283*5783*16511901367803582827519*58255077996493882881407 42 Pedersen 2016 24286657035626475718257269250672138973433195094577817536=2^6*241*283*5783*234323*160381703*297766669*85977591162795175440491 24286760914686155823087854334055041910076695121006172224=2^6*241*283*5783*16509326854427269048619*58277858855060209643711 42 Pedersen 2016 24606561378181379656298968301188196020204836079694417728=2^6*241*283*5783*234323*160381703*297766669*87110089749778199740193 24606666625538155711303435732366131981101065924354150592=2^6*241*283*5783*16369376124191649174719*59550308172278853817313 42 Pedersen 2016 24769890858807529917455062424314708694481619142259356992=2^6*241*283*5783*234323*160381703*297766669*87688295111245090932377 24769996804758305162876985454488335212484937196331526848=2^6*241*283*5783*16301051817547138087769*60196837840390256096447 42 Pedersen 2016 25013969158539760411749197268223440154451016470256369088=2^6*241*283*5783*234323*160381703*297766669*88552360685823934013603 25014076148463949837220386798049431211864756637218964032=2^6*241*283*5783*16202610883204837398719*61159344349311399866723 42 Pedersen 2016 25014961775655520704698520915048133537559784496857914176=2^6*241*283*5783*234323*160381703*297766669*88555874665884460280081 25015068769825339014223213633181844986934353990003950784=2^6*241*283*5783*16202219148966424335551*61163250063610339196369 42 Pedersen 2016 25056500734654723891447019473244259604984323755023237312=2^6*241*283*5783*234323*160381703*297766669*88702927412951404566047 25056607906495268748387176304650800304930669525020344128=2^6*241*283*5783*16185886662118898134367*61326635297524809683519 52 Pedersen 2016 25417331136752324826861819751262102406378022670666206605=3^4*5*11^2*79*359*521*14975239*1111048681*2109713295388879298079689999 25537054787891054571672868845090780369436854298293793395=3^4*5*11^2*79*3126663673194281759999*2109707056729261821767216399 52 Pedersen 2016 25514505091650453285249925514123938844863775671977323805=3^4*5*11^2*79*359*521*14975239*1111048681*2117779019658319483337271359 25634686462783992867359018960969765341110557880416916195=3^4*5*11^2*79*3126663637980418820159*2117772780998737220887737599 42 Pedersen 2016 25588772290469253036849027194600412067541244314817986752=2^6*241*283*5783*234323*160381703*297766669*90587230639462793798687 25588881738945426723694353535202770121857052552390573888=2^6*241*283*5783*15986563512416313287519*63410261673738783763007 42 Pedersen 2016 25625992096684997424396231667898656796528084892813771328=2^6*241*283*5783*234323*160381703*297766669*90718993083231053139293 25626101704357987103480689285585296179495929598353644992=2^6*241*283*5783*15973278587768965014719*63555309042154391376413 52 Pedersen 2016 25978814638146459732508892066555713082528093289282467805=3^4*5*11^2*79*359*521*14975239*1111048681*2156318078623570395267538559 26101183053775976735471473346969141953294894737556572195=3^4*5*11^2*79*3126663473360653497599*2156311839964152752583327359 42 Pedersen 2016 26010495119296514212891598325906389677360061927428074688=2^6*241*283*5783*234323*160381703*297766669*92080178512351979074703 26010606371568526904949073489434826757920907334253466432=2^6*241*283*5783*15840620490408211237823*65049152568636071088719 42 Pedersen 2016 26488975037450719780858330036922574850271393004257915072=2^6*241*283*5783*234323*160381703*297766669*93774053083987062576607 26489088336280391716044982847957851861650766632227983168=2^6*241*283*5783*15686344897422312068927*66897302733257053759519 42 Pedersen 2016 26946728463560523893054627860462791710625816358562836672=2^6*241*283*5783*234323*160381703*297766669*95394553462680795146207 26946843720296358042312223332563569805400847708220149568=2^6*241*283*5783*15548800415973870719519*68655347593399227678527 42 Pedersen 2016 26983503287128410682216300449275563094793326844082361536=2^6*241*283*5783*234323*160381703*297766669*95524740616110992866991 26983618701157777923740286102342820057912282910527548224=2^6*241*283*5783*15538144479605343261119*68796190683197952857711 42 Pedersen 2016 27092258495529411603569409627648109876968568868842336192=2^6*241*283*5783*234323*160381703*297766669*95909746705298542818827 27092374374727318403151847384603460593734624664059203648=2^6*241*283*5783*15506958427913808531647*69212382824077037539019 42 Pedersen 2016 27230262300184215407687404488264542973565360013903574976=2^6*241*283*5783*234323*160381703*297766669*96398296227701550921131 27230378769652962644001144715936187152055613666282833984=2^6*241*283*5783*15468073763422757727851*69739817010971096445119 42 Pedersen 2016 27236093401845020301433775944499210759266224938631074752=2^6*241*283*5783*234323*160381703*297766669*96418939005910422964187 27236209896254596427246639661867510356499550749349325888=2^6*241*283*5783*15466447396789558628507*69762086155813167587519 42 Pedersen 2016 27239209561401193837227860525228502602603646855975066304=2^6*241*283*5783*234323*160381703*297766669*96429970573240817989799 27239326069139229455577456069735122744586022595755877696=2^6*241*283*5783*15465578808053297730239*69773986311879823511399 42 Pedersen 2016 27305640194778835781848244640458377074026846267421870784=2^6*241*283*5783*234323*160381703*297766669*96665142743245527928679 27305756986654442046516565987804498674018410165453239616=2^6*241*283*5783*15447152239676886778559*70027585050260944401959 42 Pedersen 2016 27512322634791681742624610072309350651146329603926805824=2^6*241*283*5783*234323*160381703*297766669*97396822624172994946169 27512440310690868915503864315386722978066893719605891776=2^6*241*283*5783*15390900966605334770879*70815516204259963427129 42 Pedersen 2016 27596037810856856678527386360881612559676821603257691328=2^6*241*283*5783*234323*160381703*297766669*97693184085995209190543 27596155844823181615493332766596759425344939952255324992=2^6*241*283*5783*15368569123765343177663*71134209508922169264719 42 Pedersen 2016 27631227670777485435944174244414374722959903682709952704=2^6*241*283*5783*234323*160381703*297766669*97817760283735953843199 27631345855258125845279541567964504195641406429345343296=2^6*241*283*5783*15359257886242892249599*71268096944185364845439 42 Pedersen 2016 27645065707639489589739950115476546006329992236279485504=2^6*241*283*5783*234323*160381703*297766669*97866748544000501703749 27645183951308278245865928922492371883452780943701314496=2^6*241*283*5783*15355608545742530331839*71320734544950274623749 42 Pedersen 2016 27832657789145930857953954453582449291759996511132944704=2^6*241*283*5783*234323*160381703*297766669*98530846335041858001449 27832776835184885228409446005896281875975501258204911296=2^6*241*283*5783*15306805322826575187689*72033635558907586065599 42 Pedersen 2016 27897799390441508734173223632132046973884884561112945856=2^6*241*283*5783*234323*160381703*297766669*98761455181523496980911 27897918715104576695664859099689601821644407337284381504=2^6*241*283*5783*15290143941952507083119*72280905786263293149631 42 Pedersen 2016 28361657987854903369506050648433038506949957172727958848=2^6*241*283*5783*234323*160381703*297766669*100403568576843969889913 28361779296537215031443072691234589786232474814417851072=2^6*241*283*5783*15175549102670400518969*74037614020865872622783 42 Pedersen 2016 28379938413407399050336050191227782218776875639577589824=2^6*241*283*5783*234323*160381703*297766669*100468283409854080187669 28380059800278874999470267646791563777696742196984227776=2^6*241*283*5783*15171172897857920959679*74106705058688462479829 42 Pedersen 2016 28458310892061514282112623257270525333273273115360536256=2^6*241*283*5783*234323*160381703*297766669*100745731101327382908311 28458432614148305185710839163397554965330181526975863104=2^6*241*283*5783*15152526753344275773119*74402798894675410387031 42 Pedersen 2016 28551595813363236735721803761641386633286563536141206918=2*7*11*37*41*97*163*718121*8190097*25404257*51733466093996750401860449 28551640182125540784756260234900361270407904654824962682=2*7*11*37*41*97*163*149415741180793477991*51733167263609653971166049 52 Pedersen 2016 28848029568141342492717503880908957537869562568977901405=3^4*5*11^2*79*359*521*14975239*1111048681*2394471362796895338525354239 28983912891589959273163910949423284499457377775178258595=3^4*5*11^2*79*3126662573638903353599*2394465124138377417591287039 42 Pedersen 2016 28874793516064837033339808064747096680519948392028148928=2^6*241*283*5783*234323*160381703*297766669*102220128039548985876143 28874917019534026144457804079641711259970155657930435392=2^6*241*283*5783*15056479398330674673263*75973243187910614454719 42 Pedersen 2016 29031954922376468433399249094799190296132323144703393728=2^6*241*283*5783*234323*160381703*297766669*102776497700412969402443 29032079098057526049376613260323102069367257114392854592=2^6*241*283*5783*15021509378147969079563*76564582868957303574719 42 Pedersen 2016 29242541234870225406816010806402613808871712782098471104=2^6*241*283*5783*234323*160381703*297766669*103521997744058717913599 29242666311272534665728927435084975251514857682558936896=2^6*241*283*5783*14975691132725931968639*77355901158025089196799 42 Pedersen 2016 29438877127805769300815276001710991238376898127611467968=2^6*241*283*5783*234323*160381703*297766669*104217049644723032016383 29439003043977335797561188818182363480902234421201823552=2^6*241*283*5783*14934007608285380670719*78092636583129954597503 42 Pedersen 2016 29505021523952144534941063645136450668952381013601518784=2^6*241*283*5783*234323*160381703*297766669*104451208501631200141679 29505147723036985786405419859745640958009360317946231616=2^6*241*283*5783*14920182766416979316159*78340620281906524077359 42 Pedersen 2016 29648430196148745553950321352653628227233450788702158784=2^6*241*283*5783*234323*160381703*297766669*104958891883878155919179 29648557008622164570663892771913058190754067099440791616=2^6*241*283*5783*14890576935212612948159*78877909495357846222859 42 Pedersen 2016 29729731702356779961089236684153260058201471170399170752=2^6*241*283*5783*234323*160381703*297766669*105246708673624885502687 29729858862573571113290566243170376759715513800110509888=2^6*241*283*5783*14874012472417825567007*79182290747899363187519 42 Pedersen 2016 29759705088816935289826358855317580249127478723761959104=2^6*241*283*5783*234323*160381703*297766669*105352817948485373541599 29759832377236105070832900980952305649005511217539288896=2^6*241*283*5783*14867945148123873280799*79294467347053803512639 42 Pedersen 2016 30066869233729694067814494637409892811500131082337450688=2^6*241*283*5783*234323*160381703*297766669*106440214753753329105703 30066997835953497157333140691878185820442526034263770432=2^6*241*283*5783*14806963083288335118823*80442846217157297238719 42 Pedersen 2016 30271535955158400645099989761063562958356073863928915136=2^6*241*283*5783*234323*160381703*297766669*107164758756405241028591 30271665432784138988059026296340700388957671249095842624=2^6*241*283*5783*14767500360274067109311*81206852942823477171119 42 Pedersen 2016 30291839485271699803368636828718392769951033698587397568=2^6*241*283*5783*234323*160381703*297766669*107236635614907504896483 30291969049739839439445953988973631688908737673160421952=2^6*241*283*5783*14763634968443353110719*81282595193156455037603 42 Pedersen 2016 30391285842829112753097987859375011674918077055850030784=2^6*241*283*5783*234323*160381703*297766669*107588687289214019638679 30391415832649909880147721322387109728059208987213879616=2^6*241*283*5783*14744828749225168762559*81653453086681154127959 42 Pedersen 2016 30419365912262123984000327747692494683647983563122638016=2^6*241*283*5783*234323*160381703*297766669*107688094001549637937871 30419496022187190882487488790267124221298238336960398144=2^6*241*283*5783*14739556232317037510591*81758132315924903679119 42 Pedersen 2016 30424541975987956530398184421581495763692044374669038784=2^6*241*283*5783*234323*160381703*297766669*107706417869268418261679 30424672108052119472241451831578306810899619533672311616=2^6*241*283*5783*14738586134485869351359*81777426281474852162159 42 Pedersen 2016 30428485923434587545307822946584259427722065921124430784=2^6*241*283*5783*234323*160381703*297766669*107720379902027252601179 30428616072367830146109274678462290173111855682131479616=2^6*241*283*5783*14737847334626728992959*81792127114092826860059 42 Pedersen 2016 30545663581195600866932868779144972464100741032510661824=2^6*241*283*5783*234323*160381703*297766669*108135202441729265575919 30545794231321942455193071188405824200221257091708115776=2^6*241*283*5783*14716043819360088569279*82228753169061480258479 42 Pedersen 2016 30759829496223052195072972716967121395049205201686337728=2^6*241*283*5783*234323*160381703*297766669*108893374694757960978943 30759961062381346470188605735650447563921596331347830592=2^6*241*283*5783*14676913319859672174719*83026055921590592056063 52 Pedersen 2016 30817475228580542944767145615867050211838510946594383907=3^4*7*11*17*83*271*1733*795713*3225245539*2905408531933195614235638101 30949080105001527469746932965256810843936987721189890013=3^4*7*11*17*83*1210425713081163233621*2905406116229868873024142079 42 Pedersen 2016 30857280435288823158911903642228108635267313433413981632=2^6*241*283*5783*234323*160381703*297766669*109238362355477862702467 30857412418264956968127702963799752056051213702365817408=2^6*241*283*5783*14659408487105837316287*83388548415064328638019 42 Pedersen 2016 31073011375354841904451310246451840485111674209659893312=2^6*241*283*5783*234323*160381703*297766669*110002074979201796370797 31073144281056864463592964596969087059582814110173768128=2^6*241*283*5783*14621306251020662339117*84190363274873437283519 42 Pedersen 2016 31799450556175747664758212853488471232235895592356052672=2^6*241*283*5783*234323*160381703*297766669*112573754185674544217207 31799586569008525509207972551812700812220876219317813568=2^6*241*283*5783*14499209554923782819519*86884139177443064649527 42 Pedersen 2016 31893502186050325315189478124027374091458880201395418304=2^6*241*283*5783*234323*160381703*297766669*112906707896417402026799 31893638601161393597908463262289877270642787039662885696=2^6*241*283*5783*14484062892294349986239*87232239550815355292399 42 Pedersen 2016 31940016233616663989758808666718052227879750222548207296=2^6*241*283*5783*234323*160381703*297766669*113071373035761982710551 31940152847677942505983177818765874113276931609090259264=2^6*241*283*5783*14476625418314819950271*87404342164139466012119 42 Pedersen 2016 32052725970364071515457677273593711038003629012224110784=2^6*241*283*5783*234323*160381703*297766669*113470378615324444243679 32052863066508225947372581287145464428275159144734199616=2^6*241*283*5783*14458748151125205660959*87821225010891541834559 42 Pedersen 2016 32202173154026258842097449537394013107818039064944878784=2^6*241*283*5783*234323*160381703*297766669*113999439030617094301679 32202310889386954599354586794013563588183049727927671616=2^6*241*283*5783*14435354698608552074159*88373678878700845479359 42 Pedersen 2016 32545806036685223329695649047390376452955452840511161536=2^6*241*283*5783*234323*160381703*297766669*115215939409899660666991 32545945241834893066106481429260136279369592552882748224=2^6*241*283*5783*14382867464756496907711*89642666491835467011119 42 Pedersen 2016 32836286799144012803250425425654910308546362696558415552=2^6*241*283*5783*234323*160381703*297766669*116244275100509646466487 32836427246740035494494092287189088114956036248208929088=2^6*241*283*5783*14339859155471803250807*90714010491730146467519 52 Pedersen 2016 32889269400658092346617660323381227958414396720882349945=3^4*5*11^2*79*359*521*14975239*1111048681*2729906163510008220481763891 33044188239097367392977150161668167831807015292554578055=3^4*5*11^2*79*3126661572661045032191*2729899924852491277406018099 42 Pedersen 2016 32979183806813954835468950349960906122398175852871187648=2^6*241*283*5783*234323*160381703*297766669*116750147130810508576463 32979324865610060192655529777188863397014283298937406272=2^6*241*283*5783*14319141587521296445583*91240600089981515382719 42 Pedersen 2016 33345838048475979195030013906445482073781841224095002304=2^6*241*283*5783*234323*160381703*297766669*118048145799028992255799 33345980675528176599037595692137322417687049570376421696=2^6*241*283*5783*14267257549944663413239*92590482795776632094399 42 Pedersen 2016 33431343977377793387847609285891830993724440299021316416=2^6*241*283*5783*234323*160381703*297766669*118350846734210439624521 33431486970156549138885358037159549312605265617612631744=2^6*241*283*5783*14255413985183136607241*92905027295719606269119 42 Pedersen 2016 33571430281695636680377294198764772373384250645410158784=2^6*241*283*5783*234323*160381703*297766669*118846768547676924231679 33571573873652515021607900217699636132669384456172791616=2^6*241*283*5783*14236213758642315135359*93420149335726912348159 52 Pedersen 2016 33648513609114825617218777613844802843094650733733890055=3^4*5*11^2*79*359*521*14975239*1111048681*2792925667501600110591148109 33807008727386680660142079426764570704198290264932349945=3^4*5*11^2*79*3126661411432712828159*2792919428844244395847606349 52 Pedersen 2016 33790933668904984616755779767296166857938318021427888605=3^4*5*11^2*79*359*521*14975239*1111048681*2804746951650309094811241599 33950099630604960992696121262876734187306102018866511395=3^4*5*11^2*79*3126661381996290028799*2804740712992982816490499199 42 Pedersen 2016 33851686471819652996294655698111245539786500446016560576=2^6*241*283*5783*234323*160381703*297766669*119838908062801580349731 33851831262490271845556102485892866179835747384766456384=2^6*241*283*5783*14198541671325345405119*94449960938168538196451 42 Pedersen 2016 33874302276458143018360825855483880329281023368202309824=2^6*241*283*5783*234323*160381703*297766669*119918970642108950413919 33874447163861239964919045947697487586805182050849107776=2^6*241*283*5783*14195543764160548651679*94533021424640705014079 42 Pedersen 2016 34754170084345003320869725904575865344015117582610670784=2^6*241*283*5783*234323*160381703*297766669*123033805036683333853679 34754318735124854507681022349054816267859331685848439616=2^6*241*283*5783*14083529947427072406959*97759869635948564698559 42 Pedersen 2016 34792232641363133376182358222218857666602081884064311872=2^6*241*283*5783*234323*160381703*297766669*123168550916328887596157 34792381454944420193417535691421989633627265539430610368=2^6*241*283*5783*14078878909671676508477*97899266553349514339519 42 Pedersen 2016 34846334350797208983385608924442717144489484158589120704=2^6*241*283*5783*234323*160381703*297766669*123360077261354795551199 34846483395782706551154053042132845482965616906692415296=2^6*241*283*5783*14072294531143177489439*98097377276903921313599 52 Pedersen 2016 34945519268397691650725179662242299893136943230195334865=3^4*5*11^2*79*359*521*14975239*1111048681*2900580954709433634945256187 35110123692648269567097982285915481025715664775854457135=3^4*5*11^2*79*3126661152215172623099*2900574716052337137741919487 42 Pedersen 2016 35037480982698783336080760812680652032402430903000575552=2^6*241*283*5783*234323*160381703*297766669*124036758574294287020237 35037630845257994479472310253574469477976046767475569088=2^6*241*283*5783*14049277792968867804557*98797075328017722467519 42 Pedersen 2016 35068519225369813008592798483532653857984607568766730432=2^6*241*283*5783*234323*160381703*297766669*124146637564015548852767 35068669220686013228735588317905310441978459823029452608=2^6*241*283*5783*14045576170958112449087*98910655939749739655519 42 Pedersen 2016 35123006105864422777839975554695470405546114029628192704=2^6*241*283*5783*234323*160381703*297766669*124339527459402536470699 35123156334232290108013529990497796006846141849390303296=2^6*241*283*5783*14039101969475187765439*99110020036619651957099 42 Pedersen 2016 35805558725582418940876668961887422606893265147458629824=2^6*241*283*5783*234323*160381703*297766669*126755843134265646333919 35805711873369134838352651025264020720733542723970387776=2^6*241*283*5783*13960495581630630223679*101604942099327319362079 42 Pedersen 2016 35946004250510617299373354122116092396972420508262382016=2^6*241*283*5783*234323*160381703*297766669*127253036630480771564371 35946157999011916699166035499528687790640002711582574144=2^6*241*283*5783*13944872966350319641619*102117758210822755174591 42 Pedersen 2016 35953579642211236408854039191193362589301661022314455232=2^6*241*283*5783*234323*160381703*297766669*127279854398343118321567 35953733423114054280885669884319259823037984981025791808=2^6*241*283*5783*13944035472766625335519*102145413472268796237887 42 Pedersen 2016 36001768137783772952683796131981955078362093926343711936=2^6*241*283*5783*234323*160381703*297766669*127450447278417477229391 36001922124798761805305334763274672117566330267002069824=2^6*241*283*5783*13938720289065020751119*102321321536044759730111 42 Pedersen 2016 36040048101695542235509402166343290632983399210272886208=2^6*241*283*5783*234323*160381703*297766669*127585962803757367044323 36040202252441861007673602627248021781950581983667368512=2^6*241*283*5783*13934513069623629846719*102461044280826040449443 42 Pedersen 2016 36816914972742363736947918892428969756385680679616757952=2^6*241*283*5783*234323*160381703*297766669*130336161899862015705887 36817072446309107839312673213528858330234171281489018688=2^6*241*283*5783*13851908367536221607519*105293848079018097350207 42 Pedersen 2016 36877464018829875456378136595522792317314309858034996288=2^6*241*283*5783*234323*160381703*297766669*130550512566657069738053 36877621751377423827995527387664277698785347257303632832=2^6*241*283*5783*13845684616527981022469*105514422496821391967423 42 Pedersen 2016 37596830585611842981515387187132551974202599137566571712=2^6*241*283*5783*234323*160381703*297766669*133097153896677736682447 37596991395039112304342351069706331981363599116258001728=2^6*241*283*5783*13773968315039769923519*108132780128330270010767 42 Pedersen 2016 37729369326926877096300153316453270751774071743850908352=2^6*241*283*5783*234323*160381703*297766669*133566356459109422493287 37729530703249779638384548067781983920445575400694740288=2^6*241*283*5783*13761186981352096547519*108614764024449629197607 42 Pedersen 2016 37790920837428516414869247961306439819627937242099435072=2^6*241*283*5783*234323*160381703*297766669*133784255966546755165357 37791082477019971043848898789000390962579346483500063168=2^6*241*283*5783*13755295341628787188927*108838555171610271228269 42 Pedersen 2016 37904748084602414727410797588280767388143263409507636928=2^6*241*283*5783*234323*160381703*297766669*134187217663018515629143 37904910211056568700076346523498462890955106575974787392=2^6*241*283*5783*13744472670601462851263*109252339539109356029719 42 Pedersen 2016 38372970248598086737223122498107706611308383065009923776=2^6*241*283*5783*234323*160381703*297766669*135844778591652129921431 38373134377735361977080863289423544598359251142040869184=2^6*241*283*5783*13700922755859321900119*110953450382485111273151 42 Pedersen 2016 38592753563039997775252303120058102510971010642706811456=2^6*241*283*5783*234323*160381703*297766669*136622837092077742283261 38592918632236005845715049904406159222796623982005523904=2^6*241*283*5783*13681001471018164823231*111751430167751880711869 42 Pedersen 2016 38685898563020226690467647846742217657096141413973294784=2^6*241*283*5783*234323*160381703*297766669*136952581227526728322679 38686064030616681461188847469193507923031834632526135616=2^6*241*283*5783*13672656221401033133759*112089519552817998440759 42 Pedersen 2016 38966727881227485034783792868117003985183352802040981952=2^6*241*283*5783*234323*160381703*297766669*137946749682737811962387 38966894549989067767812000676535517494532129469393114688=2^6*241*283*5783*13647838936186145507519*113108505293243969706707 42 Pedersen 2016 38972808320644604277289903135900995868206900096649747648=2^6*241*283*5783*234323*160381703*297766669*137968275145609393936463 38972975015413485098549984302486483163068925321219646272=2^6*241*283*5783*13647307222125370632719*113130562470176326555583 42 Pedersen 2016 39017403237233584130441822058915403621966444795396901824=2^6*241*283*5783*234323*160381703*297766669*138126146338042418703419 39017570122744154719070088271841008669325696546025075776=2^6*241*283*5783*13643414739993986454779*113292326144740735500479 42 Pedersen 2016 39085623888425389996584447773615089534523855586299365312=2^6*241*283*5783*234323*160381703*297766669*138367655379341294221547 39085791065729807971192177920506286854685528123143256128=2^6*241*283*5783*13637484469695170671019*113539765456338426802367 42 Pedersen 2016 39184308805170554695222186303514593095538142127895956928=2^6*241*283*5783*234323*160381703*297766669*138717011464594358236643 39184476404570790182275282218226052923859111227724067392=2^6*241*283*5783*13628957800756031833763*113897648210530629654719 42 Pedersen 2016 39323037837898473781734823817115892055248231929410314048=2^6*241*283*5783*234323*160381703*297766669*139208128378741673526113 39323206030671500302438274563116365716869069846165831872=2^6*241*283*5783*13617073602137270835233*114400649323296705942719 42 Pedersen 2016 39324006358060018077476303234277526770996014479660154048=2^6*241*283*5783*234323*160381703*297766669*139211557052781086534863 39324174554975605820782758233695017402100223068767191872=2^6*241*283*5783*13616991050986847843983*114404160548486541942719 42 Pedersen 2016 39368995553341084136511918014281947064752382347766624576=2^6*241*283*5783*234323*160381703*297766669*139370824037650372177481 39369163942684773232187151412859809857956768181875912384=2^6*241*283*5783*13613162756435867624201*114567255827906807805119 42 Pedersen 2016 39495638780286829142043327164093065258474523277049206976=2^6*241*283*5783*234323*160381703*297766669*139819155793392048325631 39495807711309816079326864746009055046281905777974961984=2^6*241*283*5783*13602452333432382645119*115026298006651968932351 42 Pedersen 2016 39498912305768870131032018204082717716043078065878701504=2^6*241*283*5783*234323*160381703*297766669*139830744454406326618499 39499081250793403201834635162001673542376883721072978496=2^6*241*283*5783*13602176771315284982339*115038162229783344887999 42 Pedersen 2016 39922726091712128017963283093864359517273762826955205824=2^6*241*283*5783*234323*160381703*297766669*141331094558726308939919 39922896849475956524500305388135287391974985255489491776=2^6*241*283*5783*13567036655934210188879*116573652449484402002879 42 Pedersen 2016 39937601714796090098628803771308954418406534387256268992=2^6*241*283*5783*234323*160381703*297766669*141383755994918560048127 39937772536186037912193863956473846755691920311362774848=2^6*241*283*5783*13565822278922144168447*116627528262688719131519 42 Pedersen 2016 39993542519762984897614931151911690742864683589327450304=2^6*241*283*5783*234323*160381703*297766669*141581792952071863768799 39993713580423335763555965495608917057574022582920613696=2^6*241*283*5783*13561266872563251582239*116830120626200915438399 42 Pedersen 2016 40238576682253461578090022414887834471149806590499119296=2^6*241*283*5783*234323*160381703*297766669*142449242392010014107551 40238748790975649512590219485317404644308681935887507264=2^6*241*283*5783*13541521875256784337119*117717315063445533022271 42 Pedersen 2016 41191658710081248942016283498705992741586243155765566656=2^6*241*283*5783*234323*160381703*297766669*145823263642154930725711 41191834895332565752742217323700174664340515504929104704=2^6*241*283*5783*13467815354549621213119*121165042834297612764431 42 Pedersen 2016 41366811506340319381798351707733328827697251966909082816=2^6*241*283*5783*234323*160381703*297766669*146443324916363732726671 41366988440756403868994530984918856464997960090727617344=2^6*241*283*5783*13454780186226316819391*121798139276829719159119 42 Pedersen 2016 41775677707833627279783871800287803849898585319560322898=2*7*11*37*41*97*163*718121*8190097*25404257*75694564338166431245462339 41775742626625782564674358456664979925510711665841103022=2*7*11*37*41*97*163*149415467972340546371*75694265508052543267699559 42 Pedersen 2016 42703048225974805024464145896032109252560350699800303808=2^6*241*283*5783*234323*160381703*297766669*151173758347729757927423 42703230875751951433030050499548297758158833149558318912=2^6*241*283*5783*13360131471401558492543*126623221423020502686719 42 Pedersen 2016 43349962433263145676005499603837139500976113944184033472=2^6*241*283*5783*234323*160381703*297766669*153463909896790242247007 43350147850026273244320424768728522631202891664871976768=2^6*241*283*5783*13317146575257676199327*128956357868224869299519 42 Pedersen 2016 43353259642606587716352157767670372185841127038157363392=2^6*241*283*5783*234323*160381703*297766669*153475582401429013974527 43353445073472562196153511026100650056298103898959472448=2^6*241*283*5783*13316931931062706571519*128968245017058610654847 42 Pedersen 2016 43707382908716798780716574842238608106580746496435269824=2^6*241*283*5783*234323*160381703*297766669*154729219958470922173919 43707569854241288856728412494716487789506400211268947776=2^6*241*283*5783*13294132950808330498079*130244681554354894927679 42 Pedersen 2016 44096018481040281942196700059257050781129858160512058048=2^6*241*283*5783*234323*160381703*297766669*156105035094309992433863 44096207088839565621206747814104581063084508466986007872=2^6*241*283*5783*13269677908494643542719*131644951732507652142983 42 Pedersen 2016 44515659248628887360918358507057108025019516802493230784=2^6*241*283*5783*234323*160381703*297766669*157590612228209021338679 44515849651318603123525689079100435425038522058746679616=2^6*241*283*5783*13243913159934679117559*133156293614966645472959 42 Pedersen 2016 44912935129945980096954900395909175373704313689387461824=2^6*241*283*5783*234323*160381703*297766669*158997015063009008875919 44913127231866879643600571884203626023160200890255315776=2^6*241*283*5783*13220112844674649529279*134586496765026662598479 42 Pedersen 2016 45086345259191276813370960801757001031711874070397294784=2^6*241*283*5783*234323*160381703*297766669*159610907093265325447679 45086538102823196472102042119995919798639762000422135616=2^6*241*283*5783*13209899000871904853759*135210602639085723845759 42 Pedersen 2016 45185014640504039073096871868495249424745004293567369408=2^6*241*283*5783*234323*160381703*297766669*159960208181280454461023 45185207906165327983925183402380351112362227730682261312=2^6*241*283*5783*13204133890035633486143*135565668837937124226719 42 Pedersen 2016 45401341539900819813337928212201376015344133726619815104=2^6*241*283*5783*234323*160381703*297766669*160726030570362985827599 45401535730837038900268090073300835773530969327687512896=2^6*241*283*5783*13191610557554586440639*136344014559500702638799 42 Pedersen 2016 46488954959619963040466647814111147174195985594930651328=2^6*241*283*5783*234323*160381703*297766669*164576308597783977200543 46489153802503923232946224111094662072702005748435164992=2^6*241*283*5783*13130971407867093437663*140254931736609187014719 42 Pedersen 2016 46903736924944919671329494520368869724707369892471947456=2^6*241*283*5783*234323*160381703*297766669*166044685006447249780511 46903937541937208853554952610650607819962747532516867904=2^6*241*283*5783*13108816742757754439231*141745462810381798593119 42 Pedersen 2016 46942613193988767248656024486493807825113545075242758336=2^6*241*283*5783*234323*160381703*297766669*166182311521322623917791 46942813977262906840413684394026111133005055713096175424=2^6*241*283*5783*13106766539220014841119*141885139528794912328511 42 Pedersen 2016 46994830402211972336261777850806911060515524283212467136=2^6*241*283*5783*234323*160381703*297766669*166367166512838810828091 46995031408829920892333843004666975037756769126915650624=2^6*241*283*5783*13104019767715999458811*142072741291815114621119 42 Pedersen 2016 47789498583436317212718699025957999001767569523851219136=2^6*241*283*5783*234323*160381703*297766669*169180384317790876202591 47789702989014579746589556271879304733537736133716258624=2^6*241*283*5783*13063182521300815821119*144926796343182363633311 42 Pedersen 2016 49622654818065188217348728554040543433427979239903658432=2^6*241*283*5783*234323*160381703*297766669*175669970638676826433267 49622867064432144750112703416866766023057041761835564608=2^6*241*283*5783*12975396106820127729587*151504169078549001955519 42 Pedersen 2016 49740216555933634610550619491223954800681967738052718784=2^6*241*283*5783*234323*160381703*297766669*176086152866639031091679 49740429305136480258021170637221817058969476873111031616=2^6*241*283*5783*12970049868205545776159*151925697545125788567359 42 Pedersen 2016 50233623063953602131992492561553813417084022584209616704=2^6*241*283*5783*234323*160381703*297766669*177832869302802881708449 50233837923558221805923377361902119204850299938833199296=2^6*241*283*5783*12947960952748037002849*153694502896747147957439 42 Pedersen 2016 50287092384937421867800184387057429698411389933926469824=2^6*241*283*5783*234323*160381703*297766669*178022156919149399373919 50287307473241395980884215815056750386385308680593747776=2^6*241*283*5783*12945600524881668178079*153886150940960034447679 42 Pedersen 2016 50287606164281108969047384696178253854062979209152665792=2^6*241*283*5783*234323*160381703*297766669*178023975757793788348927 50287821254782623691651567622924807014458234607675402048=2^6*241*283*5783*12945577874992410811519*153887992429493680789247 42 Pedersen 2016 51722951506358267830126924837415191655296195361118318784=2^6*241*283*5783*234323*160381703*297766669*183105265241871564691679 51723172736128938965371359044676015872948110221053431616=2^6*241*283*5783*12884529094830538256159*159030330693733329687359 42 Pedersen 2016 52211160887445680354148880604099130085792544508467050432=2^6*241*283*5783*234323*160381703*297766669*184833583244114563460267 52211384205388937777087744637321724658503982473626732608=2^6*241*283*5783*12864731785210460369087*160778446005596406343019 42 Pedersen 2016 52514603444388261113205889278066852938903269502100183232=2^6*241*283*5783*234323*160381703*297766669*185907805195037313389567 52514828060218149696737515936520268643858048239567103808=2^6*241*283*5783*12852661002669634005887*161864738739059982635519 42 Pedersen 2016 52688148986193160076944250481254407811840062200295109824=2^6*241*283*5783*234323*160381703*297766669*186522176601507108463919 52688374344313256321499092234831598942143482325060307776=2^6*241*283*5783*12845836231367211334079*162485934916832200381679 42 Pedersen 2016 53886171145744978743886591842970937769327031525772606656=2^6*241*283*5783*234323*160381703*297766669*190763314411738398965711 53886401628053851879993655347323127024805487209469264704=2^6*241*283*5783*12800225558520155754431*166772683399910546463119 42 Pedersen 2016 54361393800886790668614600507294871817005617612407134528=2^6*241*283*5783*234323*160381703*297766669*192445657893393562085993 54361626315821334863479082884880156932453303063028057792=2^6*241*283*5783*12782828811566838243113*168472423628519027094719 42 Pedersen 2016 54457468975771324084112807814962848560175159830702605504=2^6*241*283*5783*234323*160381703*297766669*192785775188869809829999 54457701901639279615368549772365393069429098404279794496=2^6*241*283*5783*12779357790622942241839*168816011944939170839999 42 Pedersen 2016 54498639232322465202233530325158875681516845281666639168=2^6*241*283*5783*234323*160381703*297766669*192931522686379612479833 54498872334284130586089273261944463040415375686995868352=2^6*241*283*5783*12777875058574575506969*168963242174497340224703 42 Pedersen 2016 54607893221952285988284041779478831215091014185850181824=2^6*241*283*5783*234323*160381703*297766669*193318294519140196945919 54608126791215881497697483870360463603842263228122195776=2^6*241*283*5783*12773953833224576993279*169353935232607923204479 42 Pedersen 2016 55964672842279699262187713099824358541869087433459661504=2^6*241*283*5783*234323*160381703*297766669*198121452208706250440999 55964912214770595506848469697647797966296319210784818496=2^6*241*283*5783*12726838732531884324839*174204208022866669367999 42 Pedersen 2016 56901025103604068759764983755030948964336084171413451968=2^6*241*283*5783*234323*160381703*297766669*201436248139262312270383 56901268481067419345599118258604777620114599386044959552=2^6*241*283*5783*12695940119165913270719*177549902566788702251503 42 Pedersen 2016 57608079438296054087393456839434573838143234553213294784=2^6*241*283*5783*234323*160381703*297766669*203939302735407621447679 57608325839977160241782718178905620752870037736486135616=2^6*241*283*5783*12673426520011033333759*180075470762088891365759 42 Pedersen 2016 57641893884611479980430093148250659153928185569547538112=2^6*241*283*5783*234323*160381703*297766669*204059009808984657265847 57642140430923972895752348597272520415551870059455787328=2^6*241*283*5783*12672366829206775238519*180196237526470185279167 42 Pedersen 2016 57683945186076418096106228005587188122736148503274386368=2^6*241*283*5783*234323*160381703*297766669*204207876307980888424283 57684191912251032343917046467658948925923228438333017152=2^6*241*283*5783*12671051138003633430719*180346419716669558245403 42 Pedersen 2016 57767564401967887994328106164026222373558898359153309376=2^6*241*283*5783*234323*160381703*297766669*204503898059625179875031 57767811485799198478740123401775156974602442116766091584=2^6*241*283*5783*12668441870131783485119*180645050736185699641751 42 Pedersen 2016 58430934747491250215671462081314867076639442614978518208=2^6*241*283*5783*234323*160381703*297766669*206852306252373333823823 58431184668694851647640861331700381330031583854599496512=2^6*241*283*5783*12648066089084078428943*183013834709981558646719 42 Pedersen 2016 58941204242503455585848545102603965260045354312916186304=2^6*241*283*5783*234323*160381703*297766669*208658719624153945834799 58941456346235317187755926065353521116942210748056357696=2^6*241*283*5783*12632774319335339996399*184835539851510909090239 42 Pedersen 2016 62763150156431627380839133882302305563048881707549541568=2^6*241*283*5783*234323*160381703*297766669*222188852764832836047983 62763418607417337245284809304271571144217187168792197952=2^6*241*283*5783*12527764553796454710719*198470682757728684589103 42 Pedersen 2016 63200661161326843720549142440861641604365757992173965504=2^6*241*283*5783*234323*160381703*297766669*223737692617634515739999 63200931483637689915783162106488956605950730223173234496=2^6*241*283*5783*12516717887362712519999*200030569276964106471839 42 Pedersen 2016 64114078028228052652884303091350659579087525637193799872=2^6*241*283*5783*234323*160381703*297766669*226971294583867727505407 64114352257411923425232246271678313023169440313824962368=2^6*241*283*5783*12494237344255852139519*203286651786304178617727 42 Pedersen 2016 64281909847425203618101088145333224585462371989002297152=2^6*241*283*5783*234323*160381703*297766669*227565438747631128202337 64282184794460507670331559318164241813953037024794935488=2^6*241*283*5783*12490189937297136227519*203884843357026295226657 42 Pedersen 2016 64431728614796096069592967642734038176537550384952430784=2^6*241*283*5783*234323*160381703*297766669*228095814612478772163679 64432004202637281890196252778733128979947964553343479616=2^6*241*283*5783*12486598242996647792959*204418810916174427622559 42 Pedersen 2016 64842479451205235975905994736606822478725231404467205824=2^6*241*283*5783*234323*160381703*297766669*229549920355840509064919 64842756795912777936305039600746253606629482914137491776=2^6*241*283*5783*12476852792425156658879*205882662110107655657879 42 Pedersen 2016 65091975948492990731921667069729009377447765283657421504=2^6*241*283*5783*234323*160381703*297766669*230433166980062568500999 65092254360348699429021481667670135570109119236503858496=2^6*241*283*5783*12471004939641116379839*206771756587113755372999 42 Pedersen 2016 66066221346843753779047804481918953689640799702545363648=2^6*241*283*5783*234323*160381703*297766669*233882109023784879907463 66066503925748708071749333456622144997486868595446910272=2^6*241*283*5783*12448673427760257376583*210243030142716925782719 42 Pedersen 2016 66088218360975547156949562227800089151291616946778181824=2^6*241*283*5783*234323*160381703*297766669*233959981012714902445919 66088501033966284455057260204864300475631230730234195776=2^6*241*283*5783*12448178260459678104479*210321397298947527593279 42 Pedersen 2016 66899869739732479567302306436063213807429943125897486528=2^6*241*283*5783*234323*160381703*297766669*236833321312580609091743 66900155884324182352337414749315905914613355956465065792=2^6*241*283*5783*12430177714106786448863*213212738145166125894719 42 Pedersen 2016 67319840506602973605990927404478117712373604138779807936=2^6*241*283*5783*234323*160381703*297766669*238320066682326202455391 67320128447496583715839670463649714407410670083335253824=2^6*241*283*5783*12421065745922017101119*214708595483096488606111 42 Pedersen 2016 71462301024834840791021290502466836000985319381144901824=2^6*241*283*5783*234323*160381703*297766669*252984858807570333265919 71462606683889610942388933043121393418321742680917075776=2^6*241*283*5783*12337914935435601617279*229456538418827034900479 52 Pedersen 2016 71859073600080919035766959326309757733407823045569568605=3^4*5*11^2*79*359*521*14975239*1111048681*5964514612205250597908025599 72197552514824587990199081032567813328760775164580831395=3^4*5*11^2*79*3126657697662056275199*5964508373551608653821036799 42 Pedersen 2016 72011967388050451481850242751443137346685582278878004416=2^6*241*283*5783*234323*160381703*297766669*254930741675812236796271 72012275398142042586445206029075347203496158636575783744=2^6*241*283*5783*12327722859758535069119*231412613362746004978991 42 Pedersen 2016 74051568138008880988532860165375284440399993020496036032=2^6*241*283*5783*234323*160381703*297766669*262151165596569137326367 74051884871895093877435575941336812269008045259074355008=2^6*241*283*5783*12291443322854708462687*238669316820406732115519 42 Pedersen 2016 75199384593625008291348134731560051665919602000250042304=2^6*241*283*5783*234323*160381703*297766669*266214569374459493808299 75199706236959809343197029784164184428343435061408581696=2^6*241*283*5783*12272031044960687845739*242752132876191109214399 42 Pedersen 2016 75258797071840860894756421051979355608998675524563356352=2^6*241*283*5783*234323*160381703*297766669*266424896458772408381287 75259118969295130149828989883211340459338375644158932288=2^6*241*283*5783*12271044943722522285607*242963446061742189347519 42 Pedersen 2016 75521429489262396661684448357646557571449123046316785856=2^6*241*283*5783*234323*160381703*297766669*267354645768364159770911 75521752510049882309672429723502128513135313119651741504=2^6*241*283*5783*12266707446194038189631*243897532868862424833119 42 Pedersen 2016 76407495307608652421965210094692533204069286396644905152=2^6*241*283*5783*234323*160381703*297766669*270491421840976773269087 76407822118283066084430964522251942803134279770877767488=2^6*241*283*5783*12252328283912981493407*247048688103756095027519 42 Pedersen 2016 77171309637200624877575364538310757166903927333858995904=2^6*241*283*5783*234323*160381703*297766669*273195413421934556057399 77171639714867042083894690529612132874553266090246476096=2^6*241*283*5783*12240239228850926059199*249764768739775933250039 42 Pedersen 2016 77798685138383696873078439867940806434291077104289205824=2^6*241*283*5783*234323*160381703*297766669*275416395678452862158669 77799017899465004553265732765550558857900699511275491776=2^6*241*283*5783*12230514494920552178879*251995475730224613231629 42 Pedersen 2016 78233160635627795476363428457412204632069563624329838784=2^6*241*283*5783*234323*160381703*297766669*276954489481050246811679 78233495255050744888336904944792865590444268328555511616=2^6*241*283*5783*12223885205853429111359*253540198821889120952159 42 Pedersen 2016 79982655826269941607451291998104408932118082143667469504=2^6*241*283*5783*234323*160381703*297766669*283147905973968858113999 79982997928645981359549739853393315819154054817438450496=2^6*241*283*5783*12198028422248479293839*259759472098412682071999 42 Pedersen 2016 80222929620892633022848954792269960668191546801051205824=2^6*241*283*5783*234323*160381703*297766669*283998503157883441189919 80223272750969431037496934234756930676449297890673491776=2^6*241*283*5783*12194578393653037142879*260613519310922707298879 42 Pedersen 2016 80632108515325416429441165533742921492409292410781741248=2^6*241*283*5783*234323*160381703*297766669*285447044043785521988063 80632453395545049346027285846332802170509268798961700672=2^6*241*283*5783*12188757378715850417183*262067881211761974822719 42 Pedersen 2016 80632738190962657124556078222668065128248205052816494784=2^6*241*283*5783*234323*160381703*297766669*285449273168791258147679 80633083073875543089681694643738895732376702307858935616=2^6*241*283*5783*12188748473111483897759*262070119242372077501759 42 Pedersen 2016 80929174925004954679787878062395279164044774319418514112=2^6*241*283*5783*234323*160381703*297766669*286498693691662551271847 80929521075839116997753009958677691321312343448792491328=2^6*241*283*5783*12184573561019455935167*263123714677335398588519 42 Pedersen 2016 81312839856496208806886372354102414906902825710379384768=2^6*241*283*5783*234323*160381703*297766669*287856912180722957124683 81313187648344704924672581023954533502090300276156530752=2^6*241*283*5783*12179221924133969498303*264487284803281290878219 42 Pedersen 2016 81525648529400692415119417051508319356867507794853927104=2^6*241*283*5783*234323*160381703*297766669*288610279638748937049599 81525997231475935699491348517533040139293558407577560896=2^6*241*283*5783*12176278380241492204799*265243595805199748096639 42 Pedersen 2016 82645095075591421370015621402422879086684178883534765248=2^6*241*283*5783*234323*160381703*297766669*292573250637013659482063 82645448565771277399182715492487229194089263027320996672=2^6*241*283*5783*12161079528954667061183*269221765654751295672719 42 Pedersen 2016 82701209123745284825815358752476420287659026311994030784=2^6*241*283*5783*234323*160381703*297766669*292771900895202139888679 82701562853936540880794892539980720227395350244989879616=2^6*241*283*5783*12160330033956432777959*269421165407938010362559 42 Pedersen 2016 83044418497639554668682607802735626453789669502731098304=2^6*241*283*5783*234323*160381703*297766669*293986902004191089356799 83044773695808350046402340176497430446419194136509605696=2^6*241*283*5783*12155771075878826582399*270640725475004566026239 42 Pedersen 2016 84131785871695307470587935881197539428763708586107789504=2^6*241*283*5783*234323*160381703*297766669*297836309001341289283999 84132145720759455718050397482419497775753267888495730496=2^6*241*283*5783*12141607089517070731999*274504296458516521803839 42 Pedersen 2016 85909625281813186920297825154092455520499389696466350784=2^6*241*283*5783*234323*160381703*297766669*304130067328475219308679 85909992735064519693287041879583880902446274363775159616=2^6*241*283*5783*12119326457129537695559*280820335418037984864959 52 Pedersen 2016 86316693166049644681897962924271157786706707215800520005=3^4*5*11^2*79*359*521*14975239*1111048681*7164539589410465949411772919 86723272031645733446241312909330328714754195990824759995=3^4*5*11^2*79*3126657149891515017719*7164533350757371775866041599 42 Pedersen 2016 86654666047626117135364623412621259122549824291360839104=2^6*241*283*5783*234323*160381703*297766669*306767598309734352884099 86655036687571034886382003434952169177515378987898808896=2^6*241*283*5783*12110297698565336515139*283466895157861319620799 42 Pedersen 2016 87961646823012491509149282979009689408197060417800449856=2^6*241*283*5783*234323*160381703*297766669*311394462295130279136161 87962023053184741410111019106552041800778063044275597504=2^6*241*283*5783*12094877364925341373631*288109179476897241014369 52 Pedersen 2016 89492295299072392857369112862787297805383800453086893405=3^4*5*11^2*79*359*521*14975239*1111048681*7428123913227062083044483839 89913832252906930741707926112499991246821485673955666595=3^4*5*11^2*79*3126657053281133433599*7428117674574064519880336639 42 Pedersen 2016 89531114691398069827821352780099233789088512852757061824=2^6*241*283*5783*234323*160381703*297766669*316950561124757372725919 89531497634509285633973156767550893404988249480613715776=2^6*241*283*5783*12077031913424448828479*293683123758025227149279 42 Pedersen 2016 89873353917611397964005125595665900320332827348224800448=2^6*241*283*5783*234323*160381703*297766669*318162127798098913698263 89873738324550630632921430953734536936557408854203697472=2^6*241*283*5783*12073233937506864072383*294898488407284352877719 42 Pedersen 2016 90279989470221322641702585994482437226673623110720608192=2^6*241*283*5783*234323*160381703*297766669*319601664958082181750827 90280375616424990743412741548963298195710958631373891648=2^6*241*283*5783*12068763543844517239019*296342495960929967763647 42 Pedersen 2016 90486030850457492890071083984147371662155443144210878784=2^6*241*283*5783*234323*160381703*297766669*320331075412826000457929 90486417877942796530478156841151562814185815003541671616=2^6*241*283*5783*12066515696320088585609*297074154263198215124159 42 Pedersen 2016 90593165276553695399652242422028714846118916980470874304=2^6*241*283*5783*234323*160381703*297766669*320710343744109634912799 90593552762275117165162448352417406356930895175961509696=2^6*241*283*5783*12065351447529400910399*297454586843272537254239 42 Pedersen 2016 94270245442667528502002166081882291913032345693142661824=2^6*241*283*5783*234323*160381703*297766669*333727635285353779450919 94270648656022006721042131542158029887694542468836115776=2^6*241*283*5783*12027190928971538969279*310510038903074543733479 52 Pedersen 2016 94836357570960978772207258138457433141958194132032054205=3^4*5*11^2*79*359*521*14975239*1111048681*7871696811015969370188398879 95283066744634841130941301182900276711448636896273865795=3^4*5*11^2*79*3126656905305877389599*7871690572363119782280295679 42 Pedersen 2016 96991720068026725433762743795976306949643761747421294784=2^6*241*283*5783*234323*160381703*297766669*343361972047132756947679 96992134921691544053942234375195759944485879755718135616=2^6*241*283*5783*12001029689274570473759*320170536904550489725759 42 Pedersen 2016 97766319509980991047603120999716723014460231923492026048=2^6*241*283*5783*234323*160381703*297766669*346104144180480677691863 97766737676767971392559659300264949030148846520976279872=2^6*241*283*5783*11993880749622795117719*322919857977550185825983 42 Pedersen 2016 97788658900831690499011724467189648568604539698960359616=2^6*241*283*5783*234323*160381703*297766669*346183228222824168557471 97789077163168869950946191967739802402538946716923764544=2^6*241*283*5783*11993676449901419220191*322999146319615052589119 42 Pedersen 2016 98466623765523004089559348592205620203972068865578629824=2^6*241*283*5783*234323*160381703*297766669*348583302711201194458919 98467044927656254156467545200136195410229219607450387776=2^6*241*283*5783*11987525449864307848679*325405371808029189862079 42 Pedersen 2016 99142757983112744752845372631834374699754091344966439488=2^6*241*283*5783*234323*160381703*297766669*350976896495880238852253 99143182037212008822219956646124574979013781440054365632=2^6*241*283*5783*11981484407120155026623*327805006635452387077469 42 Pedersen 2016 99281133129332252459891368650566131687433590434229998784=2^6*241*283*5783*234323*160381703*297766669*351466760610620308021679 99281557775290661709008800165025136164334898497804151616=2^6*241*283*5783*11980259368090164693359*328296095789222446580159 42 Pedersen 2016 99302910719421220122440946378985109485215400387693294784=2^6*241*283*5783*234323*160381703*297766669*351543855812913220197679 99303335458526890323208604693655145308106526468406135616=2^6*241*283*5783*11980066916824164715759*328373383442781358733759 42 Pedersen 2016 99487888227902522713242185264958424448087580100005186112=2^6*241*283*5783*234323*160381703*297766669*352198697711293396697597 99488313758195288561596143259769429758579015218710779328=2^6*241*283*5783*11978436030805195785917*329029856227180504163519 42 Pedersen 2016 100912931101764954515783243372543511072081893189703197248=2^6*241*283*5783*234323*160381703*297766669*357243515259409211342813 100913362727261087526321681561590748838352241304694324672=2^6*241*283*5783*11966094760558887371933*334087015045542627222719 42 Pedersen 2016 102685034398877393448983360591679479014461245159803315648=2^6*241*283*5783*234323*160381703*297766669*363516967079224249856963 102685473604026168237979593174276363918891015731484318272=2^6*241*283*5783*11951278033770566526083*340375283592145986582719 42 Pedersen 2016 102697067268836535129196170263271666468992861620029230272=2^6*241*283*5783*234323*160381703*297766669*363559564838658352097807 102697506525452385636972004460744881584786662739619803968=2^6*241*283*5783*11951179364931195629519*340417980020419459720127 42 Pedersen 2016 103680699910548566140883450289451462565548370132856390592=2^6*241*283*5783*234323*160381703*297766669*367041738815893654755227 103681143374364845337363421585095489194941275365595741248=2^6*241*283*5783*11943199473527055229019*343908133889058902778047 42 Pedersen 2016 103897771328586529282074262594621493941393717395677255872=2^6*241*283*5783*234323*160381703*297766669*367810196887575514641407 103898215720862199004505224945241476285299255420155586368=2^6*241*283*5783*11941460992056115739519*344678330442211702153727 42 Pedersen 2016 106150914506942323987585347675743481377309169415540986304=2^6*241*283*5783*234323*160381703*297766669*375786585846160666197299 106151368536377786797415706779942159978929317621495557696=2^6*241*283*5783*11923880166849065958899*352672300226003903490239 42 Pedersen 2016 107580681846326006873801951833639245753242668333405509824=2^6*241*283*5783*234323*160381703*297766669*380848128551816812113919 107581141991172353883617270635652789966307695164621907776=2^6*241*283*5783*11913145496109074094079*357744577602400041271679 42 Pedersen 2016 109266690626481046295331732359863915221519529643924405824=2^6*241*283*5783*234323*160381703*297766669*386816795766263428358669 109267157982735963780244209479822903440372058672376291776=2^6*241*283*5783*11900884672999018226879*363725505639956713383629 42 Pedersen 2016 110151711420233550609013656921622506501317432246605650112=2^6*241*283*5783*234323*160381703*297766669*389949872330246886862847 110152182561905609592201159006219226455053669786841835328=2^6*241*283*5783*11894614076454873563519*366864852800484316551167 42 Pedersen 2016 112274731006362365273276118643425399600962080340794843072=2^6*241*283*5783*234323*160381703*297766669*397465608635125349532107 112275211228628676730034776257222490911698187977634095168=2^6*241*283*5783*11880014688321753059519*374395188493495899724427 42 Pedersen 2016 112327509962501882492825308331721105090320239879977221824=2^6*241*283*5783*234323*160381703*297766669*397652452279613182060919 112327990410514715038426762338604345351278044290142355776=2^6*241*283*5783*11879659465501541991479*374582387360803943321279 42 Pedersen 2016 112476263129089122132299930743418051746628212783739094592=2^6*241*283*5783*234323*160381703*297766669*398179055793725800610477 112476744213350041306421943336645275915720709719927757248=2^6*241*283*5783*11878660269263854691519*375109990071154249170797 42 Pedersen 2016 112557826593691303927767111447850738421973643756551581504=2^6*241*283*5783*234323*160381703*297766669*398467799946661322617249 112558308026816045516697880591691511837764270064678498496=2^6*241*283*5783*11878113627004186609249*375399280866349439259839 42 Pedersen 2016 112743734590402366892332997701027510710042944832324623552=2^6*241*283*5783*234323*160381703*297766669*399125935881618158289487 112744216818694094906289031441136671618386441978616161088=2^6*241*283*5783*11876870908341235267519*376058659519969226273807 42 Pedersen 2016 114136686133429018875009667221929722793472824493713099968=2^6*241*283*5783*234323*160381703*297766669*404057146385404188858383 114137174319662848895808909124644171613959590004017951552=2^6*241*283*5783*11867700855932586720719*380999040076163905389503 42 Pedersen 2016 114920381253136640981648818110339606358913254927862686912=2^6*241*283*5783*234323*160381703*297766669*406831518276095388753647 114920872791396729358799600751505352678280815017189022528=2^6*241*283*5783*11862648739347465593519*383778464083440226411967 42 Pedersen 2016 115423053103044613557086076465545740302231361683939200704=2^6*241*283*5783*234323*160381703*297766669*408611035100376132406199 115423546791336261218041692002531774005755317342916735296=2^6*241*283*5783*11859447808764803028599*385561181838303632629439 42 Pedersen 2016 115535932586932417481526382841904861479096684727628481728=2^6*241*283*5783*234323*160381703*297766669*409010641604562211192943 115536426758032984716708916471063189508915450476399606592=2^6*241*283*5783*11858733205499443670063*385961502945755070774719 42 Pedersen 2016 117654384103825259832530294547417002399102586591312781504=2^6*241*283*5783*234323*160381703*297766669*416510206412943744035999 117654887335981501790944439782098742046431810410333298496=2^6*241*283*5783*11845600068196550859839*393474200891439496427999 42 Pedersen 2016 118665484986344188366476717839340727591184176001890064704=2^6*241*283*5783*234323*160381703*297766669*420089621158004453721449 118665992543188211097561857793502743632207077275569391296=2^6*241*283*5783*11839512435573634741439*397059703269123122231849 42 Pedersen 2016 120636872294857621200457400789829559468900449428690771776=2^6*241*283*5783*234323*160381703*297766669*427068561560804890115681 120637388283733255909450926170431214551761363180648661184=2^6*241*283*5783*11827963171028579325119*404050192936468614042401 42 Pedersen 2016 123278669767397831667717588024723317718523376344931852096=2^6*241*283*5783*234323*160381703*297766669*436420831932794719605601 123279197055788130341897396830710384683120445117156278464=2^6*241*283*5783*11813116749999518717119*413417309729487504140321 42 Pedersen 2016 127814286458625095091401325005271171226756950228742543552=2^6*241*283*5783*234323*160381703*297766669*452477442646136082559487 127814833146786892285571356804933327100235750214863841088=2^6*241*283*5783*11789180361163913543807*429497856831664472267519 42 Pedersen 2016 130367829651461071769549632509232184716398793821873516736=2^6*241*283*5783*234323*160381703*297766669*461517282601389397428191 130368387261655709268596535820327685569985635062350729024=2^6*241*283*5783*11776497866434026798911*438550379281647673881119 42 Pedersen 2016 132756396519369449560000247877731428553159963078157339328=2^6*241*283*5783*234323*160381703*297766669*469973087174771982653543 132756964345959034185829576086156600608260552585628316992=2^6*241*283*5783*11765112272323184214719*447017569449141101690663 42 Pedersen 2016 134354702073661165422038349860267908714778836799471194304=2^6*241*283*5783*234323*160381703*297766669*475631274767182769832799 134355276736534468212927886946443455632346369571258789696=2^6*241*283*5783*11757737821678829870399*452683131492196243214239 42 Pedersen 2016 134756660215266971458727623471698815525458741245143543104=2^6*241*283*5783*234323*160381703*297766669*477054253348090187801849 134757236597398454555059930460617074737778130111330824896=2^6*241*283*5783*11755912946942253160889*454107934947840237892799 42 Pedersen 2016 138289136642075808026204962972017341560864395834503278784=2^6*241*283*5783*234323*160381703*297766669*489559630830501998451679 138289728133340220399441781375062271964347240427681271616=2^6*241*283*5783*11740367317773452644159*466628858059420849059359 42 Pedersen 2016 139112123758750431152389933785746261459144848694143424704=2^6*241*283*5783*234323*160381703*297766669*492473100961277991475199 139112718770101106677953762123353469910984954153440831296=2^6*241*283*5783*11736867669660996105599*469545827838309298621439 42 Pedersen 2016 139155357219824073051625339742747104942684576687580691136=2^6*241*283*5783*234323*160381703*297766669*492626152442809167959591 139155952416093211272913111031053777125581245290795746624=2^6*241*283*5783*11736685057368422190311*469699061932133049021119 42 Pedersen 2016 139244152059340468344529964153212798718219531709217219648=2^6*241*283*5783*234323*160381703*297766669*492940496504163831662213 139244747635403516443090627578949556712911567361301134272=2^6*241*283*5783*11736310382951226731333*470013780667904908182719 32 Pedersen 2016 142986585615123965362702873444476382580090665937721315909=3^2*7*11*13*41*157*3079*3303533*38949713321*6223613236744970673276483659 142986628901724423219211053394191592988607811391907048891=3^2*7*11*13*41*157*3079*128671702254800459*6223613236487627307725220107 42 Pedersen 2016 144137437199953988632697774478935253110090152455298777792=2^6*241*283*5783*234323*160381703*297766669*510263295135753995945927 144138053705610533601345354355328880653299566617813450048=2^6*241*283*5783*11716429450576285136519*487356460231870014061247 42 Pedersen 2016 145598976069135806322734646169664569000731716639505802432=2^6*241*283*5783*234323*160381703*297766669*515437312752864341334767 145599598826096645407242844555203270677276385662027340608=2^6*241*283*5783*11710769512486852355519*492536137787069792231087 42 Pedersen 2016 148668054773645232229710001534586719851520591947331572928=2^6*241*283*5783*234323*160381703*297766669*526302208391472592020143 148668690657691015158144413900337480374408392755611331392=2^6*241*283*5783*11699272337551666467263*503412530600613228804719 42 Pedersen 2016 149672067439377691731090044733882829544374443824068237504=2^6*241*283*5783*234323*160381703*297766669*529856530024539900671999 149672707617793484917010006854320443024336938515351922496=2^6*241*283*5783*11695620790000978467839*506970503781231225455999 42 Pedersen 2016 151887865578927845646888081895353904654947460899345238336=2^6*241*283*5783*234323*160381703*297766669*537700713201420304704041 151888515234770970216800268340498949712575984457800095424=2^6*241*283*5783*11687744793187406747369*514822562954925201208511 42 Pedersen 2016 152273079200549175765723779562339619834150941449868901312=2^6*241*283*5783*234323*160381703*297766669*539064414233699656087547 152273730504030702413448577398589509158707878690442200128=2^6*241*283*5783*11686400576967302521019*516187608203424656818367 42 Pedersen 2016 152826113956038216233153470470624635628536828751792743104=2^6*241*283*5783*234323*160381703*297766669*541022221602433168470599 152826767624963874872604384227914250950528767740937624896=2^6*241*283*5783*11684483411913823492799*518147332737211648229639 42 Pedersen 2016 155164631168654302304025655613044677207305566353079501504=2^6*241*283*5783*234323*160381703*297766669*549300844573825527980999 155165294839902171692832123869731891121580508265616178496=2^6*241*283*5783*11676538014110893412999*526433901106406937819839 42 Pedersen 2016 163397054827894427910093983204481232672778701147824010432=2^6*241*283*5783*234323*160381703*297766669*578444582001944230782767 163397753710922467605598700929264331644226977643242572608=2^6*241*283*5783*11650493487909590129087*555603683060726943905519 42 Pedersen 2016 164387807462421100646640391602051976218155070128984922304=2^6*241*283*5783*234323*160381703*297766669*581951961582009157900799 164388510583103252196429750140258210007556005827112101696=2^6*241*283*5783*11647546194705518298239*559114009933995942854399 42 Pedersen 2016 165871512223119535686705486481933155624622816104717606592=2^6*241*283*5783*234323*160381703*297766669*587204449033637238388727 165872221689914087891668155294245713080390503516865405248=2^6*241*283*5783*11643202475838322766519*564370841104491218874047 42 Pedersen 2016 166393263414523528926136933577810830436923713656222170816=2^6*241*283*5783*234323*160381703*297766669*589051508946305729079671 166393975112955933574761162525185168304457796262186369344=2^6*241*283*5783*11641694558960411709119*566219408934037620622391 42 Pedersen 2016 168775632177376158366534966431528434393082266575583470784=2^6*241*283*5783*234323*160381703*297766669*597485371506767990653679 168776354065692931759533376414852818389396279917579639616=2^6*241*283*5783*11634935087074133968559*574660030966386159936959 52 Pedersen 2016 169469812889364112820614457251298594630024537085076492137=3^4*7*11*17*83*271*1733*795713*3225245539*15977267333608230291355380991 170193527392806237145545232336920245412873905937365676183=3^4*7*11*17*83*1210424889683793358079*15977264917905726947513760511 42 Pedersen 2016 170591482170861999415054911430214525780502318810782130368=2^6*241*283*5783*234323*160381703*297766669*603913691720779805050783 170592211825945090903258333143570382277456362052827193152=2^6*241*283*5783*11629917563443385030719*581093368704028723271903 42 Pedersen 2016 172092255815528837019985869250930161147405699820861230784=2^6*241*283*5783*234323*160381703*297766669*609226605007272179338679 172092991889731479296272500692514707130545071722618679616=2^6*241*283*5783*11625855428885504317559*586410344125078978272959 42 Pedersen 2016 175730803678835250389312899194081403097509785347315869504=2^6*241*283*5783*234323*160381703*297766669*622107487714131353045249 175731555315860313506652726272246550652172152974302050496=2^6*241*283*5783*11616312119492401271999*599300770141331255025089 42 Pedersen 2016 176168280202064551947769342312472331113383912872626137792=2^6*241*283*5783*234323*160381703*297766669*623656205497824456605927 176169033710267266172790166269560816645716301826930890048=2^6*241*283*5783*11615192810745016846247*600850607233771743011519 42 Pedersen 2016 178102628182983415431054679716833598509604053746391179456=2^6*241*283*5783*234323*160381703*297766669*630504022372170595972511 178103389964792870065076590820477006405249821717883395904=2^6*241*283*5783*11610313434323197931231*607703303484539701293119 42 Pedersen 2016 178153678603453981700042750547597146413083036672269550784=2^6*241*283*5783*234323*160381703*297766669*630684746799310509133679 178154440603616652545634792560874722406490894074947959616=2^6*241*283*5783*11610186179069196250559*607884155166933616134959 42 Pedersen 2016 178803063477317645860058918937862799179927993612291914688=2^6*241*283*5783*234323*160381703*297766669*632983644795459250302203 178803828255033850256459249304192242635260483225760826432=2^6*241*283*5783*11608574144026979276219*610184665198124574277823 42 Pedersen 2016 179258067373873059036247287369394252124134022121896406208=2^6*241*283*5783*234323*160381703*297766669*634594411519678813351823 179258834097735118567246495293253962185766636990917448512=2^6*241*283*5783*11607452003735218756943*611796554062635897846719 42 Pedersen 2016 180303577682127366820763777096231480000690555123905730752=2^6*241*283*5783*234323*160381703*297766669*638295639634676901362687 180304348877853444030164791838065458533990038759704749888=2^6*241*283*5783*11604896240454600427007*615500337940914604187519 42 Pedersen 2016 180582215780015254615281714439584015786092129214120869824=2^6*241*283*5783*234323*160381703*297766669*639282050915053667961419 180582988167534156880325819551763252308693798586191347776=2^6*241*283*5783*11604220388276214375179*616487425073469756838079 42 Pedersen 2016 180652089848931020537758853094002277333850157260315334848=2^6*241*283*5783*234323*160381703*297766669*639529413247436755889663 180652862535315780065293586174683250525283777884790155072=2^6*241*283*5783*11604051250630905878783*616734956543498153262719 52 Pedersen 2016 182613628102289512791519959223494685930229680301217248605=3^4*5*11^2*79*359*521*14975239*1111048681*15157468620673877687007609599 183473795921895209978361907047442040695221813313989151395=3^4*5*11^2*79*3126655714195948204799*15157462382022219209028691199 42 Pedersen 2016 187252457383219374671847685802050511007882158062399068352=2^6*241*283*5783*234323*160381703*297766669*662895482136818274828287 187253258300742408980894746421255249246434459453935380288=2^6*241*283*5783*11588675008933380532607*640116401674577197547519 42 Pedersen 2016 191392216809189317222451918104220991072781654075917146304=2^6*241*283*5783*234323*160381703*297766669*677550712081238256844799 191393035433320380820344049339106953229970715707948197696=2^6*241*283*5783*11579601466055489126399*654780705161875070970239 42 Pedersen 2016 194128536055042945707521027327045441162742937233615657152=2^6*241*283*5783*234323*160381703*297766669*687237600526436029081087 194129366382977864520366393484416303558956575795106375488=2^6*241*283*5783*11573827732401257227519*664473367340727075105407 42 Pedersen 2016 194246861960512923380905733745701406941282737214556273856=2^6*241*283*5783*234323*160381703*297766669*687656487996602952648911 194247692794552234329216160060679097605315935843736093504=2^6*241*283*5783*11573581924733936767631*664892500618561319133119 42 Pedersen 2016 194924574132150368619376513684102073589239300897091891904=2^6*241*283*5783*234323*160381703*297766669*690055667922173607083399 194925407864904929681715122556396028574197643356806860096=2^6*241*283*5783*11572180114258554383039*667293082354607355952199 42 Pedersen 2016 195088148041438795466601479533530726226701894576178877632=2^6*241*283*5783*234323*160381703*297766669*690634738589539241665967 195088982473832827706667744416780905330111227379154201408=2^6*241*283*5783*11571843306873315492287*667872489829358229425519 42 Pedersen 2016 197660275490001769944472545881524956543856527554777436352=2^6*241*283*5783*234323*160381703*297766669*699740368971964841736287 197661120923917351328315653449944127519035934899039252288=2^6*241*283*5783*11566624286311280140607*676983339232345864847519 42 Pedersen 2016 197711451847583496172139158018055062553717800512401920192=2^6*241*283*5783*234323*160381703*297766669*699921539231128472735327 197712297500390952862006393126251461758917709098712739648=2^6*241*283*5783*11566521895689204735647*677164611882131571251519 42 Pedersen 2016 199527383039660919035216379691882149771947260550673798592=2^6*241*283*5783*234323*160381703*297766669*706350146897600285028227 199528236459581997005263593795536564053301169661567773248=2^6*241*283*5783*11562924442768165091519*683596817001524423188547 42 Pedersen 2016 202181402375179835575982301847615499810343390205854761152=2^6*241*283*5783*234323*160381703*297766669*715745684086298953805087 202182267146891015497789347763032667508552114882033991488=2^6*241*283*5783*11557788856033927929407*692997489776957329127519 42 Pedersen 2016 202875393594508133268957656980756807424872615555210972352=2^6*241*283*5783*234323*160381703*297766669*718202493734430050102287 202876261334563420175983682352416039329345714412994196288=2^6*241*283*5783*11556469253226880156607*695455619027895473197519 42 Pedersen 2016 203852587682682659456818477235812723910722648181122724032=2^6*241*283*5783*234323*160381703*297766669*721661874483148339654367 203853459602399348738844978720764228676939265650867507008=2^6*241*283*5783*11554627150402840415519*698916841879437802490687 42 Pedersen 2016 204085851755342436718283092836577593247101905955241041088=2^6*241*283*5783*234323*160381703*297766669*722487656435876176033103 204086724672777852357095115623265856217769255455379252032=2^6*241*283*5783*11554190165175281448719*699743060817393197836223 42 Pedersen 2016 207409187380480469700461171006586870425471688155293294784=2^6*241*283*5783*234323*160381703*297766669*734252651151111163947679 207410074512510311995700982426895169520914345068806135616=2^6*241*283*5783*11548076441213219233759*711514169256590247965759 42 Pedersen 2016 209677823825454297842410087083021882944432138060703562432=2^6*241*283*5783*234323*160381703*297766669*742283888075849393769767 209678720660911841784616766079066133250519819396746380608=2^6*241*283*5783*11544019731586113041087*719549462890955583980519 42 Pedersen 2016 210647168220628363358635565351950560138989467214157294784=2^6*241*283*5783*234323*160381703*297766669*745715479998194541697679 210648069202172547761545301113295629194982622053462135616=2^6*241*283*5783*11542314320307124295759*722982760224579720653759 42 Pedersen 2016 212752532437164476817422996961815537477067067346859253696=2^6*241*283*5783*234323*160381703*297766669*753168714240873065461451 212753442423787243138497295022659791810367157987932364864=2^6*241*283*5783*11538666368957052948671*730439642418608315764619 42 Pedersen 2016 213576599311997455850535517329374208476817964312633710784=2^6*241*283*5783*234323*160381703*297766669*756086006841137454343679 213577512823324834486087788843272203969657584545252599616=2^6*241*283*5783*11537259037744526674559*733358342350085230920959 42 Pedersen 2016 214390613305639129892828957596019873015989194884011971008=2^6*241*283*5783*234323*160381703*297766669*758967711072537149923123 214391530298672866958156246772725073780637518511437147712=2^6*241*283*5783*11535880003982796695743*736241425615246656479219 42 Pedersen 2016 216506897036280594931595223447182767633449000994003916992=2^6*241*283*5783*234323*160381703*297766669*766459601665411137136127 216507823081097936173343035613351885899438865781527766848=2^6*241*283*5783*11532345593280433931519*743736850618823006456447 42 Pedersen 2016 221695933952981443607132975658127585316122869200346524992=2^6*241*283*5783*234323*160381703*297766669*784829395989031130640377 221696882192383851106446379393460227746145243144910598848=2^6*241*283*5783*11523978106161669731519*762115012429561764160697 42 Pedersen 2016 225917841506408755054434660754105005981451992166133862592=2^6*241*283*5783*234323*160381703*297766669*799775439860907582949727 225918807803783738319080260622818654346562295557767229248=2^6*241*283*5783*11517466555156461491519*777067567852443424710047 42 Pedersen 2016 230027031123685958201651152040003229502236891825539373376=2^6*241*283*5783*234323*160381703*297766669*814322449126382179890281 230028014996915570773243075762806078735096415785719547584=2^6*241*283*5783*11511368561258492291369*791620675111815990850751 52 Pedersen 2016 232212754522178422627893263186991034141322026540616604105=3^4*5*11^2*79*359*521*14975239*1111048681*19274342099038755564544750499 233306549880266874924624942865354556429193137717175395895=3^4*5*11^2*79*3126655439322816902399*19274335860387371959697134499 42 Pedersen 2016 232328635686316319392205177846140273452616029179775385792=2^6*241*283*5783*234323*160381703*297766669*822470397022791905168927 232329629403985097500585151702387921304836342940182282048=2^6*241*283*5783*11508051383178550609247*799771940186305657811519 42 Pedersen 2016 238544876227221190585827449002717089613440871265465370304=2^6*241*283*5783*234323*160381703*297766669*844476611670263061163799 238545896533037575312205504909293651814011161429048293696=2^6*241*283*5783*11499425794272263198399*821786780422683101217239 42 Pedersen 2016 239597703601181784047077389435649863174476016170451758272=2^6*241*283*5783*234323*160381703*297766669*848203743049052600465807 239598728410158791170716273580409395777864863179748315968=2^6*241*283*5783*11498011103214902429519*825515326492530001288127 42 Pedersen 2016 239642005411955439661875807659321561522330189211299111104=2^6*241*283*5783*234323*160381703*297766669*848360576612802500253599 239643030410420462305414880508794555688151300497953496896=2^6*241*283*5783*11497951858666024216799*825672219300828779288639 42 Pedersen 2016 244104375189928131450308483242552817905301591877089315392=2^6*241*283*5783*234323*160381703*297766669*864157884732439828705277 244105419274872441907621148734850439064345119597642880448=2^6*241*283*5783*11492099110092956771519*841475380169039175185597 42 Pedersen 2016 245641625229111212328050951523864504289114030979908800704=2^6*241*283*5783*234323*160381703*297766669*869599928698803455631199 245642675889192163834553755093414254905801445368675135296=2^6*241*283*5783*11490134163905479429439*846919389081590279453599 42 Pedersen 2016 252106548714682234479895977042523508173980979162705556032=2^6*241*283*5783*234323*160381703*297766669*892486509899575956665117 252107627026579226366381679078580126683587192368218435008=2^6*241*283*5783*11482143391865359082687*869813961054402900834269 42 Pedersen 2016 253433497991232903720809128425024931102612933174781609536=2^6*241*283*5783*234323*160381703*297766669*897184064702020893773741 253434581978766640881704727589410954635265942464228940224=2^6*241*283*5783*11480555696666324964461*874513103552046872061119 42 Pedersen 2016 254543086946831809955867309476509234349532111582959292608=2^6*241*283*5783*234323*160381703*297766669*901112138682861164080223 254544175680307204297608916268217489701404726965218914112=2^6*241*283*5783*11479241286469348225343*878442491943084119106719 42 Pedersen 2016 255942500026247363616251897387128079534516157168794606272=2^6*241*283*5783*234323*160381703*297766669*906066223777131738128807 255943594745302188691604904870408934589459756531854107968=2^6*241*283*5783*11477600445733660604519*883398217878090380776127 42 Pedersen 2016 261146423354217461177690252382457070007029262312812429504=2^6*241*283*5783*234323*160381703*297766669*924488717728374883123999 261147540331529615119352071725711352006134801885106290496=2^6*241*283*5783*11471658993641832551999*901826653281425353823839 52 Pedersen 2016 261591207415795684322883948671450412012916434644672511405=3^4*5*11^2*79*359*521*14975239*1111048681*21712840159049460503906672239 262823384558592649392535896158773902369511326935195648595=3^4*5*11^2*79*3126655325665566455039*21712833920398190556309503599 42 Pedersen 2016 263396285369658666881662230600235862195016812114677799104=2^6*241*283*5783*234323*160381703*297766669*932453490988546077081599 263397411970096400897184858460112478936873807306354648896=2^6*241*283*5783*11469165746450077900799*909793919788788302432639 42 Pedersen 2016 263958324352336224015474828683565472573065373462325532352=2^6*241*283*5783*234323*160381703*297766669*934443174368984929587287 263959453356731033657455386725320535000439619624420436288=2^6*241*283*5783*11468549795970582947519*911784219119706649891607 52 Pedersen 2016 267137598027847378802897142758295065030749487107980744195=3^4*5*11^2*79*359*521*14975239*1111048681*22173206904586562760421227041 268395900420818869046733050036411198536689344974985783805=3^4*5*11^2*79*3126655307013381986849*22173200665935311465008526591 42 Pedersen 2016 267794434275444261069624133436395016723681793884196531904=2^6*241*283*5783*234323*160381703*297766669*948023449749853819673399 267795579687675318303389433697437861265471242765017420096=2^6*241*283*5783*11464417367424481822199*925368626929121641103039 52 Pedersen 2016 268287858162422595980966404991087050092559267750182995805=3^4*5*11^2*79*359*521*14975239*1111048681*22268681881326359404682184959 269551578643639847963746786840033441839597610490953644195=3^4*5*11^2*79*3126655303241679417599*22268675642675111880972053759 42 Pedersen 2016 270956377104370405415411083203666530917928324529460122304=2^6*241*283*5783*234323*160381703*297766669*959217095191742092225799 270957536040885490264663719660974116683404940458572901696=2^6*241*283*5783*11461102425725092023239*936565587312709303454399 42 Pedersen 2016 277035551130915057866550192078536047413740738662567077056=2^6*241*283*5783*234323*160381703*297766669*980738078433487660048111 277036736069315893513847399371667390279166443531212266304=2^6*241*283*5783*11454949414560618653119*958092723565619344646831 42 Pedersen 2016 277723719522716002024606108261166460384095245984976974016=2^6*241*283*5783*234323*160381703*297766669*983174274594804828603871 277724907404555505949208641595735501417345375710838542144=2^6*241*283*5783*11454270474944965826591*960529598666552166029119 52 Pedersen 2016 279749885402468550349183699745884087151527157522820151005=3^4*5*11^2*79*359*521*14975239*1111048681*23220063878528612919555150719 281067595649300714976178164191434307461982270033040328995=3^4*5*11^2*79*3126655267352139035519*23220057639877401285385401599 42 Pedersen 2016 288848941681135481044522132061812794311595566315811379648=2^6*241*283*5783*234323*160381703*297766669*1022558855228060606090963 288850177147853169463607609304568986714957103271775774272=2^6*241*283*5783*11443758953389937160083*999924690821362972182719 42 Pedersen 2016 289387018144243732639773553533850083828700493371941524672=2^6*241*283*5783*234323*160381703*297766669*1024463708501674215724207 289388255912425840047801234328686955038589185206621301568=2^6*241*283*5783*11443271759570512956527*1001830031288796006019519 42 Pedersen 2016 293853622775648417242306039717621167905301030808561475776=2^6*241*283*5783*234323*160381703*297766669*1040276008495099531158431 293854879648423157242401158168846377379617234489832677184=2^6*241*283*5783*11439298763138598225119*1017646304278653236185151 42 Pedersen 2016 294148891026075260917920421940089996788194934401890917568=2^6*241*283*5783*234323*160381703*297766669*1041321292450042906203983 294150149161773430961793146973392057853694967151130501952=2^6*241*283*5783*11439040521893428345103*1018691846474841781110719 42 Pedersen 2016 296842504361210615669183005308574024017082734103819205824=2^6*241*283*5783*234323*160381703*297766669*1050856997003337217939919 296843774018050620309478317759812893706561120262145491776=2^6*241*283*5783*11436709212400640978879*1028229882337628880212879 42 Pedersen 2016 299074269868288864611845354811978658297286297343163340992=2^6*241*283*5783*234323*160381703*297766669*1058757706518744279280127 299075549070851936930840509892271232501766703571432662848=2^6*241*283*5783*11434810506139206200447*1036132490559297376331519 42 Pedersen 2016 300244783974429521737096686165071586037475233782786789568=2^6*241*283*5783*234323*160381703*297766669*1062901462619899684485983 300246068183523732113701868965519256369889587685795589952=2^6*241*283*5783*11433826335411598327103*1040277230831180389410719 42 Pedersen 2016 301566183290273573080932009924954854916936961047913792192=2^6*241*283*5783*234323*160381703*297766669*1067579369915818581392327 301567473151266197902006837595402645313117945721641827648=2^6*241*283*5783*11432724785601148451519*1044956239676909736192647 52 Pedersen 2016 301801594647778215897732140307396985257334303617705290205=3^4*5*11^2*79*359*521*14975239*1111048681*25050420650865335730180375679 303223175404479950310621718386800275232472843794651829795=3^4*5*11^2*79*3126655205971955049599*25050414412214185476194612479 42 Pedersen 2016 303505452596855736626426220468057002747355277892564579008=2^6*241*283*5783*234323*160381703*297766669*1074444608855508563583623 303506750752504630473522507024840644026872727565409979712=2^6*241*283*5783*11431126105340146491719*1051823077296860720343743 42 Pedersen 2016 307044959510618485523381600534221824324999748725629953216=2^6*241*283*5783*234323*160381703*297766669*1086974875079590837209071 307046272805471156718170360422030112273370740062096218944=2^6*241*283*5783*11428261994527467699119*1064356207631755672761791 42 Pedersen 2016 308513561210486282530861390777310867361854606990843402176=2^6*241*283*5783*234323*160381703*297766669*1092173895938945695564331 308514880786852436749769090501619749530217340469622302784=2^6*241*283*5783*11427093542206595152619*1069556396943431403663551 52 Pedersen 2016 310892875775604222748970723328505324665058002571001980005=3^4*5*11^2*79*359*521*14975239*1111048681*25805023742916928596672120919 312357279335545834725920571070556592737731264634855299995=3^4*5*11^2*79*3126655183201582016599*25805017504265801113059390719 42 Pedersen 2016 313997035066793655085968001360801601190784997360110750912=2^6*241*283*5783*234323*160381703*297766669*1111586031280499091237647 313998378097112617139500719471749871777950813684440478528=2^6*241*283*5783*11422830435712541995967*1088972795391478852493519 42 Pedersen 2016 321943178819507978362291512374035841513343381789808101824=2^6*241*283*5783*234323*160381703*297766669*1139716304536694400278419 321944555837128688204972962435826703209077739644029875776=2^6*241*283*5783*11416918421849598672979*1117108980661537104857279 52 Pedersen 2016 326196773377188644109294900399678145764591786668019401085=3^4*5*11^2*79*359*521*14975239*1111048681*27075292287935304408052451423 327733263124608279738426713281364429922357805369340214915=3^4*5*11^2*79*3126655147737480112223*27075286049284212388541625599 52 Pedersen 2016 331555398841626601218943832661685145266391495054253407505=3^4*5*11^2*79*359*521*14975239*1111048681*27520073973569773140242495419 333117129406118483466582080214729232167475620501811872495=3^4*5*11^2*79*3126655136093673740219*27520067734918692764538041599 42 Pedersen 2016 332304443728776118128572445165951474407693438889054367936=2^6*241*283*5783*234323*160381703*297766669*1176396387637126463815391 332305865063671712380941483944631875972061615840401493824=2^6*241*283*5783*11409646968299626466111*1153796335215519140601119 42 Pedersen 2016 333881180923378919114762813139468699503531692163661709504=2^6*241*283*5783*234323*160381703*297766669*1181978220727200210803999 333882609002305892313989658089871666842661025100087410496=2^6*241*283*5783*11408581171444260363839*1159379234102448253691999 42 Pedersen 2016 336318871849930590873652616019920902559871331815273306304=2^6*241*283*5783*234323*160381703*297766669*1190607930182761297804799 336320310355366279103169174048523561231397297041820837696=2^6*241*283*5783*11406953662565177606399*1168010571066888423450239 52 Pedersen 2016 341647102741310301753311095572088056894047642863771848555=3^4*5*11^2*79*359*521*14975239*1111048681*28357715100238074095941120409 343256368416022078963422198096149715643203622726817591445=3^4*5*11^2*79*3126655115156985672959*28357708861587014656924733849 42 Pedersen 2016 341792811963742635503926442869916516547760640561859162304=2^6*241*283*5783*234323*160381703*297766669*1209986314966824946840799 341794273882353341352059612104286658273077533175281061696=2^6*241*283*5783*11403386078820690074399*1187392523434696560018239 42 Pedersen 2016 350613654773465107778145775374123328790562923179948736704=2^6*241*283*5783*234323*160381703*297766669*1241213124638205368647199 350615154420646498173281990869918977346799834696975679296=2^6*241*283*5783*11397878215454276481599*1218624840969443395417439 42 Pedersen 2016 350975748389188652450649295544899456260968504892354321088=2^6*241*283*5783*234323*160381703*297766669*1242494978160065922088103 350977249585119393666467029970384981123792764859616372032=2^6*241*283*5783*11397658201926337516223*1219906914504831887823719 42 Pedersen 2016 352526284434371122142409968259997540449755551759447278784=2^6*241*283*5783*234323*160381703*297766669*1247984056133222918701679 352527792262265502379851665796434152784642337000657271616=2^6*241*283*5783*11396721328406828109359*1225396929351508393844159 42 Pedersen 2016 358425828859364313771578755186611861200982779364383264704=2^6*241*283*5783*234323*160381703*297766669*1268869129689239731202699 358427361920831454159345751777221275866322201659252191296=2^6*241*283*5783*11393232817785409425599*1246285491418146625028939 42 Pedersen 2016 372764154858079025953298968971901743587136660103237212352=2^6*241*283*5783*234323*160381703*297766669*1319628471696169457292287 372765749247534614828817314477562823931154590637371156288=2^6*241*283*5783*11385226846391204596607*1297052839396470555947519 42 Pedersen 2016 377435304563463498480687332289274561981141077922278117568=2^6*241*283*5783*234323*160381703*297766669*1336164885046126315653983 377436918932393343880661113218694514447441413330839301952=2^6*241*283*5783*11382753463257570295103*1313591726129561048610719 42 Pedersen 2016 377535286754164484631813911054360229480217706360663514304=2^6*241*283*5783*234323*160381703*297766669*1336518833632094325502799 377536901550738856799711956482266939390085393362924069696=2^6*241*283*5783*11382701209073904830399*1313945726969712723924239 42 Pedersen 2016 379660040754552785295354006086378156843585228243457791296=2^6*241*283*5783*234323*160381703*297766669*1344040709965215055595801 379661664639139858762731101934251788546583340914393795264=2^6*241*283*5783*11381597415229018193369*1321468707096678340654271 42 Pedersen 2016 381551722488704999480052796338845063993489255603496964288=2^6*241*283*5783*234323*160381703*297766669*1350737483362660575902303 381553354464406443669763841587631154980145312374571904832=2^6*241*283*5783*11380625313592869378719*1328166452595760009775423 42 Pedersen 2016 381941113178187828647477780736998320646681417559255147712=2^6*241*283*5783*234323*160381703*297766669*1352115971701086195038447 381942746819393858846202769728841802613730500044145105728=2^6*241*283*5783*11380426438659785016767*1329545139809118713273519 42 Pedersen 2016 390150581903041644035497373143105280916180832792535598784=2^6*241*283*5783*234323*160381703*297766669*1381178445991139422246679 390152250657844838309536226569557576264739222633706551616=2^6*241*283*5783*11376328338338977863359*1358611712199492747635159 42 Pedersen 2016 392524531376070360514461123119035607154088356401260589888=2^6*241*283*5783*234323*160381703*297766669*1389582503286212560327153 392526210284746878093421244389581463093632829308000087232=2^6*241*283*5783*11375176038579960260273*1367016921794324903318719 42 Pedersen 2016 409681972482552470602299169721008055181491997777105439936=2^6*241*283*5783*234323*160381703*297766669*1450321840721122865797391 409683724777156332716861904456351881835625677362247381824=2^6*241*283*5783*11367254531365886301119*1427764180736449282748111 42 Pedersen 2016 412543026910573704341088335020883932133552993272887019456=2^6*241*283*5783*234323*160381703*297766669*1460450306221585646700011 412544791442499617015070234009234205893905781885518755904=2^6*241*283*5783*11365999227089575293119*1437893901541188374658731 42 Pedersen 2016 417739840607790156542505840230691857146304613349146411712=2^6*241*283*5783*234323*160381703*297766669*1478847631252900508597447 417741627367564035597129766239395020286672562651929361728=2^6*241*283*5783*11363764114774277925767*1456293461684818533923519 42 Pedersen 2016 420885456387411671525126149563119023307580467932644284608=2^6*241*283*5783*234323*160381703*297766669*1489983477040931561332223 420887256601635408485192001644515918674501642508976482112=2^6*241*283*5783*11362438652078249406719*1467430632935545615177343 42 Pedersen 2016 423896219215144339418482461967197147140552326298686382272=2^6*241*283*5783*234323*160381703*297766669*1500641927691888480059807 423898032307023943379819483383304368392916187070514011968=2^6*241*283*5783*11361188865247753079519*1478090333373333030232127 42 Pedersen 2016 428227047962551970799744628834587100951689418527415652032=2^6*241*283*5783*234323*160381703*297766669*1515973565261212304797367 428228879578282644767606469707650369738150316384597619008=2^6*241*283*5783*11359422640502979590519*1493423737167401628458687 42 Pedersen 2016 433985921705879485971365556350117191667124643806926018752=2^6*241*283*5783*234323*160381703*297766669*1536360648239970930290687 433987777953505294611736637143667614645586580575152301888=2^6*241*283*5783*11357129863266890987519*1513813112923396342555007 42 Pedersen 2016 440872139320151767431505988769261986162668785699214975168=2^6*241*283*5783*234323*160381703*297766669*1560738659665316063239583 440874025021555816273692931388421548579178364923100012352=2^6*241*283*5783*11354468646866078250719*1538193785565142288240703 42 Pedersen 2016 441986748813235550244573373349379531231641557701518762176=2^6*241*283*5783*234323*160381703*297766669*1564684506932889827036831 441988639282055134383176484208606438952655771674031742784=2^6*241*283*5783*11354045870843916465119*1542140055608738213823551 42 Pedersen 2016 447895321800437839268004281987097355255815890112994947904=2^6*241*283*5783*234323*160381703*297766669*1585601542649415718225649 447897237541447213112238663244441799865700130663445884096=2^6*241*283*5783*11351840638058605206449*1563059296558049416271039 42 Pedersen 2016 448630292826009303961583677355975406887128930214268474304=2^6*241*283*5783*234323*160381703*297766669*1588203425578811383950299 448632211710641899251643956782935928342372320918931909696=2^6*241*283*5783*11351570478938903491739*1565661449646564783710399 42 Pedersen 2016 449130546062162554361883578847609059134737376335499100992=2^6*241*283*5783*234323*160381703*297766669*1589974380229044082371377 449132467086481797233765395952638233597168653930853702848=2^6*241*283*5783*11351387113687327331519*1567432587662049058291697 42 Pedersen 2016 455323923658436469100711130798335430370987622878208029376=2^6*241*283*5783*234323*160381703*297766669*1611899657392884844945031 455325871173113771585494324212295104630569177842600971584=2^6*241*283*5783*11349151056264535485119*1589360100883312612711751 42 Pedersen 2016 456247028403148953296611196511743881893883411081166685376=2^6*241*283*5783*234323*160381703*297766669*1615167555573556753906031 456248979866136339228107784851338844328882611456392395584=2^6*241*283*5783*11348823088843388835119*1592628327031405668322751 42 Pedersen 2016 466307043560863772243887945603233601406352756434294405824=2^6*241*283*5783*234323*160381703*297766669*1650781179509232183514919 466309038052618494003182767336036282893193149363606291776=2^6*241*283*5783*11345334850052234939879*1628245439205872251826879 52 Pedersen 2016 477975911750392811888362376490448789396591623904785729885=3^4*5*11^2*79*359*521*14975239*1111048681*39673407505689510183712644863 480227329139702245764118353261021798119273573705222846115=3^4*5*11^2*79*3126654918965040825599*39673401267038646936641105663 42 Pedersen 2016 488707055960958247078343258543917569284221739208090425536=2^6*241*283*5783*234323*160381703*297766669*1730079829189660974100991 488709146262202991739831364346074864732886452682819004224=2^6*241*283*5783*11338094045297530691711*1707551329691055746661119 42 Pedersen 2016 490001926473720194134044706230217147512403001464105127104=2^6*241*283*5783*234323*160381703*297766669*1734663821436584630499599 490004022313394170776349545421305371766286761681942360896=2^6*241*283*5783*11337696123790804946639*1712135719859486128804799 42 Pedersen 2016 491232810836677186237848225904644265396090074378701984704=2^6*241*283*5783*234323*160381703*297766669*1739021295269716642772699 491234911941098386483336019932976755209234651285343071296=2^6*241*283*5783*11337319849288514101439*1716493569967120431923099 42 Pedersen 2016 493634463991591420033871018425328859917915063525943591616=2^6*241*283*5783*234323*160381703*297766669*1747523426821422264374471 493636575368380325899752944663870876169784808428746292544=2^6*241*283*5783*11336591187111403914119*1724996430181003163712191 42 Pedersen 2016 495241843057527119910086824146248862192493269340290150592=2^6*241*283*5783*234323*160381703*297766669*1753213735700570577877727 495243961309409031534249522967838228092371976838558781248=2^6*241*283*5783*11336107533803757791519*1730687222713459123338047 52 Pedersen 2016 496369992424825426676605221134610781441734197352060286605=3^4*5*11^2*79*359*521*14975239*1111048681*41200170341115376258247593999 498708051739120412199962362530100770350926873960835713395=3^4*5*11^2*79*3126654900745232774399*41200164102464531230984105999 42 Pedersen 2016 500407795494550429294497117479546886069744031061084235712=2^6*241*283*5783*234323*160381703*297766669*1771501808280724195203947 500409935842280308917308328774936116479453419117967857728=2^6*241*283*5783*11334574573130724323519*1748976828254285774132267 42 Pedersen 2016 507609037271115134464821854861218829680442146646992494784=2^6*241*283*5783*234323*160381703*297766669*1796995041887213839147679 507611208420046809019346897742487902603528892497362935616=2^6*241*283*5783*11332490721643103261759*1774472145712263039137759 42 Pedersen 2016 510612824909196968923112963083302409076389140545547461824=2^6*241*283*5783*234323*160381703*297766669*1807628799555385906375919 510615008905950180420388402483620640257466447262895315776=2^6*241*283*5783*11331639208927295279279*1785106754893150914348479 42 Pedersen 2016 513382096470183892953528614514336380613705803669273106112=2^6*241*283*5783*234323*160381703*297766669*1817432343029484612373847 513384292311684832892438755324800879812267061970108459328=2^6*241*283*5783*11330863172826945087167*1794911074403349970538519 42 Pedersen 2016 516182714175129385138611066985971292196423890804961044928=2^6*241*283*5783*234323*160381703*297766669*1827346855499680494714643 516184921995452000140820496437117082314393156170790819392=2^6*241*283*5783*11330086981714821111763*1804826363064657976854719 52 Pedersen 2016 518977813141216601940412343922982806347512344627990734547=3^4*7*11*17*83*271*1733*795713*3225245539*48928166730093738232888067621 521194088499826779599081339582870982461542436440070838573=3^4*7*11*17*83*1210424766433729051391*48928164314391358139110753829 52 Pedersen 2016 519509039443484604986722244506717190805903952936833251805=3^4*5*11^2*79*359*521*14975239*1111048681*43120779349010262271434437759 521956090971715808966541715161574300150236023861538588195=3^4*5*11^2*79*3126654879657782457599*43120773110359438331621266559 42 Pedersen 2016 536974982455299568558157741722623399646380716394753555904=2^6*241*283*5783*234323*160381703*297766669*1900953903967374779604899 536977279208457789225880940193735123660096148538292716096=2^6*241*283*5783*11324582202472288317539*1878438916311594794539199 42 Pedersen 2016 553664937211056631399122140046608683175923307229758405824=2^6*241*283*5783*234323*160381703*297766669*1960038285338226333139919 553667305350606301013146229626581258171724370899662291776=2^6*241*283*5783*11320467930548078546879*1937527411954370557844879 42 Pedersen 2016 569977329422828777984657987969205742322243004170280629824=2^6*241*283*5783*234323*160381703*297766669*2017786051381678108802669 569979767333856737354417706689148486962257162638108387776=2^6*241*283*5783*11316683550226065392429*1995278962378144346662079 42 Pedersen 2016 586682154234392160050162024075572456293196186738587123904=2^6*241*283*5783*234323*160381703*297766669*2076923074479911418650399 586684663595413875274299691716329976726474249450277388096=2^6*241*283*5783*11313029852697936283199*2054419639173905785619039 42 Pedersen 2016 596392175863066652025125591387099225635225369827568860352=2^6*241*283*5783*234323*160381703*297766669*2111297680608182919630287 596394726755860927818450128114313013362742872643072148288=2^6*241*283*5783*11311001667802343747519*2088796273487072879134607 42 Pedersen 2016 597429966575507505745061467582288878745213726843053200576=2^6*241*283*5783*234323*160381703*297766669*2114971580455984020877231 597432521907147489902510585906663964308355159644805016384=2^6*241*283*5783*11310788862108069405119*2092470386140568254723951 52 Pedersen 2016 605847167585839301451035303531141639525112039651003609555=3^4*5*11^2*79*359*521*14975239*1111048681*50287098104543788436569992209 608700898945169679695821827230415467415795779835317030445=3^4*5*11^2*79*3126654815192832248849*50287091865893028961707029759 42 Pedersen 2016 617842125534885049700041351836187950103662552561348347338=2*7*11*37*41*97*163*718121*8190097*25404257*1119486100242491588310188759 617843085652511695824670338572766256212730470513034623542=2*7*11*37*41*97*163*149414917987821630311*1119485801412927684851342039 42 Pedersen 2016 619401583795029786027397842386331086251330721654557412032=2^6*241*283*5783*234323*160381703*297766669*2192753661362154668107367 619404233103824924436791287179499596240620390991292659008=2^6*241*283*5783*11306453436836947643687*2170256802472010023715519 42 Pedersen 2016 622249297498660968272883107962226181343051963272210079936=2^6*241*283*5783*234323*160381703*297766669*2202834899146355765887391 622251958987717117385238509715907929615797961702457941824=2^6*241*283*5783*11305914290930720301119*2180338579402117348838111 42 Pedersen 2016 624172924205564118389802912444125112814318329890331315904=2^6*241*283*5783*234323*160381703*297766669*2209644761463484947977399 624175593922369899553623047270579073212475855997031756096=2^6*241*283*5783*11305552925990448619199*2187148803084186802610039 42 Pedersen 2016 625334467503934025452098231628218346925349889607573550784=2^6*241*283*5783*234323*160381703*297766669*2213756759861561573758679 625337142188900942806680024787811034306349781522363959616=2^6*241*283*5783*11305335816322251159959*2191261018591931625850559 42 Pedersen 2016 633034517690911345187742970620552489903918538075525126336=2^6*241*283*5783*234323*160381703*297766669*2241015833267086089825791 633037225310586886272291179923082593017126856801016047424=2^6*241*283*5783*11303917019868213141119*2218521510793910179936511 42 Pedersen 2016 636511961914608054097300167688789288777197585273524092096=2^6*241*283*5783*234323*160381703*297766669*2253326390348607747014351 636514684408032399627309313109989598037030725899847238464=2^6*241*283*5783*11303287696471527549071*2230832697198828522717119 42 Pedersen 2016 643809218518016230489039840085766326960777709492830912704=2^6*241*283*5783*234323*160381703*297766669*2279159527611488016103199 643811972223317661222987809070273899805515820663717183296=2^6*241*283*5783*11301989525567183829599*2256667132632613135525439 52 Pedersen 2016 643992264644812405465550826239273487448845854519285029005=3^4*5*11^2*79*359*521*14975239*1111048681*53453253433214438128217327119 647025671449545389004775874465792794038945718718393050995=3^4*5*11^2*79*3126654792216950531599*53453247194563701629236081919 42 Pedersen 2016 650419567367798536807793962338597610380409267364590836928=2^6*241*283*5783*234323*160381703*297766669*2302560931518840391704143 650422349346930394905688435540531799006558073538267587392=2^6*241*283*5783*11300839075536462051263*2280069686989996232904719 42 Pedersen 2016 655350321759289948759180132429501378996153625370216558784=2^6*241*283*5783*234323*160381703*297766669*2320016375657320610131679 655353124828279046176511222597458077557112039681318391616=2^6*241*283*5783*11299996274706112515359*2297525973929306800868159 42 Pedersen 2016 673224286361093624613392280015905472610517841862409024704=2^6*241*283*5783*234323*160381703*297766669*2383292289618548443825199 673227165880729382342107554652759708507111431492183231296=2^6*241*283*5783*11297046108081918421439*2360804838057158828655599 42 Pedersen 2016 679814052148320142240052483925180076447710929511763038784=2^6*241*283*5783*234323*160381703*297766669*2406620827090034250230429 679816959853748307917542374883269861871570067006498311616=2^6*241*283*5783*11295998141649446151359*2384134423495077107330909 42 Pedersen 2016 725968047324618562532625318268666655290723258401734789824=2^6*241*283*5783*234323*160381703*297766669*2570011339089128160418919 725971152440238355692837460882611824663603570168523027776=2^6*241*283*5783*11289198685790529766079*2547531734950029933904679 42 Pedersen 2016 735088779684929981636997079002974663551517789669629112512=2^6*241*283*5783*234323*160381703*297766669*2602299792655619721697247 735091923811810146828632677824140652812876008501718404928=2^6*241*283*5783*11287957379484607103519*2579821429822827417845567 42 Pedersen 2016 738190067779464617292664720486639830401731615835547965632=2^6*241*283*5783*234323*160381703*297766669*2613278713281822114643967 738193225171195955075987556826600903603748993082636953408=2^6*241*283*5783*11287542382761376475519*2590800765445753041420287 42 Pedersen 2016 745541999313694149130211492154483654836529574363466405824=2^6*241*283*5783*234323*160381703*297766669*2639305406160121867077419 745545188151158569402967007335023785909304532339394291776=2^6*241*283*5783*11286572562133911142379*2616828428144680259186879 42 Pedersen 2016 746801370509630321342163437698496867959672153583538284458=2*7*11*37*41*97*163*718121*8190097*25404257*1353151103453481447458458919 746802531028037526152756105325518902951921487920524220502=2*7*11*37*41*97*163*149414911100563894631*1353150804623924431257347879 42 Pedersen 2016 769851808355902827237610923692841432811361925516335138618=2*7*11*37*41*97*163*718121*8190097*25404257*1394916861576668118871044799 769853004694353314072007454846198802751572444900609603782=2*7*11*37*41*97*163*149414910112594752191*1394916562747112090639076199 42 Pedersen 2016 774030866993860140787892672727792706875811467588765915328=2^6*241*283*5783*234323*160381703*297766669*2740159311845997507884543 774034177684109060194778510026009082976658025370195420992=2^6*241*283*5783*11282990680801783614719*2717685915711888027521663 42 Pedersen 2016 781448027334453244354972084180375462500494264157863110336=2^6*241*283*5783*234323*160381703*297766669*2766416922286864126704791 781451369749432353970306260792758127962269122515803183424=2^6*241*283*5783*11282101507328507916119*2743944415326227922040511 42 Pedersen 2016 812997979155647519378769488413260664504046191585664506048=2^6*241*283*5783*234323*160381703*297766669*2878107421926620540196863 813001456516301669022599602463929938721881977645210199872=2^6*241*283*5783*11278502720577977742719*2855638513752734865705983 42 Pedersen 2016 814065348484837162336214990733858214610956161779624531392=2^6*241*283*5783*234323*160381703*297766669*2881886033518580497745027 814068830410850887196869186874604633508423736082558544448=2^6*241*283*5783*11278385905869318371519*2859417242159403482625347 52 Pedersen 2016 815936949497764093247765455810775522708939727004956379485=3^4*5*11^2*79*359*521*14975239*1111048681*67725168362205427693182361343 819780270032374381015717302363712270029124146970036516515=3^4*5*11^2*79*3126654715316536422143*67725162123554768094615225599 42 Pedersen 2016 817735437696386088525364960807234332079697795043483150784=2^6*241*283*5783*234323*160381703*297766669*2894878576267410044796179 817738935320131109980068370831615418468443353427382359616=2^6*241*283*5783*11277986599580552890559*2872410184214521795157459 42 Pedersen 2016 823016438516464229889894993087229530762483983958947598784=2^6*241*283*5783*234323*160381703*297766669*2913573933507108155184179 823019958728142969634905889707546056373292897255454551616=2^6*241*283*5783*11277418348310522172659*2891106109705489936263359 42 Pedersen 2016 858923545888563283912548945058953038069449658260526405824=2^6*241*283*5783*234323*160381703*297766669*3040689270663154359889919 858927219682373322115790260821884630856978396583134291776=2^6*241*283*5783*11273741999280762986879*3018225123210565900154879 42 Pedersen 2016 863648934540162736235954908052021036941392302603817141952=2^6*241*283*5783*234323*160381703*297766669*3057417696192306224484887 863652628545438231835260021214106244358343305166445754688=2^6*241*283*5783*11273281207002521507519*3034954009531996006229207 42 Pedersen 2016 899924810192702325944915047642548504872085877957668032704=2^6*241*283*5783*234323*160381703*297766669*3185838515959772091823199 899928659357407393528463756359635021500107089601401663296=2^6*241*283*5783*11269906691941508485439*3163378203814522886589599 42 Pedersen 2016 900708480515227646098238574040282743174068636390384135104=2^6*241*283*5783*234323*160381703*297766669*3188612800065553296935099 900712333031852909356211689259883519636256233433740792896=2^6*241*283*5783*11269836823658069586299*3166152557788587530600639 42 Pedersen 2016 902285000536663203258829379143205917575598579196082221248=2^6*241*283*5783*234323*160381703*297766669*3194193864337351336868063 902288859796390950870717949260094259767055071159107620672=2^6*241*283*5783*11269696640297873297183*3171733762243745766822719 42 Pedersen 2016 921629650266714753510024710161413530311392997793812146496=2^6*241*283*5783*234323*160381703*297766669*3262676174736763856857001 921633592267513898925901164842797150782794885417429776064=2^6*241*283*5783*11268015979671336957119*3240217753303784823151721 42 Pedersen 2016 924577485238572028563656849137615025213334638001843699904=2^6*241*283*5783*234323*160381703*297766669*3273111853457550672506399 924581439847871574815497840389238134006467650794836492096=2^6*241*283*5783*11267766111606226367039*3250653681892636749391199 42 Pedersen 2016 928333632813881981869267573034716056033268593048626792896=2^6*241*283*5783*234323*160381703*297766669*3286409052825227797301651 928337603489002261313623232423643450220317025216616281664=2^6*241*283*5783*11267450051446838397119*3263951197320473262156371 52 Pedersen 2016 939042000820138909198972377282971794753556875714701614685=3^4*5*11^2*79*359*521*14975239*1111048681*77943249958066065957256431103 943465184997341636043393234381289034100337937707751121315=3^4*5*11^2*79*3126654677558325691903*77943243719415444116900025599 42 Pedersen 2016 943917563404255838411766339720736728060910536491114190784=2^6*241*283*5783*234323*160381703*297766669*3341577979987293216411179 943921600735073255315162388911785489105167001294618519616=2^6*241*283*5783*11266165887366976014059*3319121408646618543648959 42 Pedersen 2016 952057064637781472246659598803069888387570499030092808896=2^6*241*283*5783*234323*160381703*297766669*3370392761218755614110151 952061136782930608965765745908636610236509266700745145664=2^6*241*283*5783*11265512049645911997119*3347936843715802005364871 42 Pedersen 2016 953151228370632357291910005153509506425023110155876544832=2^6*241*283*5783*234323*160381703*297766669*3374266228116658164505417 953155305195746280349980528448085928649667591910027030208=2^6*241*283*5783*11265425016683834101769*3351810397646666633655487 42 Pedersen 2016 972388844587738729975253632236614944291496077961905487296=2^6*241*283*5783*234323*160381703*297766669*3442369627429080863078051 972393003696119559148998870541798647843818259973003379264=2^6*241*283*5783*11263927113468058699619*3419915294862305107630271 42 Pedersen 2016 974893336873301259396568965391515993387603504017304027328=2^6*241*283*5783*234323*160381703*297766669*3451235821466514601856543 974897506693914044523456311240590256400244676472501468992=2^6*241*283*5783*11263736497651711193663*3428781679515555193914719 42 Pedersen 2016 978167231798574175818714897197684309280248962090363969216=2^6*241*283*5783*234323*160381703*297766669*3462825790352811094830071 978171415622313279645437630099694191465471818077197082944=2^6*241*283*5783*11263488809406182532791*3440371896090097215549119 42 Pedersen 2016 1017206605808415018069322735797497824595889833966440928704=2^6*241*283*5783*234323*160381703*297766669*3601029715781734015661699 1017210956611638235057429582246399106724805898649622047296=2^6*241*283*5783*11260659288803502860099*3578578651039622816053439 52 Pedersen 2016 1034247424726970786417555493745626989460526729978305703005=3^4*5*11^2*79*359*521*14975239*1111048681*85845580361235282148238008319 1039119056496763394925686019791718407521651523793593176995=3^4*5*11^2*79*3126654654521143173119*85845574122584683345064121599 42 Pedersen 2016 1042982597308091176349877295261989566814478384337423396032=2^6*241*283*5783*234323*160381703*297766669*3692279724200921729236367 1042987058360565880726395125368567736268415893696591795008=2^6*241*283*5783*11258908250568658115519*3669830410497045374372687 42 Pedersen 2016 1078605676325349541654207345894934386411305722945008712896=2^6*241*283*5783*234323*160381703*297766669*3818389567939931910259151 1078610289745107474618444404632690325045467035844419961664=2^6*241*283*5783*11256627256480951647119*3795942535230143261863871 42 Pedersen 2016 1082670989594516612186669419967792738846702303477419136704=2^6*241*283*5783*234323*160381703*297766669*3832781249828979372922199 1082675620402460950824128192092715193181553751976977279296=2^6*241*283*5783*11256376576098370492439*3810334467799573305681599 42 Pedersen 2016 1086856757292002080212664007898125426542828813421216602304=2^6*241*283*5783*234323*160381703*297766669*3847599354406687339980799 1086861406003341349503322532698755963447682606166342821696=2^6*241*283*5783*11256120444931751894399*3825152828508447891338239 42 Pedersen 2016 1108456951775598818626395540468428892175063189605837437632=2^6*241*283*5783*234323*160381703*297766669*3924066555620229703900967 1108461692875441313039389871301055103267742656733956441408=2^6*241*283*5783*11254829722537472300519*3901621320444384534852287 42 Pedersen 2016 1121101446102799047916732351447543259626663450974434803904=2^6*241*283*5783*234323*160381703*297766669*3968829536467266696730399 1121106241285761294594875225933110332758841553608772108096=2^6*241*283*5783*11254097426613498223199*3946385033587345501759039 42 Pedersen 2016 1128682228413302154508066229061446309568381750077801016256=2^6*241*283*5783*234323*160381703*297766669*3995666387715690201850811 1128687056020839627799812285039675651885428405825181783104=2^6*241*283*5783*11253666325855327210619*3973222315936527177892031 42 Pedersen 2016 1145957712892706985911628899575092734944129076032500558784=2^6*241*283*5783*234323*160381703*297766669*4056823612422683250069179 1145962614391067745683254834407155946539691378368154391616=2^6*241*283*5783*11252705398609927815359*4034380501570765625505659 42 Pedersen 2016 1150716903305621569433910887171416181388942030425308171456=2^6*241*283*5783*234323*160381703*297766669*4073671700119035466474511 1150721825160024916990373306774989106418817105018168963904=2^6*241*283*5783*11252445786054508743119*4051228848879673260983231 42 Pedersen 2016 1159717814854049903460647042514037180291683307587162186304=2^6*241*283*5783*234323*160381703*297766669*4105535974072755864803549 1159722775207215206726224895627592288806899566035090357696=2^6*241*283*5783*11251960662755558808989*4083093607956692609246399 42 Pedersen 2016 1186367858467127817559623964966490858061623132038653997504=2^6*241*283*5783*234323*160381703*297766669*4199880228651503379544499 1186372932808046433244250113707463806019709548532522962496=2^6*241*283*5783*11250567814984437147839*4177439255383211245648499 42 Pedersen 2016 1201515509230800951944741300985825426757867104155684675392=2^6*241*283*5783*234323*160381703*297766669*4253504674474798073927777 1201520648361357572759532797484557607148093773899732320448=2^6*241*283*5783*11249803893465756052769*4231064465128024621126847 52 Pedersen 2016 1217423547972849361603299248285477425901931735223753130205=3^4*5*11^2*79*359*521*14975239*1111048681*101049737734423604653101367679 1223157997091892457983124038984212254463910715071931989795=3^4*5*11^2*79*3126654620332659204479*101049731495773040038411449599 42 Pedersen 2016 1218376010887074652899325663908006178049372602676308577728=2^6*241*283*5783*234323*160381703*297766669*4313192811713128289481443 1218381222133487120788019812658718311185134951438408790592=2^6*241*283*5783*11248976104623092237219*4290753430155197500496063 42 Pedersen 2016 1253128349230862375933099450756246734416177852597512873152=2^6*241*283*5783*234323*160381703*297766669*4436220132175153236527087 1253133709120219961459682242683843691034152102222820039488=2^6*241*283*5783*11247340704938796201407*4413782386016906743577519 42 Pedersen 2016 1267581226577769239814246451664543647647311489928542086336=2^6*241*283*5783*234323*160381703*297766669*4487384999280393709335791 1267586648285075103122231544602151038309605655585771887424=2^6*241*283*5783*11246687172982314141119*4464947906654103698446511 42 Pedersen 2016 1276212205362862302238791833187476863554085113479174976448=2^6*241*283*5783*234323*160381703*297766669*4517939668217783270716763 1276217663986651113331510258933219288275860475781117201472=2^6*241*283*5783*11246304008696218902719*4495502958755779355065883 42 Pedersen 2016 1283364277184455656337550286643182760333056413582000261824=2^6*241*283*5783*234323*160381703*297766669*4543258834463753990050919 1283369766399136186362455794577662119915392579137546515776=2^6*241*283*5783*11245990433117027613479*4520822438577329265689279 42 Pedersen 2016 1287561173687093698149945656611529598082629357673905265216=2^6*241*283*5783*234323*160381703*297766669*4558116336306311327349821 1287566680852769362220252775454498061707495780552761066944=2^6*241*283*5783*11245808058309245452541*4535680122794694385149119 42 Pedersen 2016 1300180083981986044507317292417601782642237639925839582912=2^6*241*283*5783*234323*160381703*297766669*4602788746702798613154647 1300185645121353258555823371407797114626592686210925406528=2^6*241*283*5783*11245266851990913443519*4580353074397500002962967 42 Pedersen 2016 1351470806696297789228652739039193255468417736383373216704=2^6*241*283*5783*234323*160381703*297766669*4784363871739830488464699 1351476587216703655897191329028101765579778030919317599296=2^6*241*283*5783*11243171833185416757439*4761930294453337374959099 42 Pedersen 2016 1355391774000375120539709823283504620092967203942484667072=2^6*241*283*5783*234323*160381703*297766669*4798244552120754395013607 1355397571291569819384893415187728270876832625673280591168=2^6*241*283*5783*11243018247617920180927*4775811128419828778084519 42 Pedersen 2016 1376083056418610866486772132758788187547479399936260224704=2^6*241*283*5783*234323*160381703*297766669*4871494098889557596650199 1376088942210703734595833475535157425169895192889948031296=2^6*241*283*5783*11242222360508452396439*4849061471075741447505599 42 Pedersen 2016 1378946224457294213522201863894552424989003968042390231232=2^6*241*283*5783*234323*160381703*297766669*4881630046817639704877567 1378952122495749482527416537538087375947245322050621695808=2^6*241*283*5783*11242114123469039435519*4859197527240862968693887 42 Pedersen 2016 1382533198577031071351894371734395094085791597115232506048=2^6*241*283*5783*234323*160381703*297766669*4894328352472710585696863 1382539111957717183760008355442972609339248405213882199872=2^6*241*283*5783*11241979161233336205983*4871895967858169552742719 42 Pedersen 2016 1387678843266082472459789704541317068930788226168668330176=2^6*241*283*5783*234323*160381703*297766669*4912544533262651801144831 1387684778655756110919031129573731655988383025721580414784=2^6*241*283*5783*11241786779795727765119*4890112341029548376631551 42 Pedersen 2016 1394710269512893159321034747945906568241239694012503625408=2^6*241*283*5783*234323*160381703*297766669*4937436600139242512772023 1394716234977432418735905632447705601106735054107664085312=2^6*241*283*5783*11241526205208408897143*4915004668480726407126719 42 Pedersen 2016 1398279218544603240861334792852812562332005707514423598784=2^6*241*283*5783*234323*160381703*297766669*4950071094885847637746679 1398285199274276310846387763061242128774108973867658551616=2^6*241*283*5783*11241394954612276338359*4927639294477927664660159 42 Pedersen 2016 1441373672207646629317157477960617606446621583169864096704=2^6*241*283*5783*234323*160381703*297766669*5102630474012831330744699 1441379837261218924213462426816077033943323488065345119296=2^6*241*283*5783*11239861774940450234939*5080200206784583183761599 42 Pedersen 2016 1457466365736862899931641534402266724396481205354527301824=2^6*241*283*5783*234323*160381703*297766669*5159600481162579250165919 1457472599622216739849148961537477082080563777033166675776=2^6*241*283*5783*11239312645376085120479*5137170763063895468297279 42 Pedersen 2016 1465188949829330826616789391232902254414550176484001861824=2^6*241*283*5783*234323*160381703*297766669*5186939327214900336525919 1465195216745775468752263615751160826686570809067032915776=2^6*241*283*5783*11239053439568320709279*5164509868322024319068479 42 Pedersen 2016 1476888808663615467404578464384062508807314724614046914752=2^6*241*283*5783*234323*160381703*297766669*5228358188527963478066687 1476895125622778311250985653054698893185294709513664685888=2^6*241*283*5783*11238665935845816587519*5205929117138809964731007 42 Pedersen 2016 1485140835085515970377942795545485299768885679981650673216=2^6*241*283*5783*234323*160381703*297766669*5257571322016281116247821 1485147187340304058363365566600170752506676171941845098944=2^6*241*283*5783*11238396321069245949119*5235142520241904173550541 42 Pedersen 2016 1516719149207784832671574684092887681114643810572286698432=2^6*241*283*5783*234323*160381703*297766669*5369362227501216216298267 1516725636529559393612233928987625376720634408463679724608=2^6*241*283*5783*11237391842589992657087*5346934430205318526893019 42 Pedersen 2016 1532826280238445600107249580675376474941249501606491899072=2^6*241*283*5783*234323*160381703*297766669*5426383345085586172330607 1532832836453753888429346076145381588649388347780399119168=2^6*241*283*5783*11236895527584490409519*5403956044104693985172927 42 Pedersen 2016 1547938268128351654133527067588061807924093002660660069824=2^6*241*283*5783*234323*160381703*297766669*5479881540187098180036419 1547944888980760453974370416999063426429300598311108147776=2^6*241*283*5783*11236439325769815718079*5457454695408020667570179 52 Pedersen 2016 1553811877657937124599982637448631129512470274941057714365=3^4*5*11^2*79*359*521*14975239*1111048681*128970959192805498799527008287 1561130821970974981992292960648209195105178691926918477635=3^4*5*11^2*79*3126654578542127609087*128970952954154975975368685599 42 Pedersen 2016 1576445215591176035036690073538750216389040297790931098816=2^6*241*283*5783*234323*160381703*297766669*5580799450406798090222671 1576451958373700307106030365917759881106796763634380481344=2^6*241*283*5783*11235602711872748965391*5558373442241617644509119 42 Pedersen 2016 1577876743080047847567942297465448339788967673839768967104=2^6*241*283*5783*234323*160381703*297766669*5585867224246399670477099 1577883491985511527563489342727397850315998111826649720896=2^6*241*283*5783*11235561501777787804139*5563441257291314185924799 42 Pedersen 2016 1627726790221618338697407524520989657973282995917579439552=2^6*241*283*5783*234323*160381703*297766669*5762342190162739365397987 1627733752346053014948212983488121760485900630842540225088=2^6*241*283*5783*11234171921189791930019*5739917612788241876719807 42 Pedersen 2016 1645344074873026060532859086148502502568210141803320689856=2^6*241*283*5783*234323*160381703*297766669*5824709427240094012044911 1645351112350234114380416614453280242782013058913078557504=2^6*241*283*5783*11233701089818616733119*5802285320696967698563631 42 Pedersen 2016 1648797648088697926172764693778340345266450783748266430784=2^6*241*283*5783*234323*160381703*297766669*5836935478176303322569929 1648804700337553541647578582703032701842439253809549479616=2^6*241*283*5783*11233609977606653628809*5814511462745388972192959 42 Pedersen 2016 1671894018765527031555124721024267070363225344027374469824=2^6*241*283*5783*234323*160381703*297766669*5918699317163440427998919 1671901169802341171444682827396299526945405416843785747776=2^6*241*283*5783*11233010380513663372679*5896275901329619067878079 42 Pedersen 2016 1678562460488973937802702920974077998826131830783107071168=2^6*241*283*5783*234323*160381703*297766669*5942306376601485236965583 1678569640048093751424675157858153308024626550522057196352=2^6*241*283*5783*11232840350623980150719*5919883130797553560066703 42 Pedersen 2016 1706329166629532603182579263929005047946312449488101551808=2^6*241*283*5783*234323*160381703*297766669*6040603746428400418490423 1706336464952602517630938163643857965222768757653017710912=2^6*241*283*5783*11232146731555580886719*6018181194243537140855543 42 Pedersen 2016 1714892737317525581808265669237345042953441487056847950016=2^6*241*283*5783*234323*160381703*297766669*6070919782860499878859871 1714900072268760058711086291602026714891873693738175246144=2^6*241*283*5783*11231937368704423629119*6048497440038487758482591 42 Pedersen 2016 1732392715404480847987974550421264304333948214474074389824=2^6*241*283*5783*234323*160381703*297766669*6132871741053469145050169 1732400125206744242896039113666337493979799653379511427776=2^6*241*283*5783*11231516000213050695929*6110449819599948397606079 42 Pedersen 2016 1767681993546864574375730966375647772133364068179169745088=2^6*241*283*5783*234323*160381703*297766669*6257799890864506634607103 1767689554288675756492792324313751517623049359181945268032=2^6*241*283*5783*11230691809394173060223*6235378793601804764798719 42 Pedersen 2016 1787271632589096952149162593186876057827224726339979816768=2^6*241*283*5783*234323*160381703*297766669*6327149491928543729110433 1787279277119849535080016773049895401569327626171857858752=2^6*241*283*5783*11230248411568208090303*6304728838063667824271969 42 Pedersen 2016 1787858927505553282567084061120155103966593316689957872832=2^6*241*283*5783*234323*160381703*297766669*6329228584252571675517167 1787866574548287798083236596743960222718650361691680742208=2^6*241*283*5783*11230235269378613773487*6306807943529885364995519 42 Pedersen 2016 1858448801112119691959060476978626533725497972495250668736=2^6*241*283*5783*234323*160381703*297766669*6579124948510354282890191 1858456750082356310006491675351632449859018109488124937024=2^6*241*283*5783*11228716454568797310911*6556705826602477788831119 42 Pedersen 2016 1873928999225148990268845642333681392040000431201460620992=2^6*241*283*5783*234323*160381703*297766669*6633926650635464166835127 1873937014407397466692504637767553336298506192555605782848=2^6*241*283*5783*11228398758146151206519*6611507846424010318880447 42 Pedersen 2016 1927093922510197971125484602148357229201461288578202572992=2^6*241*283*5783*234323*160381703*297766669*6822136663717876095472127 1927102165089828916220343968746036248852403738817279190848=2^6*241*283*5783*11227346725744649531519*6799718911538823749192447 42 Pedersen 2016 1947171752628726918157867140057646727647573996587244301504=2^6*241*283*5783*234323*160381703*297766669*6893214517983067214905999 1947180081085393556974534123965668779100676674714715378496=2^6*241*283*5783*11226964441664617687999*6870797148088094900469839 42 Pedersen 2016 1973094077513784413538183172907005097471387016417352751296=2^6*241*283*5783*234323*160381703*297766669*6984982563609406514199551 1973102516845600721239427941481204642322749538457311635264=2^6*241*283*5783*11226482440327274037119*6962565675715771543414271 42 Pedersen 2016 1990224863739737677195388878406653537238988245670480445504=2^6*241*283*5783*234323*160381703*297766669*7045627539666493575213749 1990233376343472887629793726781044585333371661448393154496=2^6*241*283*5783*11226170833060003611839*7023210963380125874853749 52 Pedersen 2016 1998425802058810896903564136973674526895528059941864967805=3^4*5*11^2*79*359*521*14975239*1111048681*165875223553874940373931038559 2007839018271994179506627053713105280622244602068974072195=3^4*5*11^2*79*3126654544893009327359*165875217315224451198890997599 42 Pedersen 2016 2006919546018882211013642127454645856500417471650954950336=2^6*241*283*5783*234323*160381703*297766669*7104728657020087598744791 2006928130029229466558974411552933251987478633726122543424=2^6*241*283*5783*11225872301116436916119*7082312379265663465080511 42 Pedersen 2016 2018282322334643258758341356581988677684363455775544857792=2^6*241*283*5783*234323*160381703*297766669*7144954207004908515050927 2018290954945937005421949956383048476995699691212421770048=2^6*241*283*5783*11225671951579683761519*7122538129600021134541247 42 Pedersen 2016 2037529996562905457592485845976618031745621097333052042304=2^6*241*283*5783*234323*160381703*297766669*7213093212846867078464549 2037538711500486306176674171758763967833554961071966581696=2^6*241*283*5783*11225337697263926658239*7190677469696295455058149 52 Pedersen 2016 2042265779260284848655384636575014000475021109637629902205=3^4*5*11^2*79*359*521*14975239*1111048681*169514070696160420417914461279 2051885495601595658115469809065428204521076141223917617795=3^4*5*11^2*79*3126654542368673578079*169514064457509933767210169599 42 Pedersen 2016 2044018028701769556543162107715466570928769242547945221824=2^6*241*283*5783*234323*160381703*297766669*7236061601368517065060919 2044026771390006939324042537527555312069377118432414355776=2^6*241*283*5783*11225226451609101516479*7213645969463600266796279 42 Pedersen 2016 2069720906604579844140269491182508681480206762481899630784=2^6*241*283*5783*234323*160381703*297766669*7327052779149525385363679 2069729759229346725395412537662626051500177832857292279616=2^6*241*283*5783*11224792628822120412959*7304637581067395568202559 42 Pedersen 2016 2072821356648170667433432206413446716853816377338815143104=2^6*241*283*5783*234323*160381703*297766669*7338028732977896565995599 2072830222534204203910105335262567983954106651914747224896=2^6*241*283*5783*11224741028789342554639*7315613586495799526692799 42 Pedersen 2016 2098461646253058652953054787845554916083239498076650750528=2^6*241*283*5783*234323*160381703*297766669*7428798340903389359494493 2098470621807918581395355754239713432869107970967547321792=2^6*241*283*5783*11224320174794213532863*7406383615275287449213469 42 Pedersen 2016 2284729615811969565803033423552994870621512007389920640704=2^6*241*283*5783*234323*160381703*297766669*8088208621617097932046199 2284739388073494306870876811191830829289174700647674495296=2^6*241*283*5783*11221547568969020149439*8065796668594821215148599 42 Pedersen 2016 2308782563330130351727033201644810239235669032879290522816=2^6*241*283*5783*234323*160381703*297766669*8173358853900733932366671 2308792438471090786897276855545809693608072830141085377344=2^6*241*283*5783*11221222289852328709391*8150947226157573906909119 42 Pedersen 2016 2364716769544915618956883455602860226181082268640352709824=2^6*241*283*5783*234323*160381703*297766669*8371372450703939831563919 2364726883928054877734410000498261037046746148058570707776=2^6*241*283*5783*11220491555295413791679*8348961553695336721024079 42 Pedersen 2016 2392904335311232008025920136955262514748719195688074560448=2^6*241*283*5783*234323*160381703*297766669*8471159712564461982820763 2392914570258425108416464079360044282839611141541630737472=2^6*241*283*5783*11220136305119002632383*8448749170806035283440219 42 Pedersen 2016 2395706464277519037774452313540627342316427704447129453504=2^6*241*283*5783*234323*160381703*297766669*8481079575075611309305499 2395716711209997790829639653042634531209025767631421586496=2^6*241*283*5783*11220101448304412663999*8458669068173999199893339 42 Pedersen 2016 2418585445207039389602004435545199414373108363060187388352=2^6*241*283*5783*234323*160381703*297766669*8562073829068416845560787 2418595789997655716358024425540202500601054776418284660288=2^6*241*283*5783*11219819881301291452607*8539663603733807857360019 42 Pedersen 2016 2453090474876133042279070271391542543873625275266377871552=2^6*241*283*5783*234323*160381703*297766669*8684225648052709865227487 2453100967251904090066825088489216623630432700035683553088=2^6*241*283*5783*11219405207070650411807*8661815837392331518067519 42 Pedersen 2016 2522377392413256448264188250980310843033581723109612680256=2^6*241*283*5783*234323*160381703*297766669*8929509396252328442341061 2522388181143516766900468610667588194424312610544517639104=2^6*241*283*5783*11218606924344759076031*8907100383874675986516869 42 Pedersen 2016 2589710817131544418474655477901859476560153876413506703552=2^6*241*283*5783*234323*160381703*297766669*9167877552624265209019487 2589721893860800832641603887451480754414831755932768481088=2^6*241*283*5783*11217872225492639003807*9145469274945464873267519 42 Pedersen 2016 2622535565455203144792862570950052942595216536954089241792=2^6*241*283*5783*234323*160381703*297766669*9284080980179290903454927 2622546782582703133440695302994388640334659600932954506048=2^6*241*283*5783*11217527791506652045247*9261673046934476554661519 42 Pedersen 2016 2653066291673552084738691167875201368314175483447031699648=2^6*241*283*5783*234323*160381703*297766669*9392163302618885803198463 2653077639387288221922051414351692426918169182844453054272=2^6*241*283*5783*11217215106765025182719*9369755682058813081267583 42 Pedersen 2016 2684454739914874132710129608337096343818647849032657131328=2^6*241*283*5783*234323*160381703*297766669*9503282060798250486361793 2684466221883501066232644641442885898119440484599835084992=2^6*241*283*5783*11216901078846449795969*9480874754266096339817663 32 Pedersen 2016 2734177220651101389516390243361433354143192042337748257865=3^3*5*11*41*157*3079*3303533*38949713321*721978216191879552622324974131 2734178048373760981286875643346876821431320644238504260535=3^3*5*11*41*157*3079*128671702249525811*721978216191622209256778985227 42 Pedersen 2016 2738682240885005273867842758320355283262409808891359795904=2^6*241*283*5783*234323*160381703*297766669*9695253722495071924607399 2738693954795879397520746762194190378177488826868489676096=2^6*241*283*5783*11216375575306069775039*9672846941466458158084199 42 Pedersen 2016 2757863193482382537536682791505909217538534559851470469824=2^6*241*283*5783*234323*160381703*297766669*9763156526001998341498919 2757874989434161535886265648923487773716282105628969747776=2^6*241*283*5783*11216194662829237903079*9740749925885861406847679 52 Pedersen 2016 2759384206362329396106018320001858034972989005490576494205=3^4*5*11^2*79*359*521*14975239*1111048681*229037010846156648108704470879 2772381776811516063066586581403549992731726600707777425795=3^4*5*11^2*79*3126654512463692789599*229037004607506191362980967679 42 Pedersen 2016 2826123849018164612552203782358291999178839921645574106304=2^6*241*283*5783*234323*160381703*297766669*10004807187332238278854799 2826135936934897857297326333199738203640154478251264037696=2^6*241*283*5783*11215570823913827100239*9982401211055016755006399 42 Pedersen 2016 2842772775288380734620019205125705719210625366257834937408=2^6*241*283*5783*234323*160381703*297766669*10063746323091448301412773 2842784934416018102417240340047046479113341867763352933312=2^6*241*283*5783*11215423228129936737893*10041340494410010667926719 42 Pedersen 2016 2872453752254169303086750975206491539046014375776860094912=2^6*241*283*5783*234323*160381703*297766669*10168820434326003559964147 2872466038333489361100515238120538058926227926504381054528=2^6*241*283*5783*11215164358905309259967*10146414864513790553956019 42 Pedersen 2016 2873786749317924121349857700008417788599336839633852890304=2^6*241*283*5783*234323*160381703*297766669*10173539398998687746158799 2873799041098748562452112152749875330031315247695054373696=2^6*241*283*5783*11215152858760431008399*10151133840686619618402239 42 Pedersen 2016 2885218994314815544124034014246853850278720517391328012992=2^6*241*283*5783*234323*160381703*297766669*10214010876195972874737127 2885231334993718406130316542163048423408446717208812950848=2^6*241*283*5783*11215054667343818531519*10191605416075321359457447 42 Pedersen 2016 2900320445966999464172432933201575478636575162552053242048=2^6*241*283*5783*234323*160381703*297766669*10267471771790272391012863 2900332851237937167871607061812581858056159163871545943872=2^6*241*283*5783*11214926151678182142719*10245066440185286512121983 42 Pedersen 2016 2900871463722320541175798427528342681928690386593195061824=2^6*241*283*5783*234323*160381703*297766669*10269422438743774524944669 2900883871350075249612614093432854331926659631760015715776=2^6*241*283*5783*11214921487818034968029*10247017111802648793228479 42 Pedersen 2016 3022038123485598289568906262375142765221394235133346650304=2^6*241*283*5783*234323*160381703*297766669*10698366509572741771468799 3022051049368239305532141814818499808288683834616757413696=2^6*241*283*5783*11213937359778236682239*10675962166759655838038399 42 Pedersen 2016 3063343759508595668804077397370377817628614647583353742016=2^6*241*283*5783*234323*160381703*297766669*10844593266161553049036871 3063356862063992563166099301113462256414122783658456014144=2^6*241*283*5783*11213619720036000954119*10822189240988209351334591 42 Pedersen 2016 3065422850357507670767210619654025279940719971296005396672=2^6*241*283*5783*234323*160381703*297766669*10851953489626472327006207 3065435961805606514914830271510360794647701607944358389568=2^6*241*283*5783*11213603958840794219519*10829549480214323836038527 42 Pedersen 2016 3093452117217568624365433934416930457540369796907985038784=2^6*241*283*5783*234323*160381703*297766669*10951180354944004534574179 3093465348552644118889672044168588070341812007059236311616=2^6*241*283*5783*11213393548730844551359*10928776555941965993274659 42 Pedersen 2016 3120016939066478699921237539306981465409376489894418275008=2^6*241*283*5783*234323*160381703*297766669*11045222914563785640659623 3120030284024796379909156124872549868731413137170693563712=2^6*241*283*5783*11213197631974704144743*11022819311478503239766719 42 Pedersen 2016 3135145745155623880181122233710686839842986596002018970304=2^6*241*283*5783*234323*160381703*297766669*11098780648047058254013799 3135159154822976991339771888081623419006264030307342693696=2^6*241*283*5783*11213087544680472642239*11076377155049070084623399 42 Pedersen 2016 3159754030521979560671452947147945580985885104298081972416=2^6*241*283*5783*234323*160381703*297766669*11185896840915524303554271 3159767545444063302186391644439562082641638832522662055744=2^6*241*283*5783*11212910737097829369119*11163493524725118777436991 42 Pedersen 2016 3184718999873308360770193987638380908032588747509490405824=2^6*241*283*5783*234323*160381703*297766669*11274275736583694314202419 3184732621575733972904260470145865697688498494545690291776=2^6*241*283*5783*11212734167212765947379*11251872596963173851506879 42 Pedersen 2016 3210399043390027153070170179535243614238905296316634624192=2^6*241*283*5783*234323*160381703*297766669*11365186077981624136559327 3210412774931314867458531642967892229474252813227694755648=2^6*241*283*5783*11212555413550909151519*11342783117114765530659647 42 Pedersen 2016 3213594266446583636652068594606314822098883035424500290752=2^6*241*283*5783*234323*160381703*297766669*11376497539300798801472687 3213608011654501801513051740724348639647934057264050989888=2^6*241*283*5783*11212533372678990787007*11354094600474812113937519 52 Pedersen 2016 3219458012319319937554811538074013959838032884129982780913=3^4*7*11*17*83*271*1733*795713*3225245539*303523916473156146499546975159 3233206587460897104542574496021752225968736170863145052687=3^4*7*11*17*83*1210424716305712413439*303523914057453816533786299319 42 Pedersen 2016 3392257715830338168857920401582864074938503173611332100288=2^6*241*283*5783*234323*160381703*297766669*12008986933963795390118303 3392272225218814158674618068735867211014509748984613248832=2^6*241*283*5783*11211367195935118278719*11986585161314552575091423 42 Pedersen 2016 3410976677487459677252302206245154230086994298128865882304=2^6*241*283*5783*234323*160381703*297766669*12075254235799003155160799 3410991266940809654348924304568819328032776476348523941696=2^6*241*283*5783*11211252103124726234399*12052852578242570732178239 42 Pedersen 2016 3452947310177852127386180573459286669764717263868341998784=2^6*241*283*5783*234323*160381703*297766669*12223835157949177780021679 3452962079148286389136513063821513542868724709187852151616=2^6*241*283*5783*11210998596445640180159*12201433753899424443093359 42 Pedersen 2016 3484311542271208481594123972484013021995747701051182112704=2^6*241*283*5783*234323*160381703*297766669*12334868188147689520490699 3484326445392956061891568848066922338427435673536981983296=2^6*241*283*5783*11210813151590268617099*12312466969542791555125439 42 Pedersen 2016 3563150365976199738860797103044368322492017517968529205824=2^6*241*283*5783*234323*160381703*297766669*12613966795350818520908669 3563165606307916593498774751513187125937950282890235491776=2^6*241*283*5783*11210361463113826797629*12591566028434396997362879 42 Pedersen 2016 3570740902040947386183904642529810221274714751448609777216=2^6*241*283*5783*234323*160381703*297766669*12640838176023917860971821 3570756174838958293447127491994548496125676316623652714944=2^6*241*283*5783*11210319030359247874541*12618437451540250916349119 42 Pedersen 2016 3596667155951846508320016545866777894437411895819723061824=2^6*241*283*5783*234323*160381703*297766669*12732620130858798455444669 3596682539641812341333276588338895807080665975804527715776=2^6*241*283*5783*11210175451126079628479*12710219549954364679068029 42 Pedersen 2016 3642048158403091688265117164678682074343429876140355989824=2^6*241*283*5783*234323*160381703*297766669*12893274158689282780900169 3642063736196999247825685158633063439549774517575117827776=2^6*241*283*5783*11209929065188375999679*12870873824170786708152329 42 Pedersen 2016 3700778088702110976812861632676478245589905550750605477056=2^6*241*283*5783*234323*160381703*297766669*13101184943976093100448111 3700793917696088006241118905765817702235733478598885866304=2^6*241*283*5783*11209619197588202403119*13078784919325197201296831 42 Pedersen 2016 3732297951670686662346560943523946594939041736695860351808=2^6*241*283*5783*234323*160381703*297766669*13212768925577356038946673 3732313915481642480512436934403718131299389492058442910912=2^6*241*283*5783*11209456925838071780543*13190369063198210270417969 42 Pedersen 2016 3777589188393871212986546590134871067430835288028977127104=2^6*241*283*5783*234323*160381703*297766669*13373105172288096053124599 3777605345924822156536815927821728644238035056598030360896=2^6*241*283*5783*11209228508865021679799*13350705538325923334696639 52 Pedersen 2016 3797799996537253092018438045733768414127828279076592042857=3^4*7*11*17*83*271*1733*795713*3225245539*358048815831673528406668957951 3814018359511789404148856182278156876414475445954322087063=3^4*7*11*17*83*1210424714838675913471*358048813415971199907944782079 42 Pedersen 2016 3812735704222002225713353878670382562047620338582540098752=2^6*241*283*5783*234323*160381703*297766669*13497527926899198498020687 3812752012081876985434813420921451441202807386556632621888=2^6*241*283*5783*11209055003583953987519*13475128466442306847285007 42 Pedersen 2016 3829255720372380323019801618177723132933770079105344069824=2^6*241*283*5783*234323*160381703*297766669*13556010705838121469973919 3829272098891783937785906838471694191597297868847544147776=2^6*241*283*5783*11208974553505389907679*13533611325831308383318079 42 Pedersen 2016 3937169084033496314864236639683055860989095200696098405824=2^6*241*283*5783*234323*160381703*297766669*13938036566715031505952419 3937185924120695266382127805688377030842795101004522291776=2^6*241*283*5783*11208465680291905394879*13915637695581431903809379 42 Pedersen 2016 3960220643665048114167016945038017950237726358196503463616=2^6*241*283*5783*234323*160381703*297766669*14019641769389036751656471 3960237582348539473191888132165097627911127631861267380544=2^6*241*283*5783*11208360582413441919191*13997243003353315612989119 42 Pedersen 2016 3965796018374469647550419928191734258643553358219698914752=2^6*241*283*5783*234323*160381703*297766669*14039379244441402166629187 3965812980904992787415317495319960888166169621939372685888=2^6*241*283*5783*11208335346803368150019*14016980503641291101731007 42 Pedersen 2016 4033732905371497636229393086353396460582156622711835200704=2^6*241*283*5783*234323*160381703*297766669*14279883727480593642781199 4033750158482149959475203361436271972512633991708300735296=2^6*241*283*5783*11208033463837700629439*14257485288563448245403599 42 Pedersen 2016 4107763021362069086345464163655099446579613638291689799872=2^6*241*283*5783*234323*160381703*297766669*14541958949979714916005407 4107780591114852347118467795892148523553826214540608962368=2^6*241*283*5783*11207715900502829617727*14519560828625904389639519 52 Pedersen 2016 4132840446019700495954075882464535890395870058726802921565=3^4*5*11^2*79*359*521*14975239*1111048681*343037921242692036636098331647 4152307428808300121462266480989475715192533683223935510435=3^4*5*11^2*79*3126654484160783385599*343037915004041608193284232447 42 Pedersen 2016 4168754488200349861829017552727869004341861925924091610304=2^6*241*283*5783*234323*160381703*297766669*14757875837699112708978799 4168772318826262527645832338327734092106576544150825253696=2^6*241*283*5783*11207462761756918562239*14735477969484048093668399 42 Pedersen 2016 4178429049448079955399301582682200978286488609098851899072=2^6*241*283*5783*234323*160381703*297766669*14792124909953749722955607 4178446921454093791894183316469556272427790813932839119168=2^6*241*283*5783*11207423289118879547927*14769727081211323146659519 42 Pedersen 2016 4200023816966931906215517205698031817149178504979505549504=2^6*241*283*5783*234323*160381703*297766669*14868572899080778994843999 4200041781338236716192723318638686422383291759547014770496=2^6*241*283*5783*11207335838962725483839*14846175157788508572611999 42 Pedersen 2016 4348055202033936953999553496106363979769856573239754369728=2^6*241*283*5783*234323*160381703*297766669*15392621222647224060595943 4348073799566119415713911300421357381623462504300949558592=2^6*241*283*5783*11206759808771557974719*15370224057385144805873063 42 Pedersen 2016 4444301936331513905757113301864131344201039577806276095808=2^6*241*283*5783*234323*160381703*297766669*15733345858403080845760673 4444320945530902827666337083528988505095233873299469086912=2^6*241*283*5783*11206405916117038525793*15710949047033656110486719 42 Pedersen 2016 4452043684973645708327177949927121015166198640075107847616=2^6*241*283*5783*234323*160381703*297766669*15760752549190616117247971 4452062727286096178586937009388440778604828672062540116544=2^6*241*283*5783*11206378116549451389119*15738355765620758969110691 42 Pedersen 2016 4539310839406158573837320563794257235631103255580283150528=2^6*241*283*5783*234323*160381703*297766669*16069688427633367764675743 4539330254978293574166476112726823120811489824109546921792=2^6*241*283*5783*11206071324600809994719*16047291950855459257932863 42 Pedersen 2016 4540831985138331372419048728641226907075132507702760714304=2^6*241*283*5783*234323*160381703*297766669*16075073460479507678546549 4540851407216721558989767258936840099176362901973722869696=2^6*241*283*5783*11206066081722247524149*16052676988944477734274239 42 Pedersen 2016 4575088323191065714067789614284546891111246045285470170816=2^6*241*283*5783*234323*160381703*297766669*16196344882211696792079671 4575107891790905097281500381618382255102886651433578369344=2^6*241*283*5783*11205948936863883622391*16173948527821525211709119 42 Pedersen 2016 4581314726340762873382756194256577964974812663616262743104=2^6*241*283*5783*234323*160381703*297766669*16218387073676504687689349 4581334321572217444763093127316121268779918338646067624896=2^6*241*283*5783*11205927833251783492799*16195990740389945207448389 42 Pedersen 2016 4629629450259596246688297271458377003894731522900944078784=2^6*241*283*5783*234323*160381703*297766669*16389426816780845217939179 4629649252143126566081015500920024672342405717636184471616=2^6*241*283*5783*11205766009722118484159*16367030645317815402706859 42 Pedersen 2016 4676262776933140956623074364258674219277898746305405998784=2^6*241*283*5783*234323*160381703*297766669*16554514218040624029646679 4676282778277062942802397788746148403398537145770308151616=2^6*241*283*5783*11205612995615913755159*16532118199591700419143359 42 Pedersen 2016 4772635618278931289044042223490794302255569767884886405824=2^6*241*283*5783*234323*160381703*297766669*16895685287417136473014919 4772656031829445685828088636446620256977640618363574291776=2^6*241*283*5783*11205306269366642354879*16873289575694462133911879 42 Pedersen 2016 4942405122743348757405939043849776210898870627233594250048=2^6*241*283*5783*234323*160381703*297766669*17496689082436779081792113 4942426262433177439036225288381701953562293975224242375872=2^6*241*283*5783*11204795095142909873969*17474293881888328475169983 42 Pedersen 2016 4959872755652318244437395900025398515927381083851887422656=2^6*241*283*5783*234323*160381703*297766669*17558526534936977633261711 4959893970054828822108579643705327294106667368957333328704=2^6*241*283*5783*11204744489565713700431*17536131384994104222813119 42 Pedersen 2016 5009163630034848642479320384278927391625904832980518855872=2^6*241*283*5783*234323*160381703*297766669*17733021964237981697991407 5009185055264632572608720016921437017543772486958001986368=2^6*241*283*5783*11204603595458300503727*17710626955189215700739519 42 Pedersen 2016 5024000543366421335996231964490791044746038910979899271104=2^6*241*283*5783*234323*160381703*297766669*17785546363403685034901099 5024022032056754948945588237627861854971279352924502136896=2^6*241*283*5783*11204561727662990784299*17763151396222714347368639 42 Pedersen 2016 5077779088757730331796871515107944830703595026656045504704=2^6*241*283*5783*234323*160381703*297766669*17975928670124660955955199 5077800807470035186738963180887067332578028442296473151296=2^6*241*283*5783*11204412026265537945599*17953533852645087721261439 42 Pedersen 2016 5084353270372837659697712625082904396966163938302764390592=2^6*241*283*5783*234323*160381703*297766669*17999202037813944591817727 5084375017204278192382375932828589928382324108185127741248=2^6*241*283*5783*11204393943589625778047*17976807238417047269291519 52 Pedersen 2016 5128311368838610218204322201451805903528696945208075052745=3^4*5*11^2*79*359*521*14975239*1111048681*425664937814363316459970298531 5152467333835494863600002694545267967867668038605671635255=3^4*5*11^2*79*3126654473122981016831*425664931575712899054958568099 42 Pedersen 2016 5200357190580298772098825356250557676604279440406437998784=2^6*241*283*5783*234323*160381703*297766669*18409869410035982974771679 5200379433584519802325165693852789751128207888779036151616=2^6*241*283*5783*11204082402655098980159*18387474922180020179043359 42 Pedersen 2016 5543771512525252978848565872521070920841292224521989897408=2^6*241*283*5783*234323*160381703*297766669*19625596058965876296579023 5543795224383618570532472528332747784842949105532810773312=2^6*241*283*5783*11203236687870786654143*19603202416824697813176719 42 Pedersen 2016 5592634606220420811197588048934877232740010028154143900352=2^6*241*283*5783*234323*160381703*297766669*19798577094870068042745287 5592658527076353201352217314917624603219265030849284308288=2^6*241*283*5783*11203124809148880124607*19776183564607611465872519 42 Pedersen 2016 5647879077439978094305414601381666706913493226898363032256=2^6*241*283*5783*234323*160381703*297766669*19994148949553582729034311 5647903234587949952632714467364647618188622176279494647104=2^6*241*283*5783*11203000654908482788031*19971755543445366549498119 52 Pedersen 2016 5649659689741746709650623565447846087290902842941575131405=3^4*5*11^2*79*359*521*14975239*1111048681*468938382938096835465312228239 5676271369862998460516746833822634345068743477814997028595=3^4*5*11^2*79*3126654468894266553599*468938376699446422289014961039 42 Pedersen 2016 5731038521788686721136292404961840321728893453361063622592=2^6*241*283*5783*234323*160381703*297766669*20288543056451467585197227 5731063034626816751165568396904329737303296895364514269248=2^6*241*283*5783*11202818286503787491519*20266149832711656100957547 42 Pedersen 2016 5788683761568315850226163435334344564778971400405487514304=2^6*241*283*5783*234323*160381703*297766669*20492613911118041291377799 5788708520967069458789168117914376967103855043054420069696=2^6*241*283*5783*11202694950677117799239*20470220810714056476830399 52 Pedersen 2016 6133677792342667627262857533637659797415791973530345098605=3^4*5*11^2*79*359*521*14975239*1111048681*509113310068409883452426439599 6162569350478996725832918810106066040804232280691581301395=3^4*5*11^2*79*3126654465611837011199*509113303829759473558558714799 42 Pedersen 2016 6158397211833222665593145977644851407432954433720728044736=2^6*241*283*5783*234323*160381703*297766669*21801442533667188944046191 6158423552572936796969917051667598025569412196095807241024=2^6*241*283*5783*11201958901760130366911*21779050169312121116931119 42 Pedersen 2016 6255559331398166179724641066032059009932119480540179499712=2^6*241*283*5783*234323*160381703*297766669*22145407739755909496825447 6255586087720379052138873447060400661389816815171268113728=2^6*241*283*5783*11201779924091920728767*22123015554378509879348519 42 Pedersen 2016 6292068063373008447462636304528935085167315220785653389504=2^6*241*283*5783*234323*160381703*297766669*22274652897992405640383999 6292094975850625585532890496402247165895357913786358130496=2^6*241*283*5783*11201714103973936031999*22252260778435124007603839 42 Pedersen 2016 6349030196906649426150375514417380664648765005071746158784=2^6*241*283*5783*234323*160381703*297766669*22476305477082716777731679 6349057353023103320024392764215945281689888242722316791616=2^6*241*283*5783*11201612923387379648159*22453913458706021701335359 42 Pedersen 2016 6382030474808542633095951392645226622354787227221851205824=2^6*241*283*5783*234323*160381703*297766669*22593130299763975116189919 6382057772074016443633135514935663787806863018813873491776=2^6*241*283*5783*11201555133236164142879*22570738339177431255298879 42 Pedersen 2016 6432827606288628043078472753593397956365864555985132355776=2^6*241*283*5783*234323*160381703*297766669*22772958054412583478438431 6432855120823948619984745023982210683600888802020180197184=2^6*241*283*5783*11201467337700925465151*22750566181621574856225119 52 Pedersen 2016 6432953752366946917200873926649172276119941131706077344285=3^4*5*11^2*79*359*521*14975239*1111048681*533954095611803782381355851583 6463254994723833148554246965163798571620152322716495711715=3^4*5*11^2*79*3126654463829386425599*533954089373153374269938712383 52 Pedersen 2016 6680237720355840689644729459211819884503612385817052602205=3^4*5*11^2*79*359*521*14975239*1111048681*554479392787805665245646721279 6711703748242585111164894945697134540233407838904334917795=3^4*5*11^2*79*3126654462477093838079*554479386549155258486522169599 42 Pedersen 2016 6803133560163709625787860955213162302894633703137902469312=2^6*241*283*5783*234323*160381703*297766669*24083884208667447510758047 6803162658574251319369601153254610619615657122114226872128=2^6*241*283*5783*11200866988726596883519*24061492936225413217126367 42 Pedersen 2016 7032887398961998159417483307194279750116315802748661116608=2^6*241*283*5783*234323*160381703*297766669*24897239525181573604999223 7032917480077269336776796645367125412553149967653013410112=2^6*241*283*5783*11200526330132735044343*24874848593398133173206719 42 Pedersen 2016 7268956786305140072526155268736205025862906584239207002304=2^6*241*283*5783*234323*160381703*297766669*25732952618229607229880799 7268987877138049230746386489963240529354283044759424421696=2^6*241*283*5783*11200198767559818094399*25710562014008739715038239 42 Pedersen 2016 7284778965902559560264709916885654515747630042825140072512=2^6*241*283*5783*234323*160381703*297766669*25788964974592021745050997 7284810124410206178591681614255622138826508833665900244928=2^6*241*283*5783*11200177573317162699317*25766574391565396885603519 42 Pedersen 2016 7329535915136957327922054163576925690933248755261447539392=2^6*241*283*5783*234323*160381703*297766669*25947409781439015950055527 7329567265079340880166397865583658665778770811984732976448=2^6*241*283*5783*11200118116318139171519*25925019257869390114135847 52 Pedersen 2016 7586682812263153738270735776203625090397993290866205208605=3^4*5*11^2*79*359*521*14975239*1111048681*629717003363358811123826657599 7622418482598825682393360235302192961869650117929033191395=3^4*5*11^2*79*3126654458273945580799*629716997124708408567850363199 42 Pedersen 2016 7600909686385408308352131521195468154503784128448130343104=2^6*241*283*5783*234323*160381703*297766669*26908104500456089868445599 7600942197049588103715844514970873369635441275808568024896=2^6*241*283*5783*11199772624615258904639*26885714322378166912792799 42 Pedersen 2016 7631715533967324395798722597599317069634363022906449681088=2^6*241*283*5783*234323*160381703*297766669*27017160784527465878248103 7631748176394491364070730510596196493359169738066205812032=2^6*241*283*5783*11199734959879751823719*26994770644114278429676223 42 Pedersen 2016 7879779899198825825413336159963360126736026076139028844608=2^6*241*283*5783*234323*160381703*297766669*27895337494671064103785973 7879813602648634262618727639423139161966653180054732722112=2^6*241*283*5783*11199442411018678631093*27872947646806737728406719 42 Pedersen 2016 7999411899407667129406704899943180510142915177807037179072=2^6*241*283*5783*234323*160381703*297766669*28318848692151020826010607 7999446114548305272602442699637859824769711013062964239168=2^6*241*283*5783*11199307818582920852927*28296458978879130208409519 42 Pedersen 2016 8194362344494444853671977698335310247573787190450499141824=2^6*241*283*5783*234323*160381703*297766669*29008995946262132627205919 8194397393478492986372679401029066173122600327319006035776=2^6*241*283*5783*11199096918700364105279*28986606443890124566352479 42 Pedersen 2016 8484190789167100296139398130420005588319088107311963802048=2^6*241*283*5783*234323*160381703*297766669*30035022356025348126185363 8484227077807403177204686818494368513864726961655456183872=2^6*241*283*5783*11198801314043048294483*30012633149257997381142719 42 Pedersen 2016 8504456732360201566528394896830678671584878228677944709824=2^6*241*283*5783*234323*160381703*297766669*30106766152457640730438919 8504493107682138702222468940744162915354276160631538707776=2^6*241*283*5783*11198781398721892699079*30084376965605611140991679 42 Pedersen 2016 8537147921485622148721322800685047772319946267327253684416=2^6*241*283*5783*234323*160381703*297766669*30222496764914017601626271 8537184436634542520173865279659235461886995307733582503744=2^6*241*283*5783*11198749472625951808991*30200107609988083953069119 42 Pedersen 2016 8616766517167018150927051297037821036666696916848258868416=2^6*241*283*5783*234323*160381703*297766669*30504355855624167993580271 8616803372861153959046984809165861966815969483460198439744=2^6*241*283*5783*11198672731964795362991*30481966777438895501469119 42 Pedersen 2016 8638654255387913524107060323293361229754590138445100632618=2*7*11*37*41*97*163*718121*8190097*25404257*15652628663568485604380461799 8638667679730279171332043756938831537672143422511009805782=2*7*11*37*41*97*163*149414880956340724199*15652628364738958732402521191 42 Pedersen 2016 8686620384899797685964507142382042642020682834210805775552=2^6*241*283*5783*234323*160381703*297766669*30751646673469488924001487 8686657539373386115130452910587475916089732675746006369088=2^6*241*283*5783*11198606562879942467519*30729257661453301284785807 42 Pedersen 2016 8732913339183784756374612970644780763272782839948915364032=2^6*241*283*5783*234323*160381703*297766669*30915529116874855661494367 8732950691661921682291396356607920116783510189418230067008=2^6*241*283*5783*11198563295721476915519*30893140148125826487830687 42 Pedersen 2016 8761719178760442469301706387635262734376908987599219470784=2^6*241*283*5783*234323*160381703*297766669*31017505139947520433216179 8761756654447118311449990586881211036178506876450423639616=2^6*241*283*5783*11198536603700533536959*30995116197890512202931059 42 Pedersen 2016 8800629305155085556884855096233425072835519165297363827904=2^6*241*283*5783*234323*160381703*297766669*31155251513783322165224399 8800666947268426706669176903682051324617538769850635404096=2^6*241*283*5783*11198500826583000715199*31132862607503431467761039 42 Pedersen 2016 8876912253855675894624400443631572010693289953997163434176=2^6*241*283*5783*234323*160381703*297766669*31425302026146999286868831 8876950222246979837676851721041962158340341891470332030784=2^6*241*283*5783*11198431597039126665119*31402913189096652463455551 42 Pedersen 2016 9025085492545581068726253818958415958388560886473954858176=2^6*241*283*5783*234323*160381703*297766669*31949852528040283552262831 9025124094704499973532027186310217102430165553730364926784=2^6*241*283*5783*11198300472336606315119*31927463822114639249199551 42 Pedersen 2016 9124753321372862859455960858233267678824965058321437977792=2^6*241*283*5783*234323*160381703*297766669*32302688236405794389270927 9124792349831717722846458947786942673341597991651130250048=2^6*241*283*5783*11198214670237909261247*32280299616282248783261519 42 Pedersen 2016 9200570277359790233474709436676483483147750817666234893504=2^6*241*283*5783*234323*160381703*297766669*32571089080354366710757999 9200609630103460589453782956568209753765811853303375346496=2^6*241*283*5783*11198150647076495383999*32548700524253982518625839 42 Pedersen 2016 9354883166515615410701742132945936588340297888926087941824=2^6*241*283*5783*234323*160381703*297766669*33117374659119984239380919 9354923179287456729563332662691355784307799698351001235776=2^6*241*283*5783*11198023547349823692479*33094986230119326718940279 42 Pedersen 2016 9934935113205772826726037826885703719655815622293736337728=2^6*241*283*5783*234323*160381703*297766669*35170826027604028014885193 9934977606979865686360863370853851648483860145783297830592=2^6*241*283*5783*11197581136395297174719*35148438041014325020962313 52 Pedersen 2016 10255792963284499947509671842348670806092997675295262689005=3^4*5*11^2*79*359*521*14975239*1111048681*851261001911849081621183235119 10304100984779010074434340133835544473738139687308687390995=3^4*5*11^2*79*3126654450212324631599*851260995673198687126827889919 42 Pedersen 2016 10288455617875888780526304620020379556222833794076547483328=2^6*241*283*5783*234323*160381703*297766669*36422329739029012745867543 10288499623730361780485032784103954880305908636234872092992=2^6*241*283*5783*11197335992118261929663*36399941997583586787189719 42 Pedersen 2016 10416209625780278620979209027892296762585923297737451623104=2^6*241*283*5783*234323*160381703*297766669*36874593788580976968750599 10416254178065089563509006531942642714096610133514037144896=2^6*241*283*5783*11197251499683668669639*36852206131627985603332799 42 Pedersen 2016 10501809349086872076255769800839949738752457065919182454976=2^6*241*283*5783*234323*160381703*297766669*37177626766866406891513631 10501854267499419451273619781441536033909305478641362353984=2^6*241*283*5783*11197196037934140320351*37155239165375165054445119 42 Pedersen 2016 10659880952804545614401233728175627074436067958489016110784=2^6*241*283*5783*234323*160381703*297766669*37737218632430663980618679 10659926547322064218306313791121131365549402645734502199616=2^6*241*283*5783*11197095963447963360959*37714831131013908320509559 52 Pedersen 2016 10681474721788365008454331476133890926087948679133764659085=3^4*5*11^2*79*359*521*14975239*1111048681*886593840780268208453344471823 10731787838706821744238568504910798060737653195882308556915=3^4*5*11^2*79*3126654449299133625599*886593834541617814872180132623 42 Pedersen 2016 10691144812679716054846921268486903196414489832105300320448=2^6*241*283*5783*234323*160381703*297766669*37847896333300539332943263 10691190540919235222239241185712177809614646807311361777472=2^6*241*283*5783*11197076521263147192383*37825508851325968489002719 42 Pedersen 2016 10760714197821115671312920795418363682081319884806633255616=2^6*241*283*5783*234323*160381703*297766669*38094180049678634218958471 10760760223623296526171737908074118157362210343018244148544=2^6*241*283*5783*11197033663621530021191*38071792610561704992189119 42 Pedersen 2016 11209870172052720870706481320503397071572228922816487651648=2^6*241*283*5783*234323*160381703*297766669*39684244448585553604116713 11209918118987982512984605487561635227642871156324932462272=2^6*241*283*5783*11196769779619329979583*39661857273352626577388969 52 Pedersen 2016 11547357863849955894907474787117384894931368291055704361321=3^4*7*11*17*83*271*1733*795713*3225245539*1088661280979987990133544207103 11596670424122624745685030448009275628966538967673821050519=3^4*7*11*17*83*1210424709358010868479*1088661278564285667115485076223 42 Pedersen 2016 11550573390346624613142444191299254305257866524435057189824=2^6*241*283*5783*234323*160381703*297766669*40890373475209171975131419 11550622794540079280472840347623337411803831250080032627776=2^6*241*283*5783*11196583311984998719679*40867986486443879279663579 42 Pedersen 2016 11578294395792459148503747879119981225257943670867088709824=2^6*241*283*5783*234323*160381703*297766669*40988509059260420991313919 11578343918554392584903912260187886926878723430396314707776=2^6*241*283*5783*11196568623382056391679*40966122085183731238174079 42 Pedersen 2016 11634891646851941629200154529311969344974512897396637538496=2^6*241*283*5783*234323*160381703*297766669*41188869911945585102602751 11634941411692033945740359751758366750997157875871118944064=2^6*241*283*5783*11196538851556595157119*41166482967640720810697471 42 Pedersen 2016 11982987499776400414298109682299973606097308659019125923008=2^6*241*283*5783*234323*160381703*297766669*42421169725143469743372623 11983038753494514407241571123103867182150625097575698555712=2^6*241*283*5783*11196361931761314216719*42398782957758400732407743 42 Pedersen 2016 12381186606058278064810480728793562488668875781502001358784=2^6*241*283*5783*234323*160381703*297766669*43830840883717170743619179 12381239562956400131375329374248833881018921503394397591616=2^6*241*283*5783*11196171755384447362859*43808454306508478599508159 42 Pedersen 2016 12386453446406667165534734588945560671172634987637718494784=2^6*241*283*5783*234323*160381703*297766669*43849486111239807888116429 12386506425832155681641191005497455204899250452394316935616=2^6*241*283*5783*11196169321985229677759*43827099536464514961690509 42 Pedersen 2016 12412572377037508318373836262491723551798725643501667981504=2^6*241*283*5783*234323*160381703*297766669*43941950164077285692735999 12412625468179069977095855011989503660856332228970314098496=2^6*241*283*5783*11196157284985929459839*43919563601338992066527999 42 Pedersen 2016 12656923238907516362702877968488483946914157764269351949888=2^6*241*283*5783*234323*160381703*297766669*44806980640330901040924653 12656977375188296887363932361271003667179595135701873527232=2^6*241*283*5783*11196047083250735287469*44784594187794342608889023 42 Pedersen 2016 13255531083553630826993620045980927272465524780305130461376=2^6*241*283*5783*234323*160381703*297766669*46926122046178898087212031 13255587780204079674293610308526564088856638958037940299584=2^6*241*283*5783*11195794292897471685119*46903735846432692918778751 42 Pedersen 2016 13382310402100752780881818977414001775706470214025215429824=2^6*241*283*5783*234323*160381703*297766669*47374935582020927825883919 13382367641012591420965574510931598013132795929220037587776=2^6*241*283*5783*11195743658471153232079*47352549432909148975903679 42 Pedersen 2016 13450245973480758717023290358349951184162600242644284398784=2^6*241*283*5783*234323*160381703*297766669*47615435407622816056921679 13450303502967099374141043039142911515660136309118341751616=2^6*241*283*5783*11195716918735113273359*47593049285250773246900159 42 Pedersen 2016 13530899535201806439943908908428153305078220714778805023168=2^6*241*283*5783*234323*160381703*297766669*47900958398510501012540083 13530957409660126531843442675244239073843444291618854604352=2^6*241*283*5783*11195685522000622528703*47878572307535192693263219 42 Pedersen 2016 13591783002172154542317372603281837522482830786440665984192=2^6*241*283*5783*234323*160381703*297766669*48116492954133837577469327 13591841137041666247247416791179609342719527680264828195648=2^6*241*283*5783*11195662068325416819647*48094106886612204463901519 42 Pedersen 2016 13769493631161546054660654694063941904686103168226263137472=2^6*241*283*5783*234323*160381703*297766669*48745609253759590238221007 13769552526136205516159287820966591122616586463093159592768=2^6*241*283*5783*11195594797252359773327*48723223253509030181699519 42 Pedersen 2016 14069340000856644871564825027392708377832112186686213550784=2^6*241*283*5783*234323*160381703*297766669*49807100283483292382508679 14069400178336298195694008059362523120775126768078923959616=2^6*241*283*5783*11195485147878323909959*49784714392882106361850559 42 Pedersen 2016 14223825159901387757157299609553648556656845046640887217216=2^6*241*283*5783*234323*160381703*297766669*50353995717695762883486821 14223885998146046020360818031210618019408847407147394474944=2^6*241*283*5783*11195430460623211545791*50331609881781831975192869 52 Pedersen 2016 14308679863839830071705567900156274248388916794055907708605=3^4*5*11^2*79*359*521*14975239*1111048681*1187662543553074659729146157599 14376078261691171711223931993678858777322754287827330691395=3^4*5*11^2*79*3126654443721905863199*1187662537314424271725209580799 42 Pedersen 2016 14317592219212438813633631055391983585152188204495970202304=2^6*241*283*5783*234323*160381703*297766669*50685942015539761654705799 14317653458518220306444567808452208137351464724482437221696=2^6*241*283*5783*11195397843300387138239*50663556212243153570819399 42 Pedersen 2016 14644484021446876669153849275844526566594259499434516045504=2^6*241*283*5783*234323*160381703*297766669*51843177022636604479594999 14644546658936565623408754633188210639110989345944965554496=2^6*241*283*5783*11195287400845878434999*51820791329782450904411839 42 Pedersen 2016 14930889902781058254370134504689266215328526723623028904896=2^6*241*283*5783*234323*160381703*297766669*52857087160036257690898651 14930953765287990059439122346659206549312167850376578329664=2^6*241*283*5783*11195194613998240553371*52834701559968951753597119 42 Pedersen 2016 15183378407134353001297005860754511155279718385370334042304=2^6*241*283*5783*234323*160381703*297766669*53750925837329261980620799 15183443349586885132572168911618219690657089150544444581696=2^6*241*283*5783*11195115720399936214399*53728540316155554347658239 42 Pedersen 2016 15681908694857005494946671127987411483572166487345312494784=2^6*241*283*5783*234323*160381703*297766669*55515781049687771915397679 15681975769626778105811191588717731365871863982736642935616=2^6*241*283*5783*11194967412169911437759*55493395676822294307211759 42 Pedersen 2016 15986512308952852415534207150343467472150292593172166602432=2^6*241*283*5783*234323*160381703*297766669*56594113277998378154259767 15986580686575337979937477894780973089877688706613910540608=2^6*241*283*5783*11194881350493054230519*56571727991194577403281087 42 Pedersen 2016 16429017363648567564159244474744211295377483142657823495616=2^6*241*283*5783*234323*160381703*297766669*58160632648049552764835971 16429087633956774265667720423336629902264654359806977108544=2^6*241*283*5783*11194762015347950336191*58138247480580897117751619 42 Pedersen 2016 16454341582718691560034383389993063633676045531722838981824=2^6*241*283*5783*234323*160381703*297766669*58250283329513627630995919 16454411961343825547109952046857638536083357203550717395776=2^6*241*283*5783*11194755380177603003279*58227898168680142331244479 32 Pedersen 2016 16587341805283348429732767476392695681802031723515672764381=3^2*7*11*13*41*157*3079*3303533*38949713321*721978216191879552622324974131 16587346826800816619807045569637719383350011908380259180579=3^2*7*11*13*41*157*3079*128671702249525811*721978216191622209256778985227 42 Pedersen 2016 16618050847308903973491641751362193970632421503993120577216=2^6*241*283*5783*234323*160381703*297766669*58829833170393408887178071 16618121926152451783697885385819819691005892089771685914944=2^6*241*283*5783*11194712975093996349119*58807448051965007194080791 42 Pedersen 2016 16671554923605706647022549036335143200838616876334956078784=2^6*241*283*5783*234323*160381703*297766669*59019243824590957207126679 16671626231297264564646996626669535671290988656358332471616=2^6*241*283*5783*11194699296776696084159*58996858719840872814294359 42 Pedersen 2016 16854654929802892661416587692538815099773505591616544116928=2^6*241*283*5783*234323*160381703*297766669*59667439146476303849634143 16854727020651080298970771282589987350449126409678864707392=2^6*241*283*5783*11194653144737169231263*59645054087878258983654719 42 Pedersen 2016 17036142345360973617271523021967678651287844373625222330048=2^6*241*283*5783*234323*160381703*297766669*60309925709907222517115863 17036215212468406991713096244707408725875464395345228695872=2^6*241*283*5783*11194608378704148024983*60287540696075210672342719 42 Pedersen 2016 17046660872625013018852208285839849831129997464137059271104=2^6*241*283*5783*234323*160381703*297766669*60347162520037808948026099 17046733784722364923667333208493706325420091376676142136896=2^6*241*283*5783*11194605813423878596799*60324777508771077372681139 42 Pedersen 2016 17136458385474765635102214767178330408710953696650916083136=2^6*241*283*5783*234323*160381703*297766669*60665056161633128001049091 17136531681654668825626389089406528639056340419220774914624=2^6*241*283*5783*11194584041692620079811*60642671172138127684221119 42 Pedersen 2016 17318963323346718694421785919106404339000971310751249572032=2^6*241*283*5783*234323*160381703*297766669*61311144872423100046942367 17319037400138021193792911909306168037072446975740309299008=2^6*241*283*5783*11194540488810192215519*61288759926480982157978687 42 Pedersen 2016 17637431266450852743709245984224750692355908189193912430784=2^6*241*283*5783*234323*160381703*297766669*62438558438254650282163679 17637506705395473395753596940231380162534845150077183479616=2^6*241*283*5783*11194466649622521622559*62416173566151720063792959 42 Pedersen 2016 18320071898737098318031751161660674841433825452547176878784=2^6*241*283*5783*234323*160381703*297766669*64855185687847828395676679 18320150257477015511110294468878335144428217575371455671616=2^6*241*283*5783*11194317027767567004359*64832800965366753131924159 42 Pedersen 2016 18351179585962451120671515689018911061352736898476484405824=2^6*241*283*5783*234323*160381703*297766669*64965310519369850132108669 18351258077756386124938016201812576195049220618620616291776=2^6*241*283*5783*11194310474877495026879*64942925803441664940333629 42 Pedersen 2016 18441614297134428585535389466354748180507393649758230351936=2^6*241*283*5783*234323*160381703*297766669*65285459917150860052913141 18441693175736344004985625102195119605707399805940190629824=2^6*241*283*5783*11194291550261711570111*65263075220147290644594869 42 Pedersen 2016 18802271162396112255025045908443508911653078987802993450176=2^6*241*283*5783*234323*160381703*297766669*66562227175239843911114831 18802351583602099350557250511430180012367018216213616894784=2^6*241*283*5783*11194217889805644765119*66539842551896730569601551 42 Pedersen 2016 19097541720329913528985428463701930359850876160909034854592=2^6*241*283*5783*234323*160381703*297766669*67607519299026280176201727 19097623404469200353225899048250103623030797991599188797248=2^6*241*283*5783*11194159656139155691519*67585134733916833323762047 42 Pedersen 2016 19393723269874821600792097971694529815631350562992085418176=2^6*241*283*5783*234323*160381703*297766669*68656036439091308443372831 19393806220843907857237258583495446082264758519525655166784=2^6*241*283*5783*11194103025114083565119*68633651930612886663059551 42 Pedersen 2016 20219492844497155868558068181331098892879282801636969479104=2^6*241*283*5783*234323*160381703*297766669*71579356794684370767599099 20219579327453653911482386468004549488553031522996325368896=2^6*241*283*5783*11193953900088055578299*71556972435330975015272639 42 Pedersen 2016 20759460231726180148988454229595207619580846359125281266496=2^6*241*283*5783*234323*160381703*297766669*73490904159655929540202001 20759549024234971082320833385404361651579497145606242256064=2^6*241*283*5783*11193862805968922465471*73468519891396652920988369 52 Pedersen 2016 20821785348814984848072934533293234845486214287651372319805=3^4*5*11^2*79*359*521*14975239*1111048681*1728269468882609252066380736159 20919862528978974413994862579423458291746407589890065120195=3^4*5*11^2*79*3126654438584455677599*1728269462643958869199894344959 42 Pedersen 2016 21199179479183619271545160099520536424123124112039192596928=2^6*241*283*5783*234323*160381703*297766669*75047561448011813585326643 21199270152462657098753757666597238747881300474610302627392=2^6*241*283*5783*11193792053748715967219*75025177250504757172611263 42 Pedersen 2016 21225517578565449421551823155663839276808289230488412270784=2^6*241*283*5783*234323*160381703*297766669*75140801383723601777203679 21225608364497990509098761449206129243984713706395534839616=2^6*241*283*5783*11193787908959615638559*75118417190361334464816959 42 Pedersen 2016 21653140331882395113031975184769490453614007794722336233408=2^6*241*283*5783*234323*160381703*297766669*76654635675642023918932523 21653232946845973581302711786170654864431731758650756917312=2^6*241*283*5783*11193722026031041514219*76632251548162685180670143 42 Pedersen 2016 22379916804150472796322597510016494217308234050909733871808=2^6*241*283*5783*234323*160381703*297766669*79227508933074733661035423 22380012527687471891572960218576119418686339459043442990912=2^6*241*283*5783*11193615831352282900543*79205124911790073681386719 42 Pedersen 2016 22411456722223170946665095837937205274115791954082315596992=2^6*241*283*5783*234323*160381703*297766669*79339163912077592017966127 22411552580662928662557163741913829419022875515179078486848=2^6*241*283*5783*11193611378822625536447*79316779895245461695681519 42 Pedersen 2016 23078065654211169326818030917445570295841365950788923293888=2^6*241*283*5783*234323*160381703*297766669*81699037077653969847119903 23078164363875322713680735238527437331224018293755952103232=2^6*241*283*5783*11193520120836447453023*81676653152079825702918719 42 Pedersen 2016 23815510475657751649299454233148706427720035987733952958656=2^6*241*283*5783*234323*160381703*297766669*84309677532223193746127711 23815612339526063536057697958209077162345933951907416272704=2^6*241*283*5783*11193425119736789466431*84287293701650149259913119 42 Pedersen 2016 23869171002701505009652187929813584922241476934103680129216=2^6*241*283*5783*234323*160381703*297766669*84499642040264797598915071 23869273096086999235134373854861530333313280980669909722944=2^6*241*283*5783*11193418436140856549119*84477258216375349045617791 52 Pedersen 2016 24672170717880517287439256546274196509436909506102254714205=3^4*5*11^2*79*359*521*14975239*1111048681*2047862787385769216769385306879 24788384428280331311386807480111904693457151910196323205795=3^4*5*11^2*79*3126654436823064103679*2047862781147118835664290489599 42 Pedersen 2016 25216288412088873906214655728529013906434961418264029724096=2^6*241*283*5783*234323*160381703*297766669*89268594379102127654418851 25216396267374392518853661115206364720840945206728979366464=2^6*241*283*5783*11193259972430689917119*89246210713676389267753571 42 Pedersen 2016 25397871936186127870314996107782603351288841105192322702016=2^6*241*283*5783*234323*160381703*297766669*89911421177941985024296871 25397980568141968337146272697227979515466953310622619854144=2^6*241*283*5783*11193239898592158719591*89889037532590085168829119 42 Pedersen 2016 26237695794180427648001747029682579935970626983588891815104=2^6*241*283*5783*234323*160381703*297766669*92884495331600724667827599 26237808018236759236022306014066748784583027053778375512896=2^6*241*283*5783*11193150672617078690639*92862111775474799892388799 42 Pedersen 2016 26827844666924274379962954143811898098693656362488739617088=2^6*241*283*5783*234323*160381703*297766669*94973690992886022717045353 26827959415169500387527997371024180450216210937692256356032=2^6*241*283*5783*11193091316214199004969*94951307496116500821292223 52 Pedersen 2016 27140085972476959514765156467046798814954890753449487179113=3^4*7*11*17*83*271*1733*795713*3225245539*2558711794427131598721206357759 27255986695491095996633612752474925448813404114002652750487=3^4*7*11*17*83*1210424707814892261119*2558711792011429277246265834239 42 Pedersen 2016 28010524862374704501946484250423171058869859359515628212416=2^6*241*283*5783*234323*160381703*297766669*99160516465474116486994271 28010644669187951026057907648712481139123652042231119015744=2^6*241*283*5783*11192979895016724376991*99138133080125792065869119 42 Pedersen 2016 29145315006796913121696705525882510538859045640425944453312=2^6*241*283*5783*234323*160381703*297766669*103177805586392655887262047 29145439667342518278287287516728132952893823038478030008128=2^6*241*283*5783*11192881489177700783519*103155422299450170489730367 42 Pedersen 2016 29154727494392865010320362546503754044867358477148610112704=2^6*241*283*5783*234323*160381703*297766669*103211126887433079515053199 29154852195197628077521728239275419727597166080022593983296=2^6*241*283*5783*11192880704996879125439*103188743601274774939179599 52 Pedersen 2016 29670689877936956858369447317708106411680478910773585627805=3^4*5*11^2*79*359*521*14975239*1111048681*2462754589852743644438060346559 29810448191069019773368560134609023258561734359829125412195=3^4*5*11^2*79*3126654435218402735359*2462754583614093264937626897599 42 Pedersen 2016 30179349344139659098733460736234054001648221715191972362304=2^6*241*283*5783*234323*160381703*297766669*106838407429368908202134549 30179478427464178724150863995021440888415389091052943861696=2^6*241*283*5783*11192798266616702174399*106816024225648983803211989 42 Pedersen 2016 30327739584183170035751313365930597470148122810428689711296=2^6*241*283*5783*234323*160381703*297766669*107363726141297633772459551 30327869302203464333367552809597701418150867658821347475264=2^6*241*283*5783*11192786789450998174271*107341342949054875077537119 42 Pedersen 2016 31050344720404650862005351654663614143837697237330848206016=2^6*241*283*5783*234323*160381703*297766669*109921832383875609155545871 31050477529156698014269615100626187284033532940819613070144=2^6*241*283*5783*11192732468173493318591*109899449245954127965479119 42 Pedersen 2016 31134039555959517693953133225104520405633818144304449754304=2^6*241*283*5783*234323*160381703*297766669*110218121837925129636442799 31134172722691702037062584479499903881815694088748341029696=2^6*241*283*5783*11192726339469559550399*110195738706132352380144239 42 Pedersen 2016 32058785051795994320060001924652159363929294006003576323008=2^6*241*283*5783*234323*160381703*297766669*113491828468443865322960123 32058922173856094316241595156590106133431447229935120155712=2^6*241*283*5783*11192660754035334807743*113469445402236522291404219 52 Pedersen 2016 32125040191206292732682054587283651731703951020152382110285=3^4*5*11^2*79*359*521*14975239*1111048681*2666472889763431659413399042383 32276359268885078850102161034009843058167963247421218145715=3^4*5*11^2*79*3126654434613281675599*2666472883524781280518086653183 42 Pedersen 2016 32219813379404020901802473035635751208081266645189963461824=2^6*241*283*5783*234323*160381703*297766669*114061887480534428427375919 32219951190215612272193256578133811478747393119125359315776=2^6*241*283*5783*11192649718448095148479*114039504425362672635479279 42 Pedersen 2016 33067130973813375005382929941777320700022839646688657989824=2^6*241*283*5783*234323*160381703*297766669*117061490332845690201493919 33067272408777719409522390436919879361173290459410175827776=2^6*241*283*5783*11192593421349225046079*117039107333971033279699679 42 Pedersen 2016 33854447694196695974046652610299373588347264917673315792576=2^6*241*283*5783*234323*160381703*297766669*119848683111228159276854231 33854592496677634525773310299048899121208481418315152984384=2^6*241*283*5783*11192543637281583500951*119826300162137569996605119 42 Pedersen 2016 35545644070257869485977421056593952061126436671226645034688=2^6*241*283*5783*234323*160381703*297766669*125835715018653357032959703 35545796106335800078563680551946448367523381169888809306432=2^6*241*283*5783*11192444157142932997823*125813332169042906403213719 42 Pedersen 2016 35755629964271377077472506548861497385909154142820115150784=2^6*241*283*5783*234323*160381703*297766669*126579089511032591496171179 35755782898502445181379970264441540900126440818568510359616=2^6*241*283*5783*11192432462221952544959*126556706673117061846878059 42 Pedersen 2016 36074303973936862664416363642605635319227044628103890501824=2^6*241*283*5783*234323*160381703*297766669*127707232576462963259365919 36074458271202638261378874643011785477224285048631579475776=2^6*241*283*5783*11192414974205884080479*127684849756035449678537279 42 Pedersen 2016 36447666504932404965790873847028086833560836883135490768576=2^6*241*283*5783*234323*160381703*297766669*129028979369294599063610231 36447822399147014760365237118683089310627934486734905688384=2^6*241*283*5783*11192394874155398205119*129006596568967135968656951 42 Pedersen 2016 38013184611841217512592425562677561906238063798367243815488=2^6*241*283*5783*234323*160381703*297766669*134571095583819837575008253 38013347202100845742960027242170822748574089023274936669632=2^6*241*283*5783*11192314893972772758719*134548712863472557105501373 42 Pedersen 2016 38120632645512844527101699902021634348148294607504974541504=2^6*241*283*5783*234323*160381703*297766669*134951474122402313149220999 38120795695349955402023054547505893511336826073944108338496=2^6*241*283*5783*11192309645566611932999*134929091407303438840539839 42 Pedersen 2016 38121482610203878721606627768603795183236514689896056261824=2^6*241*283*5783*234323*160381703*297766669*134954483096284611991675919 38121645663676464529797052516216826478047914613845570515776=2^6*241*283*5783*11192309604167215139279*134932100381227137079788479 42 Pedersen 2016 38699050529151466105049362466493742998829196220479487294784=2^6*241*283*5783*234323*160381703*297766669*136999140717594047213103929 38699216053001602584768323616005847219238976677482532135616=2^6*241*283*5783*11192281893028961645759*136976758030247710554710009 42 Pedersen 2016 38857258572331593287818707506801672047812826199532655008448=2^6*241*283*5783*234323*160381703*297766669*137559215594727335931396263 38857424772870280821435507634062582946587119179843466929472=2^6*241*283*5783*11192274446130357327719*137536832914827897877320383 42 Pedersen 2016 38891686178068167215253542428212015952853662760260515469504=2^6*241*283*5783*234323*160381703*297766669*137681093323983815364863999 38891852525860851283121288718781142620544308279469230450496=2^6*241*283*5783*11192272833641537043839*137658710645696866131071999 42 Pedersen 2016 39915206092154234835040822470016493211227500113127309678784=2^6*241*283*5783*234323*160381703*297766669*141304472885492956809351679 39915376817753468530408467411219722752672256491324826871616=2^6*241*283*5783*11192226165859656364159*141282090253873789456239359 42 Pedersen 2016 39990196328014972535072457987221229706895714926522564624576=2^6*241*283*5783*234323*160381703*297766669*141569947044022810418771231 39990367374362968605416656677002928035000765552231717912384=2^6*241*283*5783*11192222840597357805119*141547564415728905364217951 42 Pedersen 2016 40273544387122186663000554361988008123694676805675213327552=2^6*241*283*5783*234323*160381703*297766669*142573032135023815283113487 40273716645408486924945792668446082196745998732219022177088=2^6*241*283*5783*11192210388026090447807*142550649519182481495917519 42 Pedersen 2016 40380280530496486385132458078441792877526496921698397683904=2^6*241*283*5783*234323*160381703*297766669*142950890499139851046010399 40380453245315367122787452268332285453161877801066287628096=2^6*241*283*5783*11192205742514909263199*142928507887944028439999039 42 Pedersen 2016 40605909049503865969993984124496749674293029941197020741824=2^6*241*283*5783*234323*160381703*297766669*143749641703697429796805919 40606082729382629470417374908506015555843661417557572435776=2^6*241*283*5783*11192196002810570825279*143727259102241311529232479 42 Pedersen 2016 40863935260670179915344862379273293987952098889812885628096=2^6*241*283*5783*234323*160381703*297766669*144663084507307644567130351 40864110044180462132335795751433969682763194210177914182464=2^6*241*283*5783*11192184996454908315071*144640701916857881962067119 52 Pedersen 2016 41534448846515961717254087310043411067122391764809429319005=3^4*5*11^2*79*359*521*14975239*1111048681*3447481502943519752448905829119 41730089208487303976846992586774530593790758067507416760995=3^4*5*11^2*79*3126654432956034681599*3447481496704869375210840433919 42 Pedersen 2016 42438901286018790911417372434139526357285718452927661998784=2^6*241*283*5783*234323*160381703*297766669*150238647452182178809396679 42439082805984794528421572378453665905625358595546132151616=2^6*241*283*5783*11192120717082114305159*150216264926011788998343359 52 Pedersen 2016 42633081483024341861591483983737081967512868575497970823005=3^4*5*11^2*79*359*521*14975239*1111048681*3538671245388131980943391064319 42833896751432369849607315056331515541625249028490632056995=3^4*5*11^2*79*3126654432810229029119*3538671239149481603851131321599 42 Pedersen 2016 43941360268009755117115082916561355987254723977487569070784=2^6*241*283*5783*234323*160381703*297766669*155557527028856548841128679 43941548214303846136247010293876000661312439583922202039616=2^6*241*283*5783*11192063692423430496959*155535144559710817713883559 42 Pedersen 2016 45253149117667367695333374846740802233842317156271255244992=2^6*241*283*5783*234323*160381703*297766669*160201412156493931765804127 45253342674753919833607309060531519075734003555405611478848=2^6*241*283*5783*11192017001410791731519*160179029734039213277324447 42 Pedersen 2016 45344756008035893823087379977933811477827794831206925828416=2^6*241*283*5783*234323*160381703*297766669*160525711204989840704496521 45344949956944079450965176071670326018686274265931304279744=2^6*241*283*5783*11192013841745897469119*160503328785694787110279241 42 Pedersen 2016 45483387868703294812334503690782166713396206823538951461056=2^6*241*283*5783*234323*160381703*297766669*161016484118738936682202111 45483582410568646455607119097163365763450276179045105002304=2^6*241*283*5783*11192009084326096053119*160994101704201302889400831 42 Pedersen 2016 46254356689450087711823728657869411489093540981850075072192=2^6*241*283*5783*234323*160381703*297766669*163745803430663754112322327 46254554528908682606916338979110606468176108280605470947648=2^6*241*283*5783*11191983147437539122647*163723421042063008876451519 42 Pedersen 2016 46403020679194223825724277663382878272765622165359133720256=2^6*241*283*5783*234323*160381703*297766669*164272091248377881239112311 46403219154519477531040117752473293843580937789805063799104=2^6*241*283*5783*11191978245231017316031*164249708864679342525048119 42 Pedersen 2016 46603898224031101739884695607471753372157807872198424579776=2^6*241*283*5783*234323*160381703*297766669*164983221125101388096757431 46604097558551198024518492491057859025510030505599456293184=2^6*241*283*5783*11191971670969996009151*164960838747977110404000119 42 Pedersen 2016 46779939308371715186574870545834292137106376897479541436608=2^6*241*283*5783*234323*160381703*297766669*165606427042453034160544223 46780139395855971155412743570770389439522586224934830690112=2^6*241*283*5783*11191965955980065089343*165584044671043746398706719 42 Pedersen 2016 46865352442998754370107212631185011528301764326625310331072=2^6*241*283*5783*234323*160381703*297766669*165908799475107058737472607 46865552895812668363580734675372928088712253175297122447168=2^6*241*283*5783*11191963198604264864927*165886417106455146775859519 42 Pedersen 2016 50118849868101396265822032935247200792379065936407449690304=2^6*241*283*5783*234323*160381703*297766669*177426558837968097528208799 50119064236797298279750575480891555816236774332426481573696=2^6*241*283*5783*11191865165115750158399*177404176567349674081302239 42 Pedersen 2016 51860046506562919786404467188419150787024368448142154803776=2^6*241*283*5783*234323*160381703*297766669*183590597490800192836045181 51860268322717286595047930697717485335279265488668134389184=2^6*241*283*5783*11191817753764944553151*183568215267593120194743869 42 Pedersen 2016 52036896446380215916331040020764168206652363585163538558784=2^6*241*283*5783*234323*160381703*297766669*184216666850633115642912929 52037119018958384722719106463346332211756701152264956391616=2^6*241*283*5783*11191813115814488749409*184194284632063993457415359 42 Pedersen 2016 52066156996488804578846478535639434863870066657275551914176=2^6*241*283*5783*234323*160381703*297766669*184320252601885102392248831 52066379694220403375372912044105116325524871040509229950784=2^6*241*283*5783*11191812351484782165119*184297870384080309913335551 42 Pedersen 2016 52370103564224694750064868305592788347907566655173666707648=2^6*241*283*5783*234323*160381703*297766669*185396258809647532888446463 52370327561998683204568176559699714940813369969201975486272=2^6*241*283*5783*11191804462466793315583*185373876599731758398382719 42 Pedersen 2016 53140899319791112953625772442938360975420305450587746430784=2^6*241*283*5783*234323*160381703*297766669*188124965450701223686944929 53141126614418109057563816915656276495909792519936469479616=2^6*241*283*5783*11191784860933668474209*188102583260386982321722559 42 Pedersen 2016 53834639605313014822493067199451630868245511888351872314304=2^6*241*283*5783*234323*160381703*297766669*190580886763966653790490299 53834869867210822076323313317690849461031304426280899269696=2^6*241*283*5783*11191767698964251230399*190558504590814381842511739 42 Pedersen 2016 54813343981887929937290360985839501707215865753011956886976=2^6*241*283*5783*234323*160381703*297766669*194045614109313539475468131 54813578429906955696765614388774816316810500919938209681984=2^6*241*283*5783*11191744226322194012351*194023231959633909584707619 42 Pedersen 2016 56108902497703614873998235855177069418057342771623182528704=2^6*241*283*5783*234323*160381703*297766669*198632041967082536091199199 56109142487094604097445461335817096992821592893107568447296=2^6*241*283*5783*11191714414095608097599*198609659847215132786353439 42 Pedersen 2016 56979949681140352479354113860199581415098984703152181144128=2^6*241*283*5783*234323*160381703*297766669*201715650325003923994196093 56980193396180459227717892688978384615157834624564402976192=2^6*241*283*5783*11191695132612357553469*201693268224418003939894463 42 Pedersen 2016 57425612008978706629997665098643485477071732233576017989824=2^6*241*283*5783*234323*160381703*297766669*203293346809264307736493919 57425857630208845328168373338553313516561594439767615827776=2^6*241*283*5783*11191685493675370699679*203270964718317324669046079 42 Pedersen 2016 57688398138583282348807747201654546617131568708054578471104=2^6*241*283*5783*234323*160381703*297766669*204223640277865294660413599 57688644883804096266448029716585373303880914056816478936896=2^6*241*283*5783*11191679879857109468639*204201258192532129854196799 42 Pedersen 2016 58274521854185558666316710545439622557582531010559026106816=2^6*241*283*5783*234323*160381703*297766669*206298586414624582974533171 58274771106378836668209447946676215629214908518883242913344=2^6*241*283*5783*11191667541109722163391*206276204341630165555621619 42 Pedersen 2016 59303203054434480008379383155340861617131360037358724852928=2^6*241*283*5783*234323*160381703*297766669*209940237529560491971200143 59303456706510196985190024793294134205062203521515968451392=2^6*241*283*5783*11191646475648792054719*209917855477631535482397263 42 Pedersen 2016 59589818809299847783719325850264552535909211915620905550784=2^6*241*283*5783*234323*160381703*297766669*210954890643675044592321179 59590073687290480149782900457705016215681274796682791959616=2^6*241*283*5783*11191640735867872922459*210932508597485869022650559 52 Pedersen 2016 59690334123640123497126310299933705820394122543657926902355=3^4*5*11^2*79*359*521*14975239*1111048681*4954473419310324879897668968849 59971494435103336514031458648172274891715284954300831497645=3^4*5*11^2*79*3126654431235030172049*4954473413071674504380608083199 42 Pedersen 2016 59861708664217223794938090626375484099037015355439955205824=2^6*241*283*5783*234323*160381703*297766669*211917412358915910949564919 59861964705137049089698179679239309081919902716482489491776=2^6*241*283*5783*11191635341796933938879*211895030318120806318877879 42 Pedersen 2016 62697791411940187066561080447565364550981265080859760948416=2^6*241*283*5783*234323*160381703*297766669*221957475206177666683060271 62698059583373016940830214456594851947716985081681630759744=2^6*241*283*5783*11191581865793309469119*221935093218858565676842991 42 Pedersen 2016 63958392167940498620179559552371528418842150544809312055488=2^6*241*283*5783*234323*160381703*297766669*226420148527578631053729503 63958665731223716682868526240837758927714355460151831629632=2^6*241*283*5783*11191559619135598758719*226397766562506187758222623 42 Pedersen 2016 64336812630506752564689512235290778175260112939070191808704=2^6*241*283*5783*234323*160381703*297766669*227759800986557654878879199 64337087812372625186561887321532107632049691815155189567296=2^6*241*283*5783*11191553111056101537599*227737419027993291080593439 42 Pedersen 2016 64459178645517448283294552782139970468469867611621690066112=2^6*241*283*5783*234323*160381703*297766669*228192990914482977147508847 64459454350768097882348636113658048963587449500847464299328=2^6*241*283*5783*11191551022955954847167*228170608958006713495913519 42 Pedersen 2016 64608092878901542295107387047098976878768921472977170100416=2^6*241*283*5783*234323*160381703*297766669*228720164623793293435522271 64608369221089194554986310889344455433687346150013132967744=2^6*241*283*5783*11191548492498336604991*228697782669847487402169119 42 Pedersen 2016 65644238496879413080536279497824436512793912341276947143104=2^6*241*283*5783*234323*160381703*297766669*232388240645822282759558099 65644519270876364138211583192558839311805668409214375224896=2^6*241*283*5783*11191531203467402692799*232365858709165507660117139 42 Pedersen 2016 66188322604046031827520565190081971446143076770467307190976=2^6*241*283*5783*234323*160381703*297766669*234314361678269238261454631 66188605705203339143746353826296291706360416182250442097984=2^6*241*283*5783*11191522341708682661351*234291979750474221882045119 42 Pedersen 2016 67364714850831843601205503799079596518566208369280986224832=2^6*241*283*5783*234323*160381703*297766669*238478927081110139060679167 67365002983662313338062871972532740740168272507655419750208=2^6*241*283*5783*11191503670666043195519*238456545171986165320735487 42 Pedersen 2016 68288387688803309157962295435182966393135022858431126670784=2^6*241*283*5783*234323*160381703*297766669*241748836378004893775166179 68288679772373714810196117171672596944075255454032212439616=2^6*241*283*5783*11191489461545719319459*241726454483090040359098559 42 Pedersen 2016 69694469792542928100774074659947257787708353608910385754304=2^6*241*283*5783*234323*160381703*297766669*246726530594187475371192799 69694767890217562063799649211925704877020046211362885029696=2^6*241*283*5783*11191468554541205050399*246704148720179626469394239 42 Pedersen 2016 72071322178576541471023837116069309356582898660443754579904=2^6*241*283*5783*234323*160381703*297766669*255140864538992606839473899 72071630442540858587898651439604266539395648208951044012096=2^6*241*283*5783*11191435068443014607039*255118482698470856128118699 42 Pedersen 2016 73311774559265409041952959817234880345091069814496927459648=2^6*241*283*5783*234323*160381703*297766669*259532210267938968013164713 73312088128901342259990217375537306841121353177927114094272=2^6*241*283*5783*11191418454829520827583*259509828444030830795588969 42 Pedersen 2016 73665064010854470205900357584528622610918748176268137076928=2^6*241*283*5783*234323*160381703*297766669*260782896024578710293894143 73665379091582521706692798992667552984448958570040724547392=2^6*241*283*5783*11191413825539832654719*260760514205299862764491263 42 Pedersen 2016 75604592402705663894655883987305420117885365720131864618688=2^6*241*283*5783*234323*160381703*297766669*267649052156260340415063703 75604915779198145749903680507834929865540864140530602842432=2^6*241*283*5783*11191389181966499813719*267626670361625066218501823 42 Pedersen 2016 76352825172009965961928648179685890359272088073829516158784=2^6*241*283*5783*234323*160381703*297766669*270297883201203364386012929 76353151748848892498905959049496473936532875069878146791616=2^6*241*283*5783*11191380009655853929409*270275501415740400835335359 42 Pedersen 2016 77624534521885155657006032722501898171268589806135798425536=2^6*241*283*5783*234323*160381703*297766669*274799882237179486914288491 77624866538088225955999236208310171742527689360248551004224=2^6*241*283*5783*11191364825954803691711*274777500466900224413848619 42 Pedersen 2016 81550529711616824223272244632506530560330175360662474156992=2^6*241*283*5783*234323*160381703*297766669*288698361918211587238013627 81550878520114034456395736437395388886917623096823380726848=2^6*241*283*5783*11191320939102856369019*288675980191819176684896447 42 Pedersen 2016 82725389852817452334572715342846446124489392136447285966016=2^6*241*283*5783*234323*160381703*297766669*292857503489051734538605871 82725743686434692241978605132728350023887595655182292110144=2^6*241*283*5783*11191308615782153979119*292835121774982644687878591 42 Pedersen 2016 83624469652540647978327347069179373752192243478345710398784=2^6*241*283*5783*234323*160381703*297766669*296040350569649737704327929 83624827331708308251085686845310693259702537510880595751616=2^6*241*283*5783*11191299419083039700159*296017968864777346967879609 42 Pedersen 2016 83665026287449502109207862822727289883379124742772752833728=2^6*241*283*5783*234323*160381703*297766669*296183925775163494853604943 83665384140086285445753354297262022034917807413995322614592=2^6*241*283*5783*11191299008888417282063*296161544070701298739574719 42 Pedersen 2016 85035778689801401765284729582968217055805109519724761323328=2^6*241*283*5783*234323*160381703*297766669*301036548738544131816313793 85036142405429967037166911547657054942406453881891029452992=2^6*241*283*5783*11191285375056644969663*301014167047715767474595969 42 Pedersen 2016 87134161396308388748765022807190508511648119794626659430208=2^6*241*283*5783*234323*160381703*297766669*308465067623563399749127073 87134534087154172313961117908738888390875128414144066744512=2^6*241*283*5783*11191265335082839446719*308442685952775009212932193 42 Pedersen 2016 87145238430396368015826146549543857695218044573255224025408=2^6*241*283*5783*234323*160381703*297766669*308504281612821599052203273 87145611168620919412915092842084251368050437189962415685312=2^6*241*283*5783*11191265231855959422143*308481899942136435396032969 42 Pedersen 2016 88647852958937911408267531096462069714470965787427550304448=2^6*241*283*5783*234323*160381703*297766669*313823711842379684719947263 88648232124155855003732915341989989940532120806054396913472=2^6*241*283*5783*11191251468120408096383*313801330185458256615102719 42 Pedersen 2016 92412323624490813453060483362785264868458778281788238726336=2^6*241*283*5783*234323*160381703*297766669*327150375917738462555175791 92412718891129070158601141838750288794757465701531950447424=2^6*241*283*5783*11191218951625016536511*327127994293333529841891119 42 Pedersen 2016 93470726431642545107798109937543247203934574942294328110784=2^6*241*283*5783*234323*160381703*297766669*330897244978612447402618679 93471126225288706129847976985215649107593611331269350199616=2^6*241*283*5783*11191210281187692435959*330874863362877952013434559 42 Pedersen 2016 94446408828290528167432329914135469093504938207302871130688=2^6*241*283*5783*234323*160381703*297766669*334351274163472329869279453 94446812795132273972817912529013708799765160144228552490432=2^6*241*283*5783*11191202460553529238719*334328892555558468643292573 42 Pedersen 2016 94841521923377077110777000581086867295678935694743833669824=2^6*241*283*5783*234323*160381703*297766669*335750020483420172772573919 94841927580199322277540435233267330741539794339324382547776=2^6*241*283*5783*11191199339283147067679*335727638878627581928758079 42 Pedersen 2016 95954984166688323434411567260929917316574310167994990424256=2^6*241*283*5783*234323*160381703*297766669*339691806353340070137561311 95955394586019079130267916143200187561434769495062741815104=2^6*241*283*5783*11191190681580050740031*339669424757205182390073119 42 Pedersen 2016 99928007229110467961848252231402184720170735134868387469504=2^6*241*283*5783*234323*160381703*297766669*353756770174429259396863999 99928434641883310247322799258080226244908612872582318450496=2^6*241*283*5783*11191161362026283043839*353734388607613925417071999 42 Pedersen 2016 102428120757186270186098635925101174116946932436057636559296=2^6*241*283*5783*234323*160381703*297766669*362607462900980952845060051 102428558863462216214993823331868324939927063841429569267264=2^6*241*283*5783*11191144078131228649619*362585081351449513919662271 42 Pedersen 2016 102785561807239445029238614032838674713013942739086207226048=2^6*241*283*5783*234323*160381703*297766669*363872845799137374302016863 102786001442364755387097334845852099927683660905273397079872=2^6*241*283*5783*11191141675759078242719*363850464252008307527025983 42 Pedersen 2016 103939798671247232662574261710679996028997244964647182631104=2^6*241*283*5783*234323*160381703*297766669*367958978569617637139373599 103940243243282546952110769360883124211323592214417743576896=2^6*241*283*5783*11191134030934105576799*367936597030133395337048639 42 Pedersen 2016 106964694550151585691732060915393568984331930594616770816704=2^6*241*283*5783*234323*160381703*297766669*378667461865814265931252199 106965152060292752502236243468936443064045135843790687999296=2^6*241*283*5783*11191114779054848182439*378645080345581903386321599 42 Pedersen 2016 107079173442610413855144399182486540454732268658175094120768=2^6*241*283*5783*234323*160381703*297766669*379072730462400302113159433 107079631442401501788939141207857269997354055455459846274752=2^6*241*283*5783*11191114071819730496969*379050348942875174685914303 42 Pedersen 2016 107954723037178378966616592484334614808944493788202661546688=2^6*241*283*5783*234323*160381703*297766669*382172277879489843301081703 107955184781876328869903559286016318456634133365378548954432=2^6*241*283*5783*11191108712402056069823*382149896365324133548263719 42 Pedersen 2016 109171011649258637284585303842522521350913014110031669998784=2^6*241*283*5783*234323*160381703*297766669*386478081056600609698021679 109171478596274762850202584688362318755230969752519564151616=2^6*241*283*5783*11191101409921122693359*386455699549737380878580159 42 Pedersen 2016 110230100048005799998146946488843487214313023252042847056704=2^6*241*283*5783*234323*160381703*297766669*390227377191477004673598449 110230571524962247057058596422379683365296591542161014959296=2^6*241*283*5783*11191095182522585372849*390204995690841174391477439 42 Pedersen 2016 112413289789576631345251007933647988503659619810797544260928=2^6*241*283*5783*234323*160381703*297766669*397956122846189278276754393 112413770604487541422709110870968222892899219637910298483392=2^6*241*283*5783*11191082715736132751513*397933741358020234447254719 42 Pedersen 2016 114073837514158241896728455679052886254853546466130371790784=2^6*241*283*5783*234323*160381703*297766669*403834654962031987077011179 114074325431575517112794568869007984326107587784084928919616=2^6*241*283*5783*11191073552955461996459*403812273483025723918266559 42 Pedersen 2016 117770700890283845054979265148554238389800850280219345271232=2^6*241*283*5783*234323*160381703*297766669*416921981368090362193930067 117771204619951061232892096945088955820271885443884853855808=2^6*241*283*5783*11191054081964235933887*416899599908555090261248019 42 Pedersen 2016 120352923729173146776592083943700885047382359939429286405824=2^6*241*283*5783*234323*160381703*297766669*426063350606663704279264919 120353438503541986353217168468644617587285086400611174291776=2^6*241*283*5783*11191041191282052161879*426040969160019114530354879 42 Pedersen 2016 123815710881056285430132015082175404906858250116515543294784=2^6*241*283*5783*234323*160381703*297766669*438322019948914275495978929 123816240466482599170575082403745231123621799021428556135616=2^6*241*283*5783*11191024748784826733759*438299638518712182972497009 42 Pedersen 2016 125035732935761228100836679959784400274263156018838764165312=2^6*241*283*5783*234323*160381703*297766669*442641039947226246960834047 125036267739474424462864451303924771688053352731697942456128=2^6*241*283*5783*11191019172680630602367*442618658522600258633483519 42 Pedersen 2016 125169648401529840524682861012756032566162955366926068086848=2^6*241*283*5783*234323*160381703*297766669*443115116274377381124795413 125170183778027205587262714533813923981667730019309996763072=2^6*241*283*5783*11191018567241762656469*443092734850356831665390783 42 Pedersen 2016 126604372150784474652341861413877774239879647352636540528192=2^6*241*283*5783*234323*160381703*297766669*448194205247553786275052077 126604913663892314950772087210326126658380978221169579571648=2^6*241*283*5783*11191012161154036252397*448171823829939324542051519 42 Pedersen 2016 127362450107371978153389453745170236304704001048158590965952=2^6*241*283*5783*234323*160381703*297766669*450877889400765871303653887 127362994862936167178937713099897177461638891633202128250688=2^6*241*283*5783*11191008834592792907519*450855507986477970813998207 42 Pedersen 2016 129920672706557921069378611416443428697650306591655405998784=2^6*241*283*5783*234323*160381703*297766669*459934294998851454498396679 129921228404169740034398075788186852274384590788420308151616=2^6*241*283*5783*11190997895291122268359*459911913595502855679380159 42 Pedersen 2016 132496988260311337277202601426266712235609587720488815936704=2^6*241*283*5783*234323*160381703*297766669*469054751760851747283097199 132497554977358098257906401322189529244360567816374604479296=2^6*241*283*5783*11190987305571334267439*469032370368092868252081599 42 Pedersen 2016 141730553491915029127078768805237228726932240130919378426304=2^6*241*283*5783*234323*160381703*297766669*501742646817518783189337299 141731159702831709993153572619072713629292716157334477317696=2^6*241*283*5783*11190952514566644622739*501720265459550908847966399 42 Pedersen 2016 145462245173275503620070060315527766169986819769065721876672=2^6*241*283*5783*234323*160381703*297766669*514953269475670815975386207 145462867345409996684568383040581029626330911847026968309568=2^6*241*283*5783*11190939707305871418527*514930888130510202407219519 42 Pedersen 2016 146943226500878584319107059624246747701760296453268465873472=2^6*241*283*5783*234323*160381703*297766669*520196115657325506678505757 146943855007476790916788846468389160762551451029863201336768=2^6*241*283*5783*11190934804858258458077*520173734317067340723299519 42 Pedersen 2016 149149386111983697264473157750608466160602099997790374101952=2^6*241*283*5783*234323*160381703*297766669*528006177322264474091807387 149150024054783253831658441679195899741692675850684861594688=2^6*241*283*5783*11190927682424406614207*527983795989128741988445019 42 Pedersen 2016 155363979601390707028713158908487155567360725160556454169792=2^6*241*283*5783*234323*160381703*297766669*550006561215832387241222927 155364644125293090004270606238578847351070763942707572618048=2^6*241*283*5783*11190908706543938263247*549984179901672535606211519 42 Pedersen 2016 159453415064732682039171058395016812133931851336206429294784=2^6*241*283*5783*234323*160381703*297766669*564483638478383793254947679 159454097079997088667575645100758826623611963165774150135616=2^6*241*283*5783*11190897026662625213759*564461257175903822932985759 42 Pedersen 2016 161931279499431590048297161109154494442008367534065162405824=2^6*241*283*5783*234323*160381703*297766669*573255566826153533818077419 161931972113035122300932821548064187824783401828414978291776=2^6*241*283*5783*11190890236641470066879*573233185530463584651262379 42 Pedersen 2016 168237022825089794698689475207875214410010163770088170261696=2^6*241*283*5783*234323*160381703*297766669*595578631743473088583271951 168237742409662871775495698642716776400557604290554458796864=2^6*241*283*5783*11190873859399103646671*595556250464160381782877119 42 Pedersen 2016 168297798905926649662961305844804532703625299008445283437504=2^6*241*283*5783*234323*160381703*297766669*595793786139691675345309499 168298518750451605630030731567055787376299297873089272722496=2^6*241*283*5783*11190873707523321493499*595771404860530844327067839 42 Pedersen 2016 168419985385019003722480799382405225540458009170245162867904=2^6*241*283*5783*234323*160381703*297766669*596226340489580729685464399 168420705752160824378565734805457504152274590388723943564096=2^6*241*283*5783*11190873402518356285199*596203959210724903632431039 42 Pedersen 2016 170240743442641229225863276143733435222879320977780027064256=2^6*241*283*5783*234323*160381703*297766669*602672035821588397765588811 170241471597542174298309867205966552950416575599774780375104=2^6*241*283*5783*11190868909371132580031*602649654547225718936260619 42 Pedersen 2016 171197903147761277333945817838117093306770720492320145390784=2^6*241*283*5783*234323*160381703*297766669*606060492523702415097673679 171198635396632421174517975850561542232724256348879603319616=2^6*241*283*5783*11190866585684267356559*606038111251663423133568959 52 Pedersen 2016 175746633655801843740301826998306990477589435955826163119869=3^4*7*11*17*83*271*1733*795713*3225245539*16569033157153393879962632701067 176497153087783915670573142354314958045764607006850776369411=3^4*7*11*17*83*1210424706848594983679*16569033154737691559453989454987 42 Pedersen 2016 184148499087811683317889731893446987610004398386253138564288=2^6*241*283*5783*234323*160381703*297766669*651907108688901911496752303 184149286729062543147540408173986222730993055324111618304832=2^6*241*283*5783*11190837520274778125423*651884727445928329021878719 42 Pedersen 2016 186086739544846452540438516743053833569559432592318986622912=2^6*241*283*5783*234323*160381703*297766669*658768705381508479304207147 186087535476352978901545600896876448475895871795287525566528=2^6*241*283*5783*11190833518289964631019*658746324142536881642827967 42 Pedersen 2016 195229848308107938219019764507676691175046269117588935476672=2^6*241*283*5783*234323*160381703*297766669*691136374017480893136048707 195230683346583344129331884356553018299212500707587402709568=2^6*241*283*5783*11190815711634122081027*691113992796315951317219519 42 Pedersen 2016 195977356104048980008364352010629627894800649636243789248192=2^6*241*283*5783*234323*160381703*297766669*693782638572382126926778327 195978194339769969450263833059611747030661792578065140451648=2^6*241*283*5783*11190814329301298426519*693760257352599517931603647 42 Pedersen 2016 196233974204768850291901738362214875100938445151080406401472=2^6*241*283*5783*234323*160381703*297766669*694691096501207030543467507 196234813538098578580429075333740533537815211089916051848768=2^6*241*283*5783*11190813857177285412019*694668715281896545561307327 42 Pedersen 2016 200352282291376352745944313031361368152097270896976468190272=2^6*241*283*5783*234323*160381703*297766669*709270386208858618830951557 200353139239562291265621677133347234330032470655165913643968=2^6*241*283*5783*11190806445802465379519*709248004996959508668823877 42 Pedersen 2016 201924644421826415057594661193697124213613740908745192584128=2^6*241*283*5783*234323*160381703*297766669*714836731062882283860554843 201925508095330677468427935381269177115783100601732530736192=2^6*241*283*5783*11190803695903094471963*714814349853733073069334719 42 Pedersen 2016 207532302818740115604039786880116093566995383569798039449792=2^6*241*283*5783*234323*160381703*297766669*734688494124517863666152927 207533190477360173249027038617924800530068399058616297738048=2^6*241*283*5783*11190794228003284211519*734666112924836552685193247 42 Pedersen 2016 209646833657102272545076509391685592601423284031145999836352=2^6*241*283*5783*234323*160381703*297766669*742174179274809872892386287 209647730360008451224694454098778400346419959126724648852288=2^6*241*283*5783*11190790789365784540607*742151798078567199411097519 42 Pedersen 2016 210355188320825738018811426836345809764147098800300711116736=2^6*241*283*5783*234323*160381703*297766669*744681837186993355355215691 210356088053511448713481540608058200822738006665947481129024=2^6*241*283*5783*11190789652902682398911*744659455991887144976068619 42 Pedersen 2016 210987876059864436599984305842588095858540078353588694029504=2^6*241*283*5783*234323*160381703*297766669*746921625383490992368973999 210988778498686578754177916237303101815463885593399112690496=2^6*241*283*5783*11190788644289400123839*746899244189393395272101999 42 Pedersen 2016 211917816952943240752425856043307579381170837946104353546048=2^6*241*283*5783*234323*160381703*297766669*750213724324625960513718113 211918723369315088055294445806619984320455607953062828359872=2^6*241*283*5783*11190787172735334945983*750191343131999917482023969 42 Pedersen 2016 218029790127931787929514950737023546676754780877781519177152=2^6*241*283*5783*234323*160381703*297766669*771850820367374166139763587 218030722686478133619771677412418666986048818047156476455488=2^6*241*283*5783*11190777813435737225407*771828439184107422705790019 42 Pedersen 2016 219619227941290116016106696146968499429452020208479145104576=2^6*241*283*5783*234323*160381703*297766669*777477615125300158569901231 219620167298191016203660925321393166428687408482210983832384=2^6*241*283*5783*11190775464874544555119*777455233944381976328597951 42 Pedersen 2016 220356866018916617160215924857486148115357515772837839706304=2^6*241*283*5783*234323*160381703*297766669*780088939729227705856204799 220357808530848272534804957669585351941595645609886006437696=2^6*241*283*5783*11190774386447632650239*780066558549387950526806399 42 Pedersen 2016 222513760725666017688369816452980526622944501835492127808704=2^6*241*283*5783*234323*160381703*297766669*787724597901781687238629199 222514712463082828860714822500697949017276163044833733567296=2^6*241*283*5783*11190771274089410787599*787702216725054290131093439 42 Pedersen 2016 225800177138826183539690772612967500541274687640205044071104=2^6*241*283*5783*234323*160381703*297766669*799358894311818503547138599 225801142932926309157117050467736469361451842744869021336896=2^6*241*283*5783*11190766646177525393639*799336513139719018324996799 42 Pedersen 2016 233561002657588662554510943842528175242359102507692456908992=2^6*241*283*5783*234323*160381703*297766669*826833119461831466779888127 233562001646346086943004503211700106805609517785930757334848=2^6*241*283*5783*11190756234371283131519*826810738300143787800008447 42 Pedersen 2016 243704559201478449772757138528372114736304433138975670255808=2^6*241*283*5783*234323*160381703*297766669*862742489622900873638939423 243705601576327012416778108533586152373677581158551143726912=2^6*241*283*5783*11190743625747204486719*862720108473821818737704543 42 Pedersen 2016 248134593596746909188114503656593649118852130606263731950784=2^6*241*283*5783*234323*160381703*297766669*878425326726203643968533679 248135654919769634128442418089548050311573535120623517559616=2^6*241*283*5783*11190738442564473024959*878402945582307771798760559 42 Pedersen 2016 258474047990096965883629611893707850159591584854253905075392=2^6*241*283*5783*234323*160381703*297766669*915028198063077478824296527 258475153537106483694949535487354780472112413925138983920448=2^6*241*283*5783*11190727036579694776847*915005816930587591432771519 42 Pedersen 2016 261710149068141258169185332046062198040041825593407601921216=2^6*241*283*5783*234323*160381703*297766669*926484372333642166680717071 261711268456624986444780832626997212771430177985759654490944=2^6*241*283*5783*11190723651856686969791*926461991204537002296999119 42 Pedersen 2016 273153401183150649633633269809422061951673040157553533061824=2^6*241*283*5783*234323*160381703*297766669*966994816009518361506850919 273154569516792521568230827120436187157730930814451517715776=2^6*241*283*5783*11190712326288548253479*966972434891738765261849279 42 Pedersen 2016 292832193187569755468753801336945387803563307383730736805824=2^6*241*283*5783*234323*160381703*297766669*1036660028930823358499477419 292833445691478702889782890851536117880741581934213595891776=2^6*241*283*5783*11190694919885378998379*1036637647830450165423730879 42 Pedersen 2016 292969385377269660520118332465586372664343821674514579669418=2*7*11*37*41*97*163*718121*8190097*25404257*530839742341137730816733404199 292969840647409625289928758452916515361750383437743356100182=2*7*11*37*41*97*163*149414878187922877991*530839742042308206713173309799 42 Pedersen 2016 302258295984239095035217920066023262823139205296765322827968=2^6*241*283*5783*234323*160381703*297766669*1070029529365637380084176383 302259588805540984994643624069100228767699870054167055263552=2^6*241*283*5783*11190687385120484670719*1070007148272798951902757503 42 Pedersen 2016 324503424356470191688514436865284473258938006245155593781824=2^6*241*283*5783*234323*160381703*297766669*1148779871569835488010264669 324504812324791055104613907548237509589135801416052426595776=2^6*241*283*5783*11190671338979130713279*1148757490493043201182803229 42 Pedersen 2016 334232502803319928217139276457733141604652062113357143251136=2^6*241*283*5783*234323*160381703*297766669*1183221941051319060091694591 334233932384923308456809368495482882031948931019916413986624=2^6*241*283*5783*11190664992459210021119*1183199559980873293184925311 42 Pedersen 2016 341359962210269601417626776307363354647077263740546311100096=2^6*241*283*5783*234323*160381703*297766669*1208453976486299224997387351 341361422277492308185213171130438740199445820853782577670464=2^6*241*283*5783*11190660572637299517119*1208431595420273280001122071 42 Pedersen 2016 348961465301446856309028300631905913587898525344588250578112=2^6*241*283*5783*234323*160381703*297766669*1235364181708748983560880847 348962957881871858006402519338150408572260500463852579947328=2^6*241*283*5783*11190656057819968613519*1235341800647237855895519167 42 Pedersen 2016 353550167656422474706787907589304395525144043642483683979968=2^6*241*283*5783*234323*160381703*297766669*1251608721847192632833013383 353551679863677347947004123904636087952476123492432965471552=2^6*241*283*5783*11190653426390623794503*1251586340788312934512470719 42 Pedersen 2016 356974837776196205832477274144652175500455630464262910405824=2^6*241*283*5783*234323*160381703*297766669*1263732452461637463420139919 356976364631474116363899722788379739201559319063097870291776=2^6*241*283*5783*11190651506572126034879*1263710071404677583597356879 42 Pedersen 2016 359716746275673088596244929264145140130357218144376863063232=2^6*241*283*5783*234323*160381703*297766669*1273439127514857097243919567 359718284858661249110973160551752485238585572299290282623808=2^6*241*283*5783*11190649995850046885519*1273416746459407939500285887 42 Pedersen 2016 360242526741206181198386562502763062961896248165247330177216=2^6*241*283*5783*234323*160381703*297766669*1275300451526666377587903071 360244067573066233699980139493615421661620610380002404314944=2^6*241*283*5783*11190649708786143849119*1275278070471504283747305791 42 Pedersen 2016 361449675922810599687892288563891061572187316468692326616256=2^6*241*283*5783*234323*160381703*297766669*1279573900056706537878263311 361451221917897591769005299015079793451587597074114464183104=2^6*241*283*5783*11190649052870717742031*1279551519002200359463773119 42 Pedersen 2016 363685296228703536117571390167749224387142337141526951109824=2^6*241*283*5783*234323*160381703*297766669*1287488256008344730319463919 363686851786001368383016352112529968847124686341988484307776=2^6*241*283*5783*11190647849625691231679*1287465874955041796931484079 42 Pedersen 2016 384057223218406661896985567877192468206361584642265382933696=2^6*241*283*5783*234323*160381703*297766669*1359607247409658731338603951 384058865910653386379181353888065487672222291094927431084864=2^6*241*283*5783*11190637530583882827119*1359584866366674839759028671 42 Pedersen 2016 407653805460659964004272831321329343637110469945992448350784=2^6*241*283*5783*234323*160381703*297766669*1443141893527800146657402429 407655549080373626148686489127311473412403481856793553159616=2^6*241*283*5783*11190626867338940064959*1443119512495479500020589309 42 Pedersen 2016 409518093932130968868151760527415593365884596871890237527232=2^6*241*283*5783*234323*160381703*297766669*1449741691588707370239803567 409519845525792346615592643276535807855575995843203959679808=2^6*241*283*5783*11190626077250748035519*1449719310557176811795019887 42 Pedersen 2016 420208406389318277533351998528216013317386363514323356229824=2^6*241*283*5783*234323*160381703*297766669*1487586641286737220346933919 420210203707659017702692626909915352286584623463052840787776=2^6*241*283*5783*11190621682043898202079*1487564260259601868751983679 42 Pedersen 2016 428510248959023134012113981530111965322508193889554737130432=2^6*241*283*5783*234323*160381703*297766669*1516976129733373954342190267 428512081786063094834005428057001725023876584855094531052608=2^6*241*283*5783*11190618420112304849087*1516953748709500534340593019 42 Pedersen 2016 429441488702684142197838474678580122658096150412226592038592=2^6*241*283*5783*234323*160381703*297766669*1520272826756664670945780727 429443325512829260981296789034706260334926565418472612733248=2^6*241*283*5783*11190618062079859941047*1520250445733149283389091519 42 Pedersen 2016 439395242725923196685664375581285581187035545548020992605504=2^6*241*283*5783*234323*160381703*297766669*1555510273914982466553736249 439397122110334782211014329542608788672895495306121189794496=2^6*241*283*5783*11190614329978666148089*1555487892895199180190839999 42 Pedersen 2016 447747778018364221919679927057618576022126942227749048759104=2^6*241*283*5783*234323*160381703*297766669*1585079220497168518346372849 447749693128298297052745348382723314783104112527956476488896=2^6*241*283*5783*11190611326289457712049*1585056839480388921191912639 42 Pedersen 2016 452981736540505887255832266520546254481190074792661050515136=2^6*241*283*5783*234323*160381703*297766669*1603608042529760616713753591 452983674037164034260429833588471490195763194569245062242624=2^6*241*283*5783*11190609500539376709311*1603585661514806769640296119 42 Pedersen 2016 460345746708276682470992406095276714991693133942050248621504=2^6*241*283*5783*234323*160381703*297766669*1629677495175898840606638499 460347715702330727997976478796816387155057367101064728658496=2^6*241*283*5783*11190607002067391910499*1629655114163443465517979839 42 Pedersen 2016 472923579271351487237859364647775253543735346637188320377792=2^6*241*283*5783*234323*160381703*297766669*1674204485623196629735858427 472925602063399120329432128339489376019123107127189879850048=2^6*241*283*5783*11190602914591023661247*1674182104614828731015449019 42 Pedersen 2016 483855019592851276763797214708261448770336546014268782321856=2^6*241*283*5783*234323*160381703*297766669*1712903056011196488141386911 483857089140932063402533202815696010618650447127801334685504=2^6*241*283*5783*11190599534757702705631*1712880675006208422741933119 42 Pedersen 2016 486719009796015585717218324311887645497443894116226894030784=2^6*241*283*5783*234323*160381703*297766669*1723041914497183252516451179 486721091593975340932024338996918454822059010695562089879616=2^6*241*283*5783*11190598674354862550059*1723019533493055589957152959 42 Pedersen 2016 502667508342150638128931775128600518086429301342518017647552=2^6*241*283*5783*234323*160381703*297766669*1779501454632681454271720987 502669658355140146173331551134807634140233989741653235457088=2^6*241*283*5783*11190594062408702605019*1779479073633165737872367807 42 Pedersen 2016 510521108790579285712765644765419741277005380081515600956608=2^6*241*283*5783*234323*160381703*297766669*1807304113826181504724414223 510523292395043671887641492043835570004621750940118124770112=2^6*241*283*5783*11190591897211592209343*1807281732828830985435456719 42 Pedersen 2016 520178671745233252682197957122649477937603124272544340288192=2^6*241*283*5783*234323*160381703*297766669*1841493010145924690852768327 520180896657093591261393270953014625368710673664545056611648=2^6*241*283*5783*11190589324304046176519*1841470629151147079109843647 42 Pedersen 2016 522553369326684579743301022732924847761320611883883075984576=2^6*241*283*5783*234323*160381703*297766669*1849899715831841010989681231 522555604395618056215549500491044036800467240997958771352384=2^6*241*283*5783*11190588706219609127951*1849877334837681483683805119 52 Pedersen 2016 523134554200959715070773949661431741507095120242914981270205=3^4*5*11^2*79*359*521*14975239*1111048681*43421707744887908522619921499679 525598683047878978919098158284412535762225870424941791849795=3^4*5*11^2*79*3126654427747185849599*43421707738649258150590704936479 42 Pedersen 2016 523489706022037677922174143858017412125195440816629045244096=2^6*241*283*5783*234323*160381703*297766669*1853214456657047989408976351 523491945095877029854183866842623931391419705061837397446464=2^6*241*283*5783*11190588464052092811071*1853192075663130629619417119 42 Pedersen 2016 523543950221239067026882690823568270585068797273616999336896=2^6*241*283*5783*234323*160381703*297766669*1853406487432425962311790651 523546189527092087940784990589240461814814393700709509657664=2^6*241*283*5783*11190588450049300807871*1853384106438522605314234619 42 Pedersen 2016 527368851128020793163202308485277911359843070438464390469824=2^6*241*283*5783*234323*160381703*297766669*1866947081591559520345873919 527371106793766778482237889358484856096820549957281649747776=2^6*241*283*5783*11190587469938585278079*1866924700598636274063847679 42 Pedersen 2016 532152806561703612891316057602412314976870953786642778335808=2^6*241*283*5783*234323*160381703*297766669*1883882840342335823751138173 532155082689417306384910992971109852338344878710843050046912=2^6*241*283*5783*11190586263906850705469*1883860459350618609203684543 42 Pedersen 2016 532508489395713471159986471708582338972706457093902682175168=2^6*241*283*5783*234323*160381703*297766669*1885141998951166365968314583 532510767044756275000027705922304428623428937381434128812352=2^6*241*283*5783*11190586175104925815703*1885119617959537953345750719 42 Pedersen 2016 538346477938836594793699366974130840796234630137229128253632=2^6*241*283*5783*234323*160381703*297766669*1905809157524593088816071967 538348780558164909449491799960909069546342304350008324505408=2^6*241*283*5783*11190584734326807048287*1905786776534405454312275519 42 Pedersen 2016 559738483536532241870578898436713693833319648326972736490688=2^6*241*283*5783*234323*160381703*297766669*1981539345863519375589970703 559740877653896819829721411675062911487460337044332971930432=2^6*241*283*5783*11190579711752599488719*1981516964878354315293733823 42 Pedersen 2016 568778783685317474400491083971238506543067798053126843004096=2^6*241*283*5783*234323*160381703*297766669*2013543060044562636170786351 568781216469917205561016152508227775344945886327983516486464=2^6*241*283*5783*11190577702771796121071*2013520679061406556677917119 42 Pedersen 2016 609149357417822274730058417549874942248240742745359835797952=2^6*241*283*5783*234323*160381703*297766669*2156459587349624159126258387 609151962875722902230388334643204488427159536942447977178688=2^6*241*283*5783*11190569459139003107519*2156437206374711712426402707 42 Pedersen 2016 616534817147702570428100419206357142778467770795766701517504=2^6*241*283*5783*234323*160381703*297766669*2182604973940848623422976999 616537454194743313829783110595110289315168240811547669042496=2^6*241*283*5783*11190568067852823132839*2182582592967327462903095999 42 Pedersen 2016 634255086507549691661739559622415208861633192121938576218304=2^6*241*283*5783*234323*160381703*297766669*2245336788866246898288076799 634257799347850729341279060099240334542396205035740626085696=2^6*241*283*5783*11190564861813683942399*2245314407895931776907386239 42 Pedersen 2016 658678590843131349594439215093545316930875777795064528864298=2*7*11*37*41*97*163*718121*8190097*25404257*1193478878342623262967767960039 658679614420027818777550949914629502664250326403534402059222=2*7*11*37*41*97*163*149414878141222944359*1193478878043793738910907799271 42 Pedersen 2016 661626006974783416788977449685412002946778753333313501478592=2^6*241*283*5783*234323*160381703*297766669*2342233031368009585888420727 661628836886177299578672069017424179012573027258259482493248=2^6*241*283*5783*11190560247230411706047*2342210650402309047779966519 42 Pedersen 2016 671163291361335913495501247248019746417672064519830727563456=2^6*241*283*5783*234323*160381703*297766669*2375996127564717935661376511 671166162065669414261853410186253344273141586105319184131904=2^6*241*283*5783*11190558727721595935231*2375973746600536906368693119 42 Pedersen 2016 685583939324643753552560568859212023736255761942393334305728=2^6*241*283*5783*234323*160381703*297766669*2427046898902787120283924443 685586871709073786698516186683812111772782248548342910102592=2^6*241*283*5783*11190556510469972312219*2427024517940823342614864063 42 Pedersen 2016 687396935475657322051016122583827463193079713423731442924736=2^6*241*283*5783*234323*160381703*297766669*2433465116182460786042826191 687399875614647198269288898296735384042696602164345930761024=2^6*241*283*5783*11190556238295401181119*2433442735220769182944896911 42 Pedersen 2016 689232259576126145196775642350259328515595815479845572158016=2^6*241*283*5783*234323*160381703*297766669*2439962377000607095303526621 689235207565177126377562660238655413199216878651229064478144=2^6*241*283*5783*11190555964227332349341*2439939996039189560274429119 42 Pedersen 2016 690484464483443737462230149772176535536194954649610289108672=2^6*241*283*5783*234323*160381703*297766669*2444395328040985659956453207 690487417828434324005379390826991993597855736579674326837568=2^6*241*283*5783*11190555778072323285527*2444372947079754279936419519 42 Pedersen 2016 694854525645313766165338417122506451102703835644049087500352=2^6*241*283*5783*234323*160381703*297766669*2459865852921396772837314037 694857497681960580804727042164073204603392031806684388708288=2^6*241*283*5783*11190555133667921724607*2459843471960809797218841269 42 Pedersen 2016 697648138639364321912876321424273996891707695705742821163968=2^6*241*283*5783*234323*160381703*297766669*2469755567900169485043529883 697651122624872213084873404605530709465630926039659209407552=2^6*241*283*5783*11190554725954850070719*2469733186939990222496711003 42 Pedersen 2016 699763904629733665422560471022989720124264841176673861146304=2^6*241*283*5783*234323*160381703*297766669*2477245625632251652255219799 699766897664810678450598955693305370229540834270247924197696=2^6*241*283*5783*11190554419336362345239*2477223244672379008196126399 42 Pedersen 2016 700776964298799371085155957860228805404487475622042165067968=2^6*241*283*5783*234323*160381703*297766669*2480831974709552774506116383 700779961666942300431435350624670003180117036127161496223552=2^6*241*283*5783*11190554273178451197503*2480809593749826288358170719 42 Pedersen 2016 717534533665019907249346664919057377618533720329693312200512=2^6*241*283*5783*234323*160381703*297766669*2540155719667024441348206497 717537602708755971277388565018753280939694922069740407156928=2^6*241*283*5783*11190551915378737054817*2540133338709655754914403519 42 Pedersen 2016 718766113258501348413318178848331192219463695979609337266368=2^6*241*283*5783*234323*160381703*297766669*2544515654697088880064266783 718769187569958280916076156459604977930163066825241748537152=2^6*241*283*5783*11190551746431752087903*2544493273739889140615430719 42 Pedersen 2016 740969426117003286909169532384961287987919311565656824643008=2^6*241*283*5783*234323*160381703*297766669*2623117965118304506786505123 740972595396625584492053636603576126359038881225696809435712=2^6*241*283*5783*11190548796933945029219*2623095584164054265144727743 42 Pedersen 2016 755460259900112743546418301760012864281006920252818284438208=2^6*241*283*5783*234323*160381703*297766669*2674417202423158541114218823 755463491160030853845189677256060311517299144286039799176512=2^6*241*283*5783*11190546965465814771719*2674394821470739767602698943 42 Pedersen 2016 756968613407853619064034401608731149969834431219748420755648=2^6*241*283*5783*234323*160381703*297766669*2679756949306695317726434463 756971851119311923612851410090075708398680579152830086078272=2^6*241*283*5783*11190546778857312582719*2679734568354463152717103583 42 Pedersen 2016 779562128610427102575678178327787421850626101381857257498304=2^6*241*283*5783*234323*160381703*297766669*2759740621418000057267131799 779565462959026972908780956143549655197636291812621535205696=2^6*241*283*5783*11190544070083030157399*2759718240468476666540226239 52 Pedersen 2016 800012000588099047607050906536712019427237511476323282529885=3^4*5*11^2*79*359*521*14975239*1111048681*66403350730670969978897984484863 803780309587571958805815109939354519872138606640521286046115=3^4*5*11^2*79*3126654427591712945663*66403350724432319607024240825599 42 Pedersen 2016 816491024911028175678659628650579131628777802396734777021632=2^6*241*283*5783*234323*160381703*297766669*2890473210245223040984129967 816494517212162110426194997832095886461754581659961629977408=2^6*241*283*5783*11190539965383227556287*2890450829299804350059825519 42 Pedersen 2016 855664540011356095283669996560410876153243668622703440021824=2^6*241*283*5783*234323*160381703*297766669*3029152010739047291173392169 855668199865723355520197531669761173434528023733734583555776=2^6*241*283*5783*11190535998454990681279*3029129629797595528485962729 42 Pedersen 2016 857900898714553641030462269259147547439206766312075329514176=2^6*241*283*5783*234323*160381703*297766669*3037068980703041250888473831 857904568134290019577480554856712762529948774725172620350784=2^6*241*283*5783*11190535782920233935551*3037046599761805022957790119 42 Pedersen 2016 901550504299823447817676851571308810535731193896159431852992=2^6*241*283*5783*234323*160381703*297766669*3191593662215297896914089627 901554360417958743674450922751617534724477921360180280310848=2^6*241*283*5783*11190531790195202531519*3191571281278054394014809947 42 Pedersen 2016 904355888410847543550444120907256083927163506075130106579904=2^6*241*283*5783*234323*160381703*297766669*3201525048317486065782723899 904359756528191419954156450483231731455557611138472052012096=2^6*241*283*5783*11190531546762501931199*3201502667380485995584044539 42 Pedersen 2016 905339446357912631881445290078867727418246577246141677756352=2^6*241*283*5783*234323*160381703*297766669*3205006957866981994243843787 905343318682137452506478659064705291112537933972798436532288=2^6*241*283*5783*11190531461773029347519*3204984576930066913517748107 42 Pedersen 2016 932088755121056927282678183558448679496013816496567771205824=2^6*241*283*5783*234323*160381703*297766669*3299702622624437979886189919 932092741857612655867141623577361255064509001805173553491776=2^6*241*283*5783*11190529219132261442879*3299680241689765539927998879 42 Pedersen 2016 944106569989132417428469726527434785481168161635063207150784=2^6*241*283*5783*234323*160381703*297766669*3342247085284813447074733679 944110608128370123774162060273772950453880410553175978359616=2^6*241*283*5783*11190528252941467494959*3342224704351107197910490559 42 Pedersen 2016 949138632106002687676312542678816894595762418314190962949824=2^6*241*283*5783*234323*160381703*297766669*3360061170556220238639628919 949142691768411746323258503210555581355561757279733483667776=2^6*241*283*5783*11190527855648463265079*3360038789622911282479615679 42 Pedersen 2016 956802978241443495951168690921504438803295492232138082958784=2^6*241*283*5783*234323*160381703*297766669*3387193847465868089195094179 956807070685847558872667153061637044614144696324284203991616=2^6*241*283*5783*11190527258560277895359*3387171466533156221220450659 42 Pedersen 2016 957799223030166764365602915536308992020423116225200454494784=2^6*241*283*5783*234323*160381703*297766669*3390720669910688970672866429 957803319735716019561535906248785158028691569711876060935616=2^6*241*283*5783*11190527181649967981759*3390698288978054013008136509 42 Pedersen 2016 1009328226687309688990651148858466980942830568991345826830784=2^6*241*283*5783*234323*160381703*297766669*3573139337204465861073876179 1009332543793074515420080110569101663288374646440560661079616=2^6*241*283*5783*11190523410618820282559*3573116956275601934556845459 42 Pedersen 2016 1024383557758773870206116713810385653289243050489212376981952=2^6*241*283*5783*234323*160381703*297766669*3626436960577829594165462387 1024387939259306267248728580260908231355432247650871537114688=2^6*241*283*5783*11190522380445527894207*3626414579649995840940820019 42 Pedersen 2016 1050763497785855075984170601143080056160098396054915647719104=2^6*241*283*5783*234323*160381703*297766669*3719825017041111324253976599 1050767992118851834463259668429257938349008210696521410328896=2^6*241*283*5783*11190520646557449767639*3719802636115011459107460799 42 Pedersen 2016 1081095100679325917635260712142657157361086551248955187621824=2^6*241*283*5783*234323*160381703*297766669*3827202419746704472712273419 1081099724746867143972289488956481483809138349144715603955776=2^6*241*283*5783*11190518757517654488779*3827180038822493647361036479 52 Pedersen 2016 1096587877907144846582231336000772003795430199677097414176605=3^4*5*11^2*79*359*521*14975239*1111048681*91020021462354998713302780575999 1101753152885511049344512357044280591184299694045030969823395=3^4*5*11^2*79*3126654427512266783999*91020021456116348341508483078399 42 Pedersen 2016 1105852290383818039668985596045738966687709671288338006261696=2^6*241*283*5783*234323*160381703*297766669*3914845751294153038772709451 1105857020342984575000520602700895536044490712081477102796864=2^6*241*283*5783*11190517292459882877119*3914823370371407271193084171 42 Pedersen 2016 1107167057000804664107847897887014007837776063328726253269824=2^6*241*283*5783*234323*160381703*297766669*3919500178064537554362205169 1107171792583500187847156354005461832767923972086999690947776=2^6*241*283*5783*11190517216488028198079*3919477797141867758637258929 42 Pedersen 2016 1131578717222587518565628652262944269799505861464350792077504=2^6*241*283*5783*234323*160381703*297766669*4005920295047894788777211999 1131583557219007226293257928299951954096271559007369799282496=2^6*241*283*5783*11190515837966212587839*4005897914126603514867875999 42 Pedersen 2016 1151381080023309947459644421574430152853690586882432431301824=2^6*241*283*5783*234323*160381703*297766669*4076022962963052713805415919 1151386004718534606639138905684879854709281826306705982675776=2^6*241*283*5783*11190514762672111097279*4076000582042836733997570479 42 Pedersen 2016 1167093384560758417662167038355676678263696834626125474336832=2^6*241*283*5783*234323*160381703*297766669*4131646348831449954413244917 1167098376460762160406852158707369253472000523329237775798208=2^6*241*283*5783*11190513935436558489269*4131623967912061210158007487 42 Pedersen 2016 1190441402535665469758117429306740137597646403373323693611456=2^6*241*283*5783*234323*160381703*297766669*4214301048527808157141677011 1190446494299975323867438016995004981728670210401241242723904=2^6*241*283*5783*11190512746523025623231*4214278667609608326419305619 42 Pedersen 2016 1211823780761046285990639870836486004085582459681066139786176=2^6*241*283*5783*234323*160381703*297766669*4289997154848791739114718331 1211828963982214139067141677281057580965388504142172763038784=2^6*241*283*5783*11190511697893057167551*4289974773931640538360802619 42 Pedersen 2016 1263471245479764246178022107601870052847936443288942509733056=2^6*241*283*5783*234323*160381703*297766669*4472835188081070111307384111 1263476649607830153263248319481984146611097032275713139690304=2^6*241*283*5783*11190509311413460253119*4472812807166305390150382831 42 Pedersen 2016 1283375795618983192046555477605047647437718517673736442106048=2^6*241*283*5783*234323*160381703*297766669*4543299611061916148083296863 1283381284882930450956875242813295954470846117002637600599872=2^6*241*283*5783*11190508442960056305983*4543277230148019880330242719 42 Pedersen 2016 1314190317847011033595465884882563163813595903026170661268672=2^6*241*283*5783*234323*160381703*297766669*4652386604389645729415288207 1314195938911048722557492090212551992633137173974182063477568=2^6*241*283*5783*11190507150382629870527*4652364223477042039088669519 42 Pedersen 2016 1351366033214247122136936182835705934039797342893720970330304=2^6*241*283*5783*234323*160381703*297766669*4783992961425115684918048799 1351371813286515117098056180270461925392465047985775156133696=2^6*241*283*5783*11190505669430068722239*4783970580513992947152578399 42 Pedersen 2016 1418641382451769080091078533294262291644714228597191843879104=2^6*241*283*5783*234323*160381703*297766669*5022155523839244327225561599 1418647450274632317242132185805659824907299398654329642968896=2^6*241*283*5783*11190503186736141340799*5022133142930604283387472639 42 Pedersen 2016 1601966409691480480467076799073524863856592919511472397028032=2^6*241*283*5783*234323*160381703*297766669*5671147446391734805496203367 1601973261633435017644495772593923673975252943764711495923008=2^6*241*283*5783*11190497479733209514687*5671125065488801764589940519 42 Pedersen 2016 1624382481189234502442905091179293228969656158429933329060032=2^6*241*283*5783*234323*160381703*297766669*5750502947146026521786070367 1624389429009367147578341001304391973895187587221821753651008=2^6*241*283*5783*11190496870294830515519*5750480566243702919258806687 42 Pedersen 2016 1663837019370550412793686572886210616042103019077266872375488=2^6*241*283*5783*234323*160381703*297766669*5890176602037845991736149503 1663844135945910274904111157637828834214265781752769368909632=2^6*241*283*5783*11190495837510147642623*5890154221136555173891758719 42 Pedersen 2016 1734123883879865603159490083720740684829995272429980370844352=2^6*241*283*5783*234323*160381703*297766669*6139000278842437454715509287 1734131301086694933470293263531223351805025502928618915284288=2^6*241*283*5783*11190494114074741772519*6138977897942870072276988607 42 Pedersen 2016 1761220414782659534052814982184141267672270490293776629011904=2^6*241*283*5783*234323*160381703*297766669*6234925150366459749906240899 1761227947886960741457163323553111136284758926299175791340096=2^6*241*283*5783*11190493486404601349699*6234902769467520037608143039 42 Pedersen 2016 1862032063447070847461349375021458254363754934280098397398208=2^6*241*283*5783*234323*160381703*297766669*6591810114015493402381603823 1862040027743662237013102718117851025803162252601046739016512=2^6*241*283*5783*11190491311594734208943*6591787733118728499950646719 42 Pedersen 2016 1926480367533014849994872333448073616251125713460835519822528=2^6*241*283*5783*234323*160381703*297766669*6819964607724053404654632743 1926488607488344146726344678502140709169831826692516815209792=2^6*241*283*5783*11190490040520269919719*6819942226828559576687964863 42 Pedersen 2016 1929965836571799524061323812101932943175235425345544448834496=2^6*241*283*5783*234323*160381703*297766669*6832303573584509848701216251 1929974091435201420572530656049238757244857574343616012928064=2^6*241*283*5783*11190489974198182710971*6832281192689082342821757119 42 Pedersen 2016 2016751535974862107516293486233380371481488773031887955466432=2^6*241*283*5783*234323*160381703*297766669*7139535045215544846387168767 2016760162038665707967821560736733334735666795695800565196608=2^6*241*283*5783*11190488396742309755519*7139512664321694796380665087 52 Pedersen 2016 2040368021352175864491760075653834545238494256252156540428205=3^4*5*11^2*79*359*521*14975239*1111048681*169356551204101015981724688340079 2049978798654823890229926430308273511401632829182513826291795=3^4*5*11^2*79*3126654427413138879599*169356551197862365610029518746879 42 Pedersen 2016 2184023883881438393973118783842181523556318039376416792841408=2^6*241*283*5783*234323*160381703*297766669*7731698615527249431012843023 2184033225403700749338214446742002448720658806121209545749312=2^6*241*283*5783*11190485710005074568143*7731676234636086118241526719 42 Pedersen 2016 2218587070798606737060023619007266201915316549591502832246592=2^6*241*283*5783*234323*160381703*297766669*7854056317935135252608634977 2218596560154774402503313652046475863731140679328190865965248=2^6*241*283*5783*11190485205354753172769*7854033937044476590158714047 42 Pedersen 2016 2249239420082797535506912918429648682156382261628670935061824=2^6*241*283*5783*234323*160381703*297766669*7962569200176170824113382169 2249249040545408379071177129649250149419873756945605475715776=2^6*241*283*5783*11190484770782311405529*7962546819285946734105228479 42 Pedersen 2016 2361276972159032247587594942471788470346640448768778764949696=2^6*241*283*5783*234323*160381703*297766669*8359195167807718321012349951 2361287071829446020453875058801189796540197295208386523948864=2^6*241*283*5783*11190483278360932677119*8359172786918986652382924671 42 Pedersen 2016 2453693818217407709289175213425586002146243100886674216127936=2^6*241*283*5783*234323*160381703*297766669*8686361553667501284829937891 2453704313173803124766827616216055551824891288133622676533824=2^6*241*283*5783*11190482149880174088611*8686339172779898096959101119 42 Pedersen 2016 2508900167586987624307132581657371497527928996777732864230592=2^6*241*283*5783*234323*160381703*297766669*8881798452567397189530607727 2508910898672367464066238023743065391805076180214975879101248=2^6*241*283*5783*11190481515432961818047*8881776071680428448872041519 42 Pedersen 2016 2524111221392722500218573036377433846149892438330887815749824=2^6*241*283*5783*234323*160381703*297766669*8935647352535239872092053919 2524122017538928280959631677802151536568377190264619734867776=2^6*241*283*5783*11190481345500010195679*8935624971648441064385110079 52 Pedersen 2016 2638865928123884237290865275964136812590428003354375939093405=3^4*5*11^2*79*359*521*14975239*1111048681*219033639029932527521389518843839 2651295819448066452255208050618706099327748845139697343466595=3^4*5*11^2*79*3126654427387016433599*219033639023693877149720471696639 42 Pedersen 2016 2761113890979843448753993143558372874097031676515571182784192=2^6*241*283*5783*234323*160381703*297766669*9774664373295293239613894327 2761125700835528564992185705030139635873137477144824935395648=2^6*241*283*5783*11190478939639487651519*9774641992410900292429494647 42 Pedersen 2016 2808957740905766131794447912349776545794259112836500605725888=2^6*241*283*5783*234323*160381703*297766669*9944037167688154839946261903 2808969755399501453557794293766942960199618720273743331431232=2^6*241*283*5783*11190478503217679795023*9944014786804198314569718719 42 Pedersen 2016 2831196919094675453615328658171210437806360448389640755436608=2^6*241*283*5783*234323*160381703*297766669*10022766445551211522321887973 2831209028709979583030993249889177363000010753008065136690112=2^6*241*283*5783*11190478305378061206719*10022744064667452836563933093 42 Pedersen 2016 2838568972443452560154170502090227291110066793636086442090688=2^6*241*283*5783*234323*160381703*297766669*10048864371993771978119820703 2838581113590554938261158605604235103756535071907985474330432=2^6*241*283*5783*11190478240480445738719*10048841991110078189977333823 42 Pedersen 2016 2861337446497592603913886025232253013145409373854881268037696=2^6*241*283*5783*234323*160381703*297766669*10129467418792512528441671701 2861349685030171773883609792633541813091005039992723992700864=2^6*241*283*5783*11190478042156488852671*10129445037909017064256070869 42 Pedersen 2016 2899331295672880674807441764548227447463170224795960244555712=2^6*241*283*5783*234323*160381703*297766669*10263970064681650961977623947 2899343696713017808274555300238551976028302479369981905137728=2^6*241*283*5783*11190477718148196323519*10263947683798479506084552267 42 Pedersen 2016 2939937432381546870597402992620800640349235427551422798475968=2^6*241*283*5783*234323*160381703*297766669*10407720512325266534682389383 2939950007102536512929552715019520501903433769105113532255552=2^6*241*283*5783*11190477381120605645503*10407698131442432106379995719 42 Pedersen 2016 3081411245341074498301392780746694699892272322737008910344512=2^6*241*283*5783*234323*160381703*297766669*10908554267791614929231295497 3081424425174848417066591716153918188764519000386925882932928=2^6*241*283*5783*11190476276284296803519*10908531886909885337237743817 42 Pedersen 2016 3096888443762928882786404699857202093355927556582156258494784=2^6*241*283*5783*234323*160381703*297766669*10963345350661012795714053929 3096901689795884359811859991520418955030992270168742976935616=2^6*241*283*5783*11190476161541168684009*10963322969779397946848621759 42 Pedersen 2016 3390831543455221250696171591711141424358866709877191808719552=2^6*241*283*5783*234323*160381703*297766669*12003938117849844284199640487 3390846046743662762669151291320368816801686128956752541345088=2^6*241*283*5783*11190474181195826492519*12003915736970209780676399807 42 Pedersen 2016 3443417762121564691013808658465883364856923546342897080655808=2^6*241*283*5783*234323*160381703*297766669*12190099449261571814978526923 3443432490332149220815450070165728136826716311217346405326912=2^6*241*283*5783*11190473862566814486719*12190077068382255940467292043 42 Pedersen 2016 3615158306515918753089689493470002592682691375042172310544576=2^6*241*283*5783*234323*160381703*297766669*12798080954923442444792291231 3615173769296363369632101790712630662615470158930909677592384=2^6*241*283*5783*11190472886532629805119*12798058574045102604465737951 42 Pedersen 2016 3635343370358312435690890021091637707496493134549453303735232=2^6*241*283*5783*234323*160381703*297766669*12869538429045569073684439067 3635358919474453581191687724206550879239001055232771066911808=2^6*241*283*5783*11190472777873421773019*12869516048167337892565917887 42 Pedersen 2016 3682800133822295859593233141804100988987414773940583666653376=2^6*241*283*5783*234323*160381703*297766669*13037540892333559121309164031 3682815885920838282808165202619608468761950033315524462667584=2^6*241*283*5783*11190472527098748885119*13037518511455578714863530751 52 Pedersen 2016 3708880495272478911752341151977934951334349571600023743079005=3^4*5*11^2*79*359*521*14975239*1111048681*307847997485885158512723166917119 3726350492895052999888210725986496926372957801737504495000995=3^4*5*11^2*79*3126654427361323921919*307847997479646508141079812281599 42 Pedersen 2016 3759877682942043140092962081526326078601510247685942621390784=2^6*241*283*5783*234323*160381703*297766669*13310404382616586971814611179 3759893764717218838164235561882737443276755003173984807319616=2^6*241*283*5783*11190472133290202694059*13310382001739000373915168959 42 Pedersen 2016 3786391994517758035393802439329830097757151478359361020494784=2^6*241*283*5783*234323*160381703*297766669*13404268129993418138355585179 3786408189700133024428962453022123847415960786417054374935616=2^6*241*283*5783*11190472001528213741759*13404245749115963302445095259 42 Pedersen 2016 3806419489537614153789228861699820791569750999970311490548672=2^6*241*283*5783*234323*160381703*297766669*13475167792153846422052655707 3806435770381731199741074327134283141601219304391913464597568=2^6*241*283*5783*11190471903219169550527*13475145411276489895186357019 42 Pedersen 2016 3933333516954237520864580816709203734939849448220165453294784=2^6*241*283*5783*234323*160381703*297766669*13924458213064537734717697679 3933350340635922080307062501634607568764756274917007446135616=2^6*241*283*5783*11190471303509257415759*13924435832187780917763533759 42 Pedersen 2016 3970470399673352830143473724339256603688816861264979716373056=2^6*241*283*5783*234323*160381703*297766669*14055927098008274381693692861 3970487382197172420893371774461847597827638044759878608250304=2^6*241*283*5783*11190471135276064253119*14055904717131685797932691581 42 Pedersen 2016 4000567919010185359493593007795410975995520864705299685842112=2^6*241*283*5783*234323*160381703*297766669*14162475817692525450504064847 4000585030267325589128494465856833960391622091607124740203328=2^6*241*283*5783*11190471001223214303167*14162453436816070919593013519 42 Pedersen 2016 4361545227949328662974577543690835135132541900710000583317696=2^6*241*283*5783*234323*160381703*297766669*15440377483676795681781757951 4361563883181144511675935055746346670352410639243481387820864=2^6*241*283*5783*11190469537608585477119*15440355102801804765499532671 42 Pedersen 2016 4394423259779225625407604618969849730407760984788770575194304=2^6*241*283*5783*234323*160381703*297766669*15556769541042352776056332799 4394442055637189634896950398299229817957705632402526874789696=2^6*241*283*5783*11190469416249492714239*15556747160167483218866870399 42 Pedersen 2016 4501814800126348562225527101890112554757613078731359171838784=2^6*241*283*5783*234323*160381703*297766669*15936948086684239051930842929 4501834055320161572779607989908619368796498759830084273511616=2^6*241*283*5783*11190469032198132583409*15936925705809753546101511359 42 Pedersen 2016 4677112285816429095584711843925740013708875200408585024709824=2^6*241*283*5783*234323*160381703*297766669*16557521578310477910601063919 4677132290793876430947254660605677534712655409924058858707776=2^6*241*283*5783*11190468443193168991679*16557499197436581409735324079 42 Pedersen 2016 4742745001365818166466816751332591633684381754486319655449536=2^6*241*283*5783*234323*160381703*297766669*16789869026381724709275782491 4742765287067976421125476094589001255212481942988892526300224=2^6*241*283*5783*11190468233868002973211*16789846645508037533576061119 42 Pedersen 2016 5143173151849510459972626893802846529546044990823435366798528=2^6*241*283*5783*234323*160381703*297766669*18207431260733631300164013743 5143195150265760269986250067924745803842868326537983855913792=2^6*241*283*5783*11190467072493618570863*18207408879861105498848694719 42 Pedersen 2016 5146782890064813915615879256926422599961083171217377033375168=2^6*241*283*5783*234323*160381703*297766669*18220210153935145674410202083 5146804903920661318126663249709044335434347653609271393612352=2^6*241*283*5783*11190467062846064813219*18220187773062629520648640703 42 Pedersen 2016 5341578538469178620561436574353679246888462668071522818868416=2^6*241*283*5783*234323*160381703*297766669*18909809409783081923103580271 5341601385506338557704079918862878136597889177428126438439744=2^6*241*283*5783*11190466561563905362991*18909787028911067051501469119 42 Pedersen 2016 5363094141525039930837780398120735971470386234458069287587008=2^6*241*283*5783*234323*160381703*297766669*18985977147501955385329956623 5363117080588888045553662138956129168381519542282404684411712=2^6*241*283*5783*11190466508429366391743*18985954766629993648266816719 52 Pedersen 2016 5877421496937800279144085601862021664663968904724543261696605=3^4*5*11^2*79*359*521*14975239*1111048681*487843283308557591652640338751999 5905106007050554873012857542281852738303789406697031906303395=3^4*5*11^2*79*3126654427337945510399*487843283302318941281020362527999 42 Pedersen 2016 5880146467978979104416503199174821026047168486491932561960768=2^6*241*283*5783*234323*160381703*297766669*20816402531630256011475574433 5880171618582661567532931820214276792711220778961725469634752=2^6*241*283*5783*11190465348479301235553*20816380150759454224477590719 42 Pedersen 2016 5922208726617931570719339057249830387055577463301730913861824=2^6*241*283*5783*234323*160381703*297766669*20965307820297141451483525919 5922234057130601467809287988744420443269214814363848280915776=2^6*241*283*5783*11190465263025964668479*20965285439426425117822109279 42 Pedersen 2016 6189613957555529085001397204946736024005536966302719497135296=2^6*241*283*5783*234323*160381703*297766669*21911953444955155921283853551 6189640431815726795046958356859805296394600941315502244371264=2^6*241*283*5783*11190464746929505437119*21911931064084955684081668271 42 Pedersen 2016 6194122473643356357405691516070215259616462564126547751015104=2^6*241*283*5783*234323*160381703*297766669*21927914116379859432349902599 6194148967187410675180596820203170574517233898674448572312896=2^6*241*283*5783*11190464738609981113799*21927891735509667514672040639 42 Pedersen 2016 6302530414104074657248252219293893210283124200283938964110784=2^6*241*283*5783*234323*160381703*297766669*22311690836661274335610806179 6302557371331331665159103775323319069592833511028461194199616=2^6*241*283*5783*11190464542149787834559*22311668455791278878126223459 42 Pedersen 2016 6319420286728861793408514077060585402015433144238847044901824=2^6*241*283*5783*234323*160381703*297766669*22371482950544854621631703419 6319447316197600360758457705213109756100870499722127017075776=2^6*241*283*5783*11190464512148328337979*22371460569674889165606617279 42 Pedersen 2016 6421934191537107418560770464881389858549428822793285299709248=2^6*241*283*5783*234323*160381703*297766669*22734394098965808550701652313 6421961659479038076328026565421212343918044556569009253972672=2^6*241*283*5783*11190464333438732881433*22734371718096021804272022719 42 Pedersen 2016 6513763982141662848658666138738045752091052898558043772698816=2^6*241*283*5783*234323*160381703*297766669*23059482240227152654461072671 6513791842858617447718191019724789421638314831116744226881344=2^6*241*283*5783*11190464178130709815391*23059459859357521216054509119 42 Pedersen 2016 6684100265430856714980860463359904898048423059449111292375232=2^6*241*283*5783*234323*160381703*297766669*23662492498219647865558841567 6684128854711355960356313560801030044914839708204105513471808=2^6*241*283*5783*11190463901347122335519*23662470117350293210739757887 42 Pedersen 2016 6713163873713017531473488501079620809964082971157954453116608=2^6*241*283*5783*234323*160381703*297766669*23765381052495919560969499223 6713192587304585806769658646214980191678105303875233781410112=2^6*241*283*5783*11190463855523707581719*23765358671626610729565169343 42 Pedersen 2016 6752293479360752531940335945496184374956706638936856519261376=2^6*241*283*5783*234323*160381703*297766669*23903904408419596581921262031 6752322360317744314365994147204002359664704323022738135499584=2^6*241*283*5783*11190463794452707935119*23903882027550348821516578751 42 Pedersen 2016 6760807282718999311560124507547802918180830005420559636932288=2^6*241*283*5783*234323*160381703*297766669*23934044262714981797736785303 6760836200091290484867177499281200256099749371384624202176832=2^6*241*283*5783*11190463781258544453719*23934021881845747231495583423 42 Pedersen 2016 6972484336163449949324784111145270420097755328518294031301824=2^6*241*283*5783*234323*160381703*297766669*24683405656211625478092915919 6972514158922317604075725913525797034417886533867132382675776=2^6*241*283*5783*11190463463574231097279*24683383275342708596165070479 42 Pedersen 2016 7065486284307686182817950022805155866751404092777253229256896=2^6*241*283*5783*234323*160381703*297766669*25012643371520037042728373151 7065516504855138222374301666720866292073352099801006105337664=2^6*241*283*5783*11190463330016046327871*25012620990651253718985297119 52 Pedersen 2016 7305323703034925520466505219859648602664451765128502663976805=3^4*5*11^2*79*359*521*14975239*1111048681*606363369170850509433175541692759 7339734083171689182828575031859032342077579190631417627863195=3^4*5*11^2*79*3126654427330130146559*606363369164611859061563380832599 42 Pedersen 2016 7334138379900995734133439167598462355238101898267811509381824=2^6*241*283*5783*234323*160381703*297766669*25963703042106517171022770919 7334169749529073830414587142054592409235532911815855518995776=2^6*241*283*5783*11190462963234807833279*25963680661238100628518189479 42 Pedersen 2016 7376277227772907046835043394027425432830398949810199971107008=2^6*241*283*5783*234323*160381703*297766669*26112879465567670434550326623 7376308777637560581058913814228203214911366147293293674491712=2^6*241*283*5783*11190462908128116066719*26112857084699308998737511743 42 Pedersen 2016 7539213794712645770240341235655443510694802722308224137896128=2^6*241*283*5783*234323*160381703*297766669*26689693866877179616741789343 7539246041490725321719085642291398190779787531348278125584192=2^6*241*283*5783*11190462700845314634719*26689671486009025463730406463 42 Pedersen 2016 7727503950264952792090207835301587081143217576557174341870784=2^6*241*283*5783*234323*160381703*297766669*27356262921247563112001053679 7727537002399005259163219974673136002122247006575444133239616=2^6*241*283*5783*11190462472195795776959*27356240540379637608508528559 42 Pedersen 2016 8260020515561746866547929151281370693625123812971329309645504=2^6*241*283*5783*234323*160381703*297766669*29241433509828021016049944999 8260055845379384438160992106334072572995429232957828219954496=2^6*241*283*5783*11190461881966603984999*29241411128960685741749211839 42 Pedersen 2016 8792084482062727020575235795195651760375322319119174224885312=2^6*241*283*5783*234323*160381703*297766669*31125001846020668606911122797 8792122087628090955340846293549344438702582541973877451336128=2^6*241*283*5783*11190461363645693891117*31124979465153851653520483519 42 Pedersen 2016 8795254192475620396637983344118263212500492441434791803951552=2^6*241*283*5783*234323*160381703*297766669*31136222989613400681019019987 8795291811598491923601009866905162906175970741248367511873088=2^6*241*283*5783*11190461360745766204307*31136200608746586627556067519 42 Pedersen 2016 8938475029540933850217550634554685147521707166912053532902208=2^6*241*283*5783*234323*160381703*297766669*31643241413644816043083009073 8938513261248973402488281363525800246338798438821311922232512=2^6*241*283*5783*11190461231860817482943*31643219032778130874568777969 52 Pedersen 2016 9111770965754488262624154921752909074197653272144367689873245=3^4*5*11^2*79*359*521*14975239*1111048681*756303808907564234320475337906431 9154690282597420378787028304079645027268230516622930370414755=3^4*5*11^2*79*3126654427323752505599*756303808901325583948869554687231 42 Pedersen 2016 9306976448063086119536897138158408662583581651769194123925696=2^6*241*283*5783*234323*160381703*297766669*32947779302829465782940605951 9307016255927975530272267860423270516930343590186114212652864=2^6*241*283*5783*11190460918478192277119*32947756921963093997051580671 42 Pedersen 2016 9705402546410624180930119898215765419514188080083793910490048=2^6*241*283*5783*234323*160381703*297766669*34358254039721496905826638363 9705444058426413719350087673197836237901420352652303529335872=2^6*241*283*5783*11190460606421593547483*34358231658855437176536342719 42 Pedersen 2016 10340556898296676437033605151634891958597659847949848234048704=2^6*241*283*5783*234323*160381703*297766669*36606774332638809074782069199 10340601126999111192354166323728331679107637064946264430527296=2^6*241*283*5783*11190460158677864307599*36606751951773197089221013439 42 Pedersen 2016 10912810760365577079564139159251918479215624735587256417205824=2^6*241*283*5783*234323*160381703*297766669*38632619574415674240705158669 10912857436716241182576615756688459737665047655298438187491776=2^6*241*283*5783*11190459799908089127629*38632597193550421024919282879 42 Pedersen 2016 11044866786351110228070319543529072575083409418849665721482432=2^6*241*283*5783*234323*160381703*297766669*39100113268426853800714914767 11044914027532734160001848725646204187933826547346672394060608=2^6*241*283*5783*11190459722396121605519*39100090887561678096896561087 42 Pedersen 2016 11337438891782199935010603709148070184133507931881290535514304=2^6*241*283*5783*234323*160381703*297766669*40135852556443837618013752799 11337487384355283639582833452092014827058796018323114012069696=2^6*241*283*5783*11190459557099070830399*40135830175578827211246174239 42 Pedersen 2016 11883109824698076955469114792177827582256004099400966667152576=2^6*241*283*5783*234323*160381703*297766669*42067591136637944592340889231 11883160651218699134214336540368985052365282016252400566424384=2^6*241*283*5783*11190459270553728855119*42067568755773220730915285951 42 Pedersen 2016 11914490543770800011951121423930960915354105707887720586371648=2^6*241*283*5783*234323*160381703*297766669*42178682532661337888109749213 11914541504513253732935831444172926617630991537668931643342272=2^6*241*283*5783*11190459254873048982719*42178660151796629707364018333 42 Pedersen 2016 12212299913428977696552600972957566388374094817807560043335104=2^6*241*283*5783*234323*160381703*297766669*43232962345290975026247760099 12212352147963754446413166343996216624396344310734437137592896=2^6*241*283*5783*11190459110071570811299*43232939964426411646980200639 42 Pedersen 2016 12253832212881598120076727074218038557930794999581756660419776=2^6*241*283*5783*234323*160381703*297766669*43379991516788314055642172431 12253884625058617158037095889733640648382253890986378551653184=2^6*241*283*5783*11190459090436876125119*43379969135923770311069299151 42 Pedersen 2016 12597350076294155307344790194830298794712556799629329128992448=2^6*241*283*5783*234323*160381703*297766669*44596084714558457643981150263 12597403957768187197640214875655680509056226249358440598065472=2^6*241*283*5783*11190458933000257224383*44596062333694071336027177719 42 Pedersen 2016 15218349588033419651748784628224785343560633758322998890995904=2^6*241*283*5783*234323*160381703*297766669*53874727885894837457188682399 15218414680064931811807437910425495489225081304687054974476096=2^6*241*283*5783*11190457965774894559199*53874705505031418374597375039 42 Pedersen 2016 15449466925313690771389835148931242213428893626831712670405824=2^6*241*283*5783*234323*160381703*297766669*54692910145650391288792639919 15449533005881897678120375257456053891731655846890924910291776=2^6*241*283*5783*11190457896231017234879*54692887764787041750078656879 52 Pedersen 2016 15498151249570468729210586967456253129042226905032071377713885=3^4*5*11^2*79*359*521*14975239*1111048681*1286392169549567233156354692104063 15571152433035237776441350239700762164574704852787165203662115=3^4*5*11^2*79*3126654427313124564863*1286392169543328582784759536825599 42 Pedersen 2016 16473736962840278287095402613066920835748153122513833005893312=2^6*241*283*5783*234323*160381703*297766669*58318945231400519952963777047 16473807424423468058181233407945624910787415127323336107768128=2^6*241*283*5783*11190457611512146658519*58318922850537455133120370367 42 Pedersen 2016 16639317951385100299012289438964889665343062480434561578416832=2^6*241*283*5783*234323*160381703*297766669*58905121192816485704534256167 16639389121192454709422049609886446809339368736051001966118208=2^6*241*283*5783*11190457568776506487487*58905098811953463620331020519 42 Pedersen 2016 17255865376742977851545144798206523707874522628916093883521216=2^6*241*283*5783*234323*160381703*297766669*61087770801288061592504067071 17255939183651300930278696499959104557325262538062535260890944=2^6*241*283*5783*11190457416861175749119*61087748420425191423631569791 42 Pedersen 2016 17555719598258054074292806352093736650805001515184235037479104=2^6*241*283*5783*234323*160381703*297766669*62149289627367882694664661599 17555794687704954875091901684948538048313921218831576497368896=2^6*241*283*5783*11190457346834718640799*62149267246505082552249272639 42 Pedersen 2016 17852095536536187406888800314010952374204115151976110609674432=2^6*241*283*5783*234323*160381703*297766669*63198494926161688597255116767 17852171893644328491971384945045871941018861893208599924428608=2^6*241*283*5783*11190457279932200813087*63198472545298955357357555519 42 Pedersen 2016 18000898850203064196310556634449374108711596715045134809838784=2^6*241*283*5783*234323*160381703*297766669*63725275966769811504033061679 18000975843773781350381729938478040107548808368345064475511616=2^6*241*283*5783*11190457247172753861359*63725253585907111023582452159 42 Pedersen 2016 19591798654000780628473724878113566535233024836319520548923456=2^6*241*283*5783*234323*160381703*297766669*69357246340923976361932130261 19591882452179288033210345930679952043745504284378537727571904=2^6*241*283*5783*11190456928032445688981*69357223960061595021789693119 42 Pedersen 2016 20457158299345133485139758265216313081535984555215869416878784=2^6*241*283*5783*234323*160381703*297766669*72420720152369389536585676679 20457245798845980626271954697619905824084646012009732415671616=2^6*241*283*5783*11190456775281351879359*72420697771507160947537049159 42 Pedersen 2016 20772211459329285241442535156291898352544326400362424453438656=2^6*241*283*5783*234323*160381703*297766669*73536044988715907191854757711 20772300306377716242755402014635090418365574559320698362192704=2^6*241*283*5783*11190456722829226346431*73536022607853731054931663119 42 Pedersen 2016 20830504010430443901333146953160362921611368343675451090181824=2^6*241*283*5783*234323*160381703*297766669*73742407400762151329433820919 20830593106808183002154991781338908375458935419017886082195776=2^6*241*283*5783*11190456713298240204479*73742385019899984723496868279 42 Pedersen 2016 20965538153136101452619986007086347337297860878786027445493696=2^6*241*283*5783*234323*160381703*297766669*74220443974405646475738901451 20965627827082822089107516704142400969337583372592860549324864=2^6*241*283*5783*11190456691423390077119*74220421593543501744652076171 42 Pedersen 2016 21371517736166383810335487797342552380721520446540500036805824=2^6*241*283*5783*234323*160381703*297766669*75657658925768313270276039919 21371609146571822196362232087303959107634428017867268295891776=2^6*241*283*5783*11190456627321609160879*75657636544906232640970130879 42 Pedersen 2016 21631648886269210272129165097275473034338821518448926785361472=2^6*241*283*5783*234323*160381703*297766669*76578553458080450383263883757 21631741409309426945944212367414431466221602496067871605688768=2^6*241*283*5783*11190456587513216099519*76578531077218409562351036077 42 Pedersen 2016 23622791639269716507021430223790561804095878957451978930546368=2^6*241*283*5783*234323*160381703*297766669*83627430432507739297002821783 23622892678839670770241140285418761983129762377844419905657152=2^6*241*283*5783*11190456311843657430719*83627408051645974145648642903 42 Pedersen 2016 25977219144427641557665570503033707789698511974166576001838784=2^6*241*283*5783*234323*160381703*297766669*91962377690335900376688186679 25977330254371421333737472415538084793061191344859081843511616=2^6*241*283*5783*11190456040406892052159*91962355309474406662099386359 42 Pedersen 2016 26235793197838241800535254757658741402687627125578224326631616=2^6*241*283*5783*234323*160381703*297766669*92877759919221148288122989471 26235905413756774979859559822221041098367513815534644590452544=2^6*241*283*5783*11190456013565483952191*92877737538359681414942289119 42 Pedersen 2016 26412543462516370215745046688475607106827915865946643007941824=2^6*241*283*5783*234323*160381703*297766669*93503476417466250042743755919 26412656434432374189016037448864930703978998713737619681235776=2^6*241*283*5783*11190455995520235942479*93503454036604801214811065279 42 Pedersen 2016 27096503239005703288411316610591225808617735306684016737101504=2^6*241*283*5783*234323*160381703*297766669*95924773590993852529694830999 27096619136359256633074213555354963987798778028383223526578496=2^6*241*283*5783*11190455927909713994839*95924751210132471312284087999 42 Pedersen 2016 28360224383382383975500257665734472986207378264386807232709824=2^6*241*283*5783*234323*160381703*297766669*100398493450240641230299063919 28360345685932872540497021160847840280005190003746090090707776=2^6*241*283*5783*11190455811567980524079*100398471069379376354621791679 42 Pedersen 2016 30559719556472566946570295749140886540014944392763407188695232=2^6*241*283*5783*234323*160381703*297766669*108184962229335463514657261567 30559850266719224497465812953124058562054008699595737194751808=2^6*241*283*5783*11190455632023871835519*108184939848474378183088677887 42 Pedersen 2016 31498838070672991281388057448167662817847078490069085512165952=2^6*241*283*5783*234323*160381703*297766669*111509551016869802104435072637 31498972797723939361551322332415379775705298546893164423050688=2^6*241*283*5783*11190455563002487907519*111509528636008785794250416957 42 Pedersen 2016 31669132660451892300145495776923912023447338818935379014765376=2^6*241*283*5783*234323*160381703*297766669*112112413674985671982657667281 31669268115888053252200961291048189436513801534546080758715584=2^6*241*283*5783*11190455550924980802751*112112391294124667749980116369 42 Pedersen 2016 32059972841700458863522219279667987187378299287527831322181824=2^6*241*283*5783*234323*160381703*297766669*113496033382880773695141445919 32060109968840982163425717655635220494138726792817271610195776=2^6*241*283*5783*11190455523691256393279*113496011002019796696188304479 42 Pedersen 2016 32252778286298684878879176756126212898925256879604602801920192=2^6*241*283*5783*234323*160381703*297766669*114178587085735400782435235327 32252916238108007045922880207976654677475133561764080312739648=2^6*241*283*5783*11190455510499696251519*114178564704874436975042235647 42 Pedersen 2016 32527673872956913831479241766963182306666144728624658861562048=2^6*241*283*5783*234323*160381703*297766669*115151749440994405589448932863 32527813000551565794159575582615152753044178698747240475223872=2^6*241*283*5783*11190455491962042041983*115151727060133460319710142719 42 Pedersen 2016 33156322306014764242536531586726352090580745790858209078510784=2^6*241*283*5783*234323*160381703*297766669*117377238024429061044586893679 33156464122468899814930704075070191065662519389213002471799616=2^6*241*283*5783*11190455450724229344559*117377215643568157012660800959 42 Pedersen 2016 33539134864720922450905168611692480251408939812747319992971456=2^6*241*283*5783*234323*160381703*297766669*118732439014674056973976524511 33539278318543616973053980102884150063989449597931840348163904=2^6*241*283*5783*11190455426369959783231*118732416633813177296319993119 42 Pedersen 2016 35392783365341133499445486291540327248185849833398685950395328=2^6*241*283*5783*234323*160381703*297766669*125294570341026101735437702043 35392934747602185733873179985872517647719041461636895577340992=2^6*241*283*5783*11190455315893959401663*125294547960165332533781552219 52 Pedersen 2016 35890776821941121557551433057403575386624873301456723496533005=3^4*5*11^2*79*359*521*14975239*1111048681*2979040113837819975489466848562319 36059833707583802299674103668836291120083165693931449938346995=3^4*5*11^2*79*3126654427304508927119*2979040113831581325117880308921599 42 Pedersen 2016 36556058641259314016116616577271225982288995148692728146928448=2^6*241*283*5783*234323*160381703*297766669*129412700141103840933059822513 36556214999089528948938449057342609283184410222002656960609472=2^6*241*283*5783*11190455252285403371633*129412677760243135339959702719 42 Pedersen 2016 38999092921089258229617206125254332516681644090339927321997504=2^6*241*283*5783*234323*160381703*297766669*138061325688860069353454731999 38999259728282816282190312859553634178254876140290830094962496=2^6*241*283*5783*11190455131051859335999*138061303307999484993898647839 42 Pedersen 2016 40196512420272479270746932429345797606477391566073040029294784=2^6*241*283*5783*234323*160381703*297766669*142300330011279295087979947679 40196684349077111062703056736426900338912623299554188550135616=2^6*241*283*5783*11190455077012455713759*142300307630418764767827485759 42 Pedersen 2016 40555950960506342264486290070761485713206221902470123544365888=2^6*241*283*5783*234323*160381703*297766669*143572784257042551708844883153 40556124426704017385185398866524629041351558282646328827991232=2^6*241*283*5783*11190455061413742416273*143572761876182036987405718719 42 Pedersen 2016 40666987424958000755445785000327391548726790260673497870405824=2^6*241*283*5783*234323*160381703*297766669*143965866258026993797961389919 40667161366081619801722349883547719413222690236061875710291776=2^6*241*283*5783*11190455056650791234879*143965843877166483839473406879 42 Pedersen 2016 40977407964402609018174006746257482548531972551646357462257088=2^6*241*283*5783*234323*160381703*297766669*145064791078752713443341541603 40977583233259134886264417987418456948308508037902661088916032=2^6*241*283*5783*11190455043472137132223*145064768697892216663507661219 42 Pedersen 2016 41037324821094135340672261805532031268673567967991574075550912=2^6*241*283*5783*234323*160381703*297766669*145276903721543650565750037647 41037500346227460562955887906825778540835408298358617739678528=2^6*241*283*5783*11190455040951370795967*145276881340683156306682493519 42 Pedersen 2016 42668373554188992139589058943917579284810624002257553052070976=2^6*241*283*5783*234323*160381703*297766669*151051005975917882184239453381 42668556055655389376594291013698617975595809774867015935617984=2^6*241*283*5783*11190454975050842388869*151050983595057453825700316351 42 Pedersen 2016 43045200139055851196949155244590296513797841793116827543621824=2^6*241*283*5783*234323*160381703*297766669*152385015922425920508131085919 43045384252287558126969030821179365634827297024425209327955776=2^6*241*283*5783*11190454960535817001279*152384993541565506664617336479 42 Pedersen 2016 45578021981973742540113636872291629530670820119494413710119104=2^6*241*283*5783*234323*160381703*297766669*161351499888463224920516501599 45578216928608786684668843587862114999863288769755051379928896=2^6*241*283*5783*11190454869202019092639*161351477507602902410800660799 42 Pedersen 2016 47946707992197674304480419489281257806250102831863449366305728=2^6*241*283*5783*234323*160381703*297766669*169736923912910993621338424443 47946913070193121757590686526670666910028664101038796638102592=2^6*241*283*5783*11190454792518806864063*169736901532050747794834812219 42 Pedersen 2016 48786073962163292448030754675147473826859229885417316944558784=2^6*241*283*5783*234323*160381703*297766669*172708377089682276993006256679 48786282630300749137052671320986010941405363455214541630391616=2^6*241*283*5783*11190454767132252615359*172708354708822056553056893159 42 Pedersen 2016 51745915254869502045836975112480009608470719498914169155141824=2^6*241*283*5783*234323*160381703*297766669*183186559582964614710963205919 51746136582860879249361873519049939606166082682977150430035776=2^6*241*283*5783*11190454684184707152479*183186537202104477218559305279 42 Pedersen 2016 51932084159187695546680456586509208398430613273200037424961728=2^6*241*283*5783*234323*160381703*297766669*183845619161201965535058322943 51932306283462015020958944761475532730106016950232793329526592=2^6*241*283*5783*11190454679283507774719*183845596780341832943853800063 42 Pedersen 2016 53083492142272963025149430450318901397961376436560349107269824=2^6*241*283*5783*234323*160381703*297766669*187921737364133969878754173919 53083719191357577123755946489643295259152710272211743556947776=2^6*241*283*5783*11190454649734626127679*187921714983273866836431298079 52 Pedersen 2016 53257457611791499045434366568888950963377901814279246645456605=3^4*5*11^2*79*359*521*14975239*1111048681*4420525734888884510914549665839999 53508317044725043553386089686583270611770880547828083914543395=3^4*5*11^2*79*3126654427302373766399*4420525734882645860542965261359999 52 Pedersen 2016 53729691226082245855721232674417408427232329391930550352663405=3^4*5*11^2*79*359*521*14975239*1111048681*4459722514804072365944146677009839 53982775028371846636919410257091668688753350206671893873896595=3^4*5*11^2*79*3126654427302334983599*4459722514797833715572562311312639 42 Pedersen 2016 54686047592716795054786336197417313711392471595281240969294784=2^6*241*283*5783*234323*160381703*297766669*193594970083311894066143385179 54686281496262812924681879437399403065358489783086486810135616=2^6*241*283*5783*11190454610678956351259*193594947702451830079490285759 42 Pedersen 2016 57944641553338255839402301131647740253003160291159485702147776=2^6*241*283*5783*234323*160381703*297766669*205130771774787401700601365431 57944889394565199168715422702321871655294884020036145916965184=2^6*241*283*5783*11190454537926531817151*205130749393927410466372800119 42 Pedersen 2016 59713466211020199448136700979254383346960447406624744403521216=2^6*241*283*5783*234323*160381703*297766669*211392616829615730084795942071 59713721617876365006219748996118245093813975393064118340890944=2^6*241*283*5783*11190454501760050749119*211392594448755775017048444791 42 Pedersen 2016 60141314890067981313912378497995491233338136782727413545509056=2^6*241*283*5783*234323*160381703*297766669*212907250924903158266560190111 60141572126921515371999053149435499981064580173300224575594304=2^6*241*283*5783*11190454493331517088831*212907228544043211627346353119 42 Pedersen 2016 60491017228314465457216606995217019459460802501491804587647168=2^6*241*283*5783*234323*160381703*297766669*214145237883022779755216071583 60491275960917291469747911272530736015243063908385556712300352=2^6*241*283*5783*11190454486531002772703*214145215502162839916516550719 42 Pedersen 2016 60880666979368541262834705300341830732963815483386664464878784=2^6*241*283*5783*234323*160381703*297766669*215524643329547136460026801679 60880927378584013252488161327413709935375590514028682007671616=2^6*241*283*5783*11190454479045669479359*215524620948687204106660574159 42 Pedersen 2016 61961918029776578198408767784388965638371670562500725948309568=2^6*241*283*5783*234323*160381703*297766669*219352397829475044795000199733 61962183053726620686979010599222381152521205276073529347669952=2^6*241*283*5783*11190454458767473540853*219352375448615132719829910719 42 Pedersen 2016 63230725256345948721137414121847197851932533322642543688238784=2^6*241*283*5783*234323*160381703*297766669*223844123011345774424654086679 63230995707247152829225217301497347947647783343464942509111616=2^6*241*283*5783*11190454435856177747159*223844100630485885260779591359 42 Pedersen 2016 66491915769441054514560384643812251134880509146870837691458752=2^6*241*283*5783*234323*160381703*297766669*235389116800633851035252680687 66492200169129176519667463404614706453480024054359904246061888=2^6*241*283*5783*11190454380979705945007*235389094419774016747849987519 42 Pedersen 2016 66991486841456973487105850266908762388752663538544861703258304=2^6*241*283*5783*234323*160381703*297766669*237157656510464526792538816799 66991773377913985845053582105118585804057140046186293646245696=2^6*241*283*5783*11190454373045274062399*237157634129604700439568006239 42 Pedersen 2016 67936147895403082770767100149347326482505458561417574301710016=2^6*241*283*5783*234323*160381703*297766669*240501866533459925659492294871 67936438472370975501812366554904407145953702628063094718286144=2^6*241*283*5783*11190454358360661542591*240501844152600113991134004119 42 Pedersen 2016 68125162344014967370512376323955376812287617247817385384034496=2^6*241*283*5783*234323*160381703*297766669*241170999669517923133356478751 68125453729436784367614670688141265293638290100203059813728064=2^6*241*283*5783*11190454355471355473471*241170977288658114354304257119 42 Pedersen 2016 68311600883820539051879924813880858372437537903731716386998976=2^6*241*283*5783*234323*160381703*297766669*241831013788747176436760502631 68311893066678585116026653884022808622704268285021119183729984=2^6*241*283*5783*11190454352637088909351*241830991407887370491974845119 42 Pedersen 2016 77772747889732907224354428441432239589384914238111324954901568=2^6*241*283*5783*234323*160381703*297766669*275324574800959755597023301733 77773080539875233200277310466409099466020119221030912871637952=2^6*241*283*5783*11190454226649173554469*275324552420100075640152999103 42 Pedersen 2016 79474920396100080234809471132618104751485746960870149655029824=2^6*241*283*5783*234323*160381703*297766669*281350463486516849427855827669 79475260326786579720040518164467620741756972117727706925987776=2^6*241*283*5783*11190454207166299457429*281350441105657188953859622079 42 Pedersen 2016 84862606896745874807360729648581798585352090278413686762003392=2^6*241*283*5783*234323*160381703*297766669*300423500446125149681156252027 84862969871682833188363838191181593501999863924017965670032448=2^6*241*283*5783*11190454150651415494847*300423478065265545722044009019 42 Pedersen 2016 86987022688268229810041428531604511011769052623721327605769408=2^6*241*283*5783*234323*160381703*297766669*307944179480516735903301111023 86987394749771300158843521407138844027123711866095132355861312=2^6*241*283*5783*11190454130291513886143*307944157099657152304090476719 42 Pedersen 2016 88932731952761547743403137753319837090632856022838342616809152=2^6*241*283*5783*234323*160381703*297766669*314832216620369820857211668087 88933112336465920228746488210773905275087427192122465576583488=2^6*241*283*5783*11190454112497708617407*314832194239510255051806302519 42 Pedersen 2016 91632896398464100266281704003724867477615843519642905582775104=2^6*241*283*5783*234323*160381703*297766669*324391112867159971024638368849 91633288331330763377983446742968310309619644574286803777352896=2^6*241*283*5783*11190454089056275951889*324391090486300428660665668799 42 Pedersen 2016 95570178096002094070668097733470722451111255808540804857669312=2^6*241*283*5783*234323*160381703*297766669*338329548098781205624918833047 95570586869437627404549651235517089631489981636989805607672128=2^6*241*283*5783*11190454057248766883519*338329525717921695068455201367 52 Pedersen 2016 97411261795833351020877712269541439664725277623198556533133405=3^4*5*11^2*79*359*521*14975239*1111048681*8085421440417022549825805071395839 97870099581023333832971709634567825854820707503550551117426595=3^4*5*11^2*79*3126654427300373648639*8085421440410783899454222667033599 42 Pedersen 2016 98542336384431704547940340401479234851773097585679853567229504=2^6*241*283*5783*234323*160381703*297766669*348851334189755354731699892749 98542757870403498825222512727025151648570376037355718815490496=2^6*241*283*5783*11190454034921597723839*348851311808895866502405420749 42 Pedersen 2016 98861574937434478345270503213928208597791768887971861781970112=2^6*241*283*5783*234323*160381703*297766669*349981475804272817586634032847 98861997788855648834326047075093803441444779863471529643115328=2^6*241*283*5783*11190454032603285471167*349981453423413331675651813519 42 Pedersen 2016 101695456712589056062669863581494642181578760363371148269093312=2^6*241*283*5783*234323*160381703*297766669*360013746952604268105458914547 101695891685109215836737214300382837495210346975227280620568128=2^6*241*283*5783*11190454012661702596019*360013724571744802136059570367 52 Pedersen 2016 103753886505433080379902383528718052727022862051003587436377555=3^4*5*11^2*79*359*521*14975239*1111048681*8611877959612937560803528618350609 104242600054681469830518082480666900688612608868443064989862445=3^4*5*11^2*79*3126654427300226168849*8611877959606698910431946361468159 42 Pedersen 2016 104786492651972040599317642396105702605521767891230458934118336=2^6*241*283*5783*234323*160381703*297766669*370956373756940885811110765291 104786940845492783100612136278416625237029571154631599369615424=2^6*241*283*5783*11190453992140435528619*370956351376081440362978488511 42 Pedersen 2016 106375890354587029496494542068525689655042057920147461066757312=2^6*241*283*5783*234323*160381703*297766669*376583026518169391477409936047 106376345346290764542569447407567116681267477901635923450424128=2^6*241*283*5783*11190453982052761504367*376583004137309956116951683519 42 Pedersen 2016 107286610567298018894225140725245957075278006153541546539109824=2^6*241*283*5783*234323*160381703*297766669*379807082014868569531492776419 107287069454340630316140375317796990464695397397856660736307776=2^6*241*283*5783*11190453976407251094179*379807059634009139816544934079 42 Pedersen 2016 113088113643733374148192022056025662292032689484645444688248768=2^6*241*283*5783*234323*160381703*297766669*400345077791881478935231908683 113088597345005602569124159462021763174549624132020917891186752=2^6*241*283*5783*11190453942578574369803*400345055411022083048960790719 42 Pedersen 2016 115082338807780784347371186045845401648515208121378802676901824=2^6*241*283*5783*234323*160381703*297766669*407404866859990398592317453419 115082831038766860489878417732063380809300603952577809145075776=2^6*241*283*5783*11190453931737919500479*407404844479131013546701204779 42 Pedersen 2016 115343757526589980499451197965825439206706164820260819673821504=2^6*241*283*5783*234323*160381703*297766669*408330319535305414682377682249 115344250875718032824253596099942779006782774283057263239458496=2^6*241*283*5783*11190453930344631579839*408330297154446031030049354249 42 Pedersen 2016 120250925274413237059391136010097942697443601913467325621338304=2^6*241*283*5783*234323*160381703*297766669*425702264211375948475499296799 120251439612513571104751675589561970246795464601344009542565696=2^6*241*283*5783*11190453905314948802399*425702241830516589852853746239 42 Pedersen 2016 120846388341392394496363980712861147034931571326615389309378752=2^6*241*283*5783*234323*160381703*297766669*427810272738452244051876950687 120846905226411531787820276348647532040228475584183321293741888=2^6*241*283*5783*11190453902416005715007*427810250357592888328174487519 42 Pedersen 2016 122260512266663657704292509692169717211904365406237395669358784=2^6*241*283*5783*234323*160381703*297766669*432816435938358589044959431679 122261035200183558720904062975486161685903962589236086969591616=2^6*241*283*5783*11190453895644666908159*432816413557499240092595775359 42 Pedersen 2016 123792098971958739838665725407662505441020484083660601332078784=2^6*241*283*5783*234323*160381703*297766669*438238431043945432696503751679 123792628456392030508575734024406307008156468951772771636471616=2^6*241*283*5783*11190453888485385884159*438238408663086090903421119359 42 Pedersen 2016 126047930015936781533954197466146003852193167684534175424611776=2^6*241*283*5783*234323*160381703*297766669*446224335359511624710502436931 126048469149026422968012416923091459905644526434976611886021184=2^6*241*283*5783*11190453878257523325119*446224312978652293145282363651 42 Pedersen 2016 128534465554954140682241803759688760327546494500170521302563136=2^6*241*283*5783*234323*160381703*297766669*455026960425274628976696772841 128535015323471015900805358547598126038868647872496388314834624=2^6*241*283*5783*11190453867399611397311*455026938044415308269388627369 42 Pedersen 2016 128882956167439470905297732113659689174607727514077494967010752=2^6*241*283*5783*234323*160381703*297766669*456260657733240213479777605187 128883507426522836160603386874988034320365472771258026633869888=2^6*241*283*5783*11190453865911337187519*456260635352380894260743669507 42 Pedersen 2016 135686051340919670379679215202195359074453532064606961582490304=2^6*241*283*5783*234323*160381703*297766669*480344406048582528181660633799 135686631698249389536832947712625085936831187432126725852773696=2^6*241*283*5783*11190453838389158558399*480344383667723236484805327239 52 Pedersen 2016 143532819712048922953565656365952987347746856811019751238906605=3^4*5*11^2*79*359*521*14975239*1111048681*11913646497421219046910837181949999 144208904590579534931587022119731924115678669469661157561093395=3^4*5*11^2*79*3126654427299598436399*11913646497414980396539255552799999 42 Pedersen 2016 148263556800672803775519588490879554042662641354459991062173376=2^6*241*283*5783*234323*160381703*297766669*524870238512069807756804659031 148264190954597021877382533242224735589730633658805628900747584=2^6*241*283*5783*11190453794157640260119*524870216131210560291467650751 42 Pedersen 2016 148383074345505358490079499835710257569432687895556196925659968=2^6*241*283*5783*234323*160381703*297766669*525293344524203163794453999633 148383709010630856960346207405379772383419885246466827986191552=2^6*241*283*5783*11190453793773296501969*525293322143343916713460749503 42 Pedersen 2016 149255887932637690795061855329488044192004533966749589866638784=2^6*241*283*5783*234323*160381703*297766669*528383206156691961672864174179 149256526330967581056467582868995037755956577242807247242711616=2^6*241*283*5783*11190453790985169133859*528383183775832717379998292159 42 Pedersen 2016 152260385448277723329627098817024305769354450193279921051573312=2^6*241*283*5783*234323*160381703*297766669*539019476873999810184485325797 152261036697465443800717928079052758853426908664205099044488128=2^6*241*283*5783*11190453781631965283519*539019454493140575244823294117 42 Pedersen 2016 155499994011852966459892555477746576268281706931509438568741824=2^6*241*283*5783*234323*160381703*297766669*550488068051368392074620743419 155500659117517139089629248056879232307994078741136180664435776=2^6*241*283*5783*11190453771951813132479*550488045670509166815110862779 42 Pedersen 2016 157629256429640178494261407866964791223396671144518325725861824=2^6*241*283*5783*234323*160381703*297766669*558025904706543582946710213419 157629930642600486918283762745333794227430404173163953628915776=2^6*241*283*5783*11190453765806147455979*558025882325684363832866009279 42 Pedersen 2016 159433048005126324124599971319882124718045519973068586100163008=2^6*241*283*5783*234323*160381703*297766669*564411536718085741974858875123 159433729933276600666943855314757641980912961980134877767515712=2^6*241*283*5783*11190453760728317847743*564411514337226527938844279219 42 Pedersen 2016 164287098285059742557339409752305075033866333334830339746737856=2^6*241*283*5783*234323*160381703*297766669*581595439378693376581697657911 164287800974987894900546073232817850738539599079789084477149504=2^6*241*283*5783*11190453747617511376631*581595416997834175656489533119 42 Pedersen 2016 177240223608619600440235787082715349396106692831267373900006592=2^6*241*283*5783*234323*160381703*297766669*627451009855758460774939663727 177240981701746165645738010157332458174234404236213917315005248=2^6*241*283*5783*11190453716146133274047*627450987474899291321109641519 42 Pedersen 2016 193903417500063383832989048966315959325778128331403651278509248=2^6*241*283*5783*234323*160381703*297766669*686440654653860827558603046063 193904246865119641596810302387267931862269498958632026059172672=2^6*241*283*5783*11190453681844292022719*686440632273001692406614275183 42 Pedersen 2016 206725843928662899731121442958382056226172359591849280190771392=2^6*241*283*5783*234323*160381703*297766669*731833535838618394703137122527 206726728137891340860400422538437553436884393296061341595504448=2^6*241*283*5783*11190453659213648002847*731833513457759282181792371519 42 Pedersen 2016 215483504862515303544625302939046382699482077466319718510639808=2^6*241*283*5783*234323*160381703*297766669*762836674319497521762093968423 215484426530072466954134746332635043794526563940060452660462912=2^6*241*283*5783*11190453645304957133543*762836651938638423149440086719 42 Pedersen 2016 217327220384673753276701795759082477721579966596446594737020608=2^6*241*283*5783*234323*160381703*297766669*769363641746595692317033023223 217328149938183869308901446702541688954483558417606094328226112=2^6*241*283*5783*11190453642519652593343*769363619365736596489683681719 42 Pedersen 2016 218471068693828813415191832322238347402297549589138186211669824=2^6*241*283*5783*234323*160381703*297766669*773412997824401049240103855169 218472003139814933757240079215631698232197757527132081044547776=2^6*241*283*5783*11190453640815269148929*773412975443541955117137958079 42 Pedersen 2016 218830392990148308557878279009977799588155874821237395703294784=2^6*241*283*5783*234323*160381703*297766669*774685047633417496787018478929 218831328973038827357483735810052068273503283306966097196135616=2^6*241*283*5783*11190453640283538197009*774685025252558403195783533759 42 Pedersen 2016 223509332111186955631029976918703180295319585473721436887488704=2^6*241*283*5783*234323*160381703*297766669*791249036420929605349257459199 223510288106868674181413667551020459759178275498579471476287296=2^6*241*283*5783*11190453633515683533439*791249014040070518525877177599 42 Pedersen 2016 231206083721397949384534285537748724149465773375572468643239104=2^6*241*283*5783*234323*160381703*297766669*818496432480979268801474471599 231207072637679596002655506734287797893752505531733888248408896=2^6*241*283*5783*11190453622978622820799*818496410100120192515154902639 42 Pedersen 2016 231536853386491386645116508857665777536519448137959514598641088=2^6*241*283*5783*234323*160381703*297766669*819667395573707137566769445603 231537843717543362922283672955999000748804246024251893589652032=2^6*241*283*5783*11190453622541490198719*819667373192848061717582498723 42 Pedersen 2016 266788828410702173574642451872410335328238564690080515658608832=2^6*241*283*5783*234323*160381703*297766669*944463488006956252020792083167 266789969521748778581380267212224584675649714396207118864486208=2^6*241*283*5783*11190453582167412595519*944463465626097216545682739487 42 Pedersen 2016 267634445130406096318852261222855276151668261444924959961753408=2^6*241*283*5783*234323*160381703*297766669*947457069564948242122618646273 267635589858330461149087440047959211935955653814233851364997312=2^6*241*283*5783*11190453581329553790143*947457047184089207485368107969 42 Pedersen 2016 272035347284786006528551234407995379890968185334994901331829824=2^6*241*283*5783*234323*160381703*297766669*963036775146564123400305377669 272036510836279908760132743962520887996573477226665074673187776=2^6*241*283*5783*11190453577053124543679*963036752765705093039484085829 42 Pedersen 2016 277465914195000646376947172996583777519199137854004288015699904=2^6*241*283*5783*234323*160381703*297766669*982261613744306285876496693899 277467100974153395829430140798672807889095878084451173624492096=2^6*241*283*5783*11190453571963132367039*982261591363447260605667578699 42 Pedersen 2016 299039356262502375137299686516889510081363344472880474160980416=2^6*241*283*5783*234323*160381703*297766669*1058634108292774915824660614771 299040635315732728102527516647508296463463768765779088660487744=2^6*241*283*5783*11190453553568615884991*1058634085911915908948347981619 42 Pedersen 2016 300918216615884734615025828236547665137925352881375425625038784=2^6*241*283*5783*234323*160381703*297766669*1065285492510789276233015199179 300919503705389758618133700137228918103692833318531696796311616=2^6*241*283*5783*11190453552091465899659*1065285470129930270833852551359 42 Pedersen 2016 308550092394611975018807438329695939389100176258002242811187392=2^6*241*283*5783*234323*160381703*297766669*1092303220580408050825920018527 308551412127229566000337774954427234634402556743703923161968448=2^6*241*283*5783*11190453546276273971519*1092303198199549051241949298847 42 Pedersen 2016 311513928134644408535526451385600002736106915229470063559470784=2^6*241*283*5783*234323*160381703*297766669*1102795543881897611681574778679 311515260544200998129429250934353349360911908408698197283639616=2^6*241*283*5783*11190453544094760493559*1102795521501038614279117536959 42 Pedersen 2016 314110144550208681472896519313167248773428465580214704418931904=2^6*241*283*5783*234323*160381703*297766669*1111986452009767286558135948399 314111488064320318690389094505558425579023524655684081627020096=2^6*241*283*5783*11190453542217656303039*1111986429628908291032782897199 42 Pedersen 2016 349169944575300511662247887263565547955293468967954856229905088=2^6*241*283*5783*234323*160381703*297766669*1236102222590497846659827692103 349171438047434524564430304174159211827084390875759192833908032=2^6*241*283*5783*11190453519602607145223*1236102200209638873749523798719 42 Pedersen 2016 360524134223650447180820939872030366190765329862043874265348032=2^6*241*283*5783*234323*160381703*297766669*1276297374773799989207890685867 360525676260003997172831614049184406531073291348738566165203008=2^6*241*283*5783*11190453513221561315519*1276297352392941022678632622187 42 Pedersen 2016 376422280976922188133396293586918960872090886617684104888247488=2^6*241*283*5783*234323*160381703*297766669*1332578663705159017823921931503 376423891012940449641348129191762780527810042856229968513997632=2^6*241*283*5783*11190453504933675624623*1332578641324300059582549558719 42 Pedersen 2016 388712941498692597279678641257385177096012407726771430269626304=2^6*241*283*5783*234323*160381703*297766669*1376089031719635526461675912299 388714604104410178707353673734153377258956472672533242402117696=2^6*241*283*5783*11190453498991057597739*1376089009338776574162921566399 42 Pedersen 2016 391356877837071467666919395976953565693517602054703215016880704=2^6*241*283*5783*234323*160381703*297766669*1385448873925507582470942829949 391358551751452085014635060294498801013133074273671332581455296=2^6*241*283*5783*11190453497761480012349*1385448851544648631401766069439 42 Pedersen 2016 398558688168561735052701711978548925712329115759687265944901824=2^6*241*283*5783*234323*160381703*297766669*1410944120282573473874133265919 398560392886575974444329379459535758308541542043667660117075776=2^6*241*283*5783*11190453494494974900479*1410944097901714526071461617279 42 Pedersen 2016 407831923285852127446130015380734991360433247591894680022405952=2^6*241*283*5783*234323*160381703*297766669*1443772451349352676282697825137 407833667667412599799347167284485882459839833815518747436010688=2^6*241*283*5783*11190453490458849169457*1443772428968493732516151907519 42 Pedersen 2016 417984628843377728374949004079222679741203920326724897831786688=2^6*241*283*5783*234323*160381703*297766669*1479714210082993801791437896703 417986416650161564225506058344752653888463230393434849701914432=2^6*241*283*5783*11190453486245308638719*1479714187702134862238432509823 42 Pedersen 2016 440423627907273455599542191258636867295576422328131332603782976=2^6*241*283*5783*234323*160381703*297766669*1559150877088581355610215962881 440425511690301345991872287626787878423072480916040954876065984=2^6*241*283*5783*11190453477621889969601*1559150854707722424680629245119 42 Pedersen 2016 446303478315865704988532482261160190611012024494938475657763008=2^6*241*283*5783*234323*160381703*297766669*1579966231535542123524699162623 446305387248230970560196093899346431671870049596873321777915712=2^6*241*283*5783*11190453475505613966719*1579966209154683194711388447743 42 Pedersen 2016 453754711534428611256268805302483764236633721778660806535205824=2^6*241*283*5783*234323*160381703*297766669*1606344463928105518564968627419 453756652337260819480571694828114696367177635020447410309491776=2^6*241*283*5783*11190453472902557140379*1606344441547246592354714738879 42 Pedersen 2016 456331702518017517355203882129630594015009252186448765681899712=2^6*241*283*5783*234323*160381703*297766669*1615467311790295916450930600447 456333654343173620821139600796042995231156071234396992997713728=2^6*241*283*5783*11190453472022080128767*1615467289409436991121153723519 42 Pedersen 2016 456703366003184966719072154730052501046319695276237604550628032=2^6*241*283*5783*234323*160381703*297766669*1616783043763246811133820303367 456705319418022733659337566847260056622751759379137602190323008=2^6*241*283*5783*11190453471895914239687*1616783021382387885930209315519 42 Pedersen 2016 478615584092449467868879057619674542958901771944028433158047552=2^6*241*283*5783*234323*160381703*297766669*1694354844838428886270088964737 478617631230380012837682996598825553808237527018062061167057088=2^6*241*283*5783*11190453464803857448769*1694354822457569968158534767807 42 Pedersen 2016 488469760171224675813727728717107757266897976345575923501579456=2^6*241*283*5783*234323*160381703*297766669*1729239774489483942305237122511 488471849457506205595057243325278082147293696082464433444995904=2^6*241*283*5783*11190453461821891293119*1729239752108625027175649081231 42 Pedersen 2016 498418003291632763653040777514611644294220645714318445938949824=2^6*241*283*5783*234323*160381703*297766669*1764457712410699089505395628919 498420135128609487965785134367359903684905840435291806187667776=2^6*241*283*5783*11190453458931065665079*1764457690029840177266633215679 42 Pedersen 2016 521493107361704909578783381954483911979368805101955393676741824=2^6*241*283*5783*234323*160381703*297766669*1846146265135981069572226555919 521495337895678478843393719721651766072071857980583950996435776=2^6*241*283*5783*11190453452650362275279*1846146242755122163614167532479 42 Pedersen 2016 556112490783920535354672127361067164433279563485316206434368704=2^6*241*283*5783*234323*160381703*297766669*1968702909709050251659991989199 556114869392163499925701761638564797703492251896145576527807296=2^6*241*283*5783*11190453444205063573439*1968702887328191354147231667599 42 Pedersen 2016 576061573323170962248029004287133437604043082468065241513070784=2^6*241*283*5783*234323*160381703*297766669*2039324982566443242306652003679 576064037257769572153653799963067516815543480801243386178039616=2^6*241*283*5783*11190453439799532396959*2039324960185584349199422858559 42 Pedersen 2016 616066836813336016760926906020229666338314557500318874422894784=2^6*241*283*5783*234323*160381703*297766669*2180948269117234027896681547679 616069471858727994279888454041306142159057575769163460204535616=2^6*241*283*5783*11190453431824594589759*2180948246736375142764390209759 42 Pedersen 2016 654511643536384387710467343377539404777698485274488356806181824=2^6*241*283*5783*234323*160381703*297766669*2317047357185147257356043883419 654514443018173112437075927572007003448607884811633871246195776=2^6*241*283*5783*11190453425079323941979*2317047334804288378969023193279 42 Pedersen 2016 703676707148532640672944033829899183173036823827618166239706304=2^6*241*283*5783*234323*160381703*297766669*2491097401723484114312037454799 703679716919476009064065827050861138310880708715387469606437696=2^6*241*283*5783*11190453417527133056399*2491097379342625243477207650239 42 Pedersen 2016 745159305120524857173526860897107327495252633953425040745124032=2^6*241*283*5783*234323*160381703*297766669*2637950624197646791185384054367 745162492321126992400348527698276199273012169388666320077107008=2^6*241*283*5783*11190453411930194390687*2637950601816787925947492915519 42 Pedersen 2016 749060836738373499408543424288988744388440848529861253461091136=2^6*241*283*5783*234323*160381703*297766669*2651762499988375870478589265841 749064040626634013464225792189047433415589914863579611187346624=2^6*241*283*5783*11190453411435683552369*2651762477607517005735208965311 42 Pedersen 2016 756334445301465809398216844786055943091940940350741301598221504=2^6*241*283*5783*234323*160381703*297766669*2677511920437571311549748925999 756337680300455844887086061984301507060128183957963013507058496=2^6*241*283*5783*11190453410527390779839*2677511898056712447714661397999 42 Pedersen 2016 761629951752512413469105654534830942997475304712770954331328704=2^6*241*283*5783*234323*160381703*297766669*2696258629298331776872953999199 761633209401479753685893758349649171947890179566804704803647296=2^6*241*283*5783*11190453409877026753439*2696258606917472913688230497599 42 Pedersen 2016 813339568320062781922057441590279608884548496366285266722406592=2^6*241*283*5783*234323*160381703*297766669*2879316687305575511290402813727 813343047141764499550160130133557996973332288584786929324605248=2^6*241*283*5783*11190453403971450174047*2879316664924716654011255891519 42 Pedersen 2016 851146687382010171103794295008418667271158475265872027149235904=2^6*241*283*5783*234323*160381703*297766669*3013158286871251774357615997399 851150327912586502794445156299525457636042317731038564879436096=2^6*241*283*5783*11190453400107743270039*3013158264490392920942175979199 42 Pedersen 2016 852400622374610111563943889057893833611979926913061118338712256=2^6*241*283*5783*234323*160381703*297766669*3017597362614789950502225114311 852404268268525981511512432612220488328345784302313292901367104=2^6*241*283*5783*11190453399985469373119*3017597340233931097209058993031 42 Pedersen 2016 859074010304947805666389224948402995845278512716359034341294272=2^6*241*283*5783*234323*160381703*297766669*3041221932200618331889632331807 859077684742325300123977287943158649707340549728011044327259968=2^6*241*283*5783*11190453399340737804127*3041221909819759479241197779519 42 Pedersen 2016 904312922804473544678851169886824089287547386283165375400031296=2^6*241*283*5783*234323*160381703*297766669*3201372945072751051042382223301 904316790738044628385349373004746531332376889785200421734755264=2^6*241*283*5783*11190453395220998438021*3201372922691892202513687037119 42 Pedersen 2016 943258710507771275353482048845573405402510854259007000157899712=2^6*241*283*5783*234323*160381703*297766669*3339245564089655372924960037947 943262745020538465997550951660722648698495937462221646201713728=2^6*241*283*5783*11190453391990884566267*3339245541708796527626378723519 52 Pedersen 2016 944563209889326402472800722374804113430087462014023731586969745=3^4*5*11^2*79*359*521*14975239*1111048681*78401526561428398626699141407043131 949012400703689692168248773318238340499323546213469157206118255=3^4*5*11^2*79*3126654427298209943099*78401526561422159976327561166386431 42 Pedersen 2016 966622109615580768918608158327993463403228264256857530082101824=2^6*241*283*5783*234323*160381703*297766669*3421954714785768990017210684669 966626244058442360372687266641982067846091763046029096075875776=2^6*241*283*5783*11190453390178061657279*3421954692404910146531452279229 42 Pedersen 2016 970692844675482036951869999032340499632915852041858695087560896=2^6*241*283*5783*234323*160381703*297766669*3436365590444730165276973297151 970696996529720155404825449717868891674651787633011009269753664=2^6*241*283*5783*11190453389871130351871*3436365568063871322098146197119 42 Pedersen 2016 985207140418523746796156712126434435585621103376760601603934912=2^6*241*283*5783*234323*160381703*297766669*3487747885817064383542814316647 985211354353409337414860450771132206356853614215734094408414528=2^6*241*283*5783*11190453388797404299967*3487747863436205541437713268519 42 Pedersen 2016 1030827539481792199205231109219904204412004092900431874939707456=2^6*241*283*5783*234323*160381703*297766669*3649249405503019063268683934261 1030831948544568383072029669661595964625788911182179499565907904=2^6*241*283*5783*11190453385619415092981*3649249383122160224341572093119 52 Pedersen 2016 1101256240710388480619116462495386851219780956694582273146264755=3^4*5*11^2*79*359*521*14975239*1111048681*91407509315454607352317506153857969 1106443505150851921412656299723728805202456216113479993498215245=3^4*5*11^2*79*3126654427298174542769*91407509315448368701945925948601599 42 Pedersen 2016 1150973016133252380899335281487840658800182295755240085115273152=2^6*241*283*5783*234323*160381703*297766669*4074578369322346894289496864587 1150977939083103309704815017953634422538077986563732910449639488=2^6*241*283*5783*11190453378455289827519*4074578346941488062526510288907 42 Pedersen 2016 1378033311147658199644310354703897188566515447709043058378886336=2^6*241*283*5783*234323*160381703*297766669*4878398227502703890116462635791 1378039205281394262736165476055806830221773826079990764159087424=2^6*241*283*5783*11190453368327300391119*4878398205121845068481465496511 42 Pedersen 2016 1498014009376325328696364675384632419215263478054335890693861824=2^6*241*283*5783*234323*160381703*297766669*5303143856536739157925171338419 1498020416692344711945638288610625821754154385530896158900915776=2^6*241*283*5783*11190453364215398980979*5303143834155880340402075609279 42 Pedersen 2016 1547863984553556942630305511125024265745057194952769666182028992=2^6*241*283*5783*234323*160381703*297766669*5479618567690947646065055483127 1547870605088239515760246855371379223357591751760615475393814848=2^6*241*283*5783*11190453362694420131519*5479618545310088830062938603447 42 Pedersen 2016 1600864507421082447361030936179273951261840592731609982337887552=2^6*241*283*5783*234323*160381703*297766669*5667246584170694507614710879737 1600871354649972871169103661885312911757263826290502227238417088=2^6*241*283*5783*11190453361181208464057*5667246561789835693125805667519 42 Pedersen 2016 1659084643622267290467602623046302539072114072418026887155491008=2^6*241*283*5783*234323*160381703*297766669*5873352639047036240592591230623 1659091739870732296113850714685441298002371456728653540767227712=2^6*241*283*5783*11190453359630404166719*5873352616666177427654490315743 42 Pedersen 2016 1837120549428926436820548187262779062609474609746483336748883904=2^6*241*283*5783*234323*160381703*297766669*6503620456445232731345050397899 1837128407173815481478573504531908884226299054529258259552428096=2^6*241*283*5783*11190453355497947599039*6503620434064373922539406050699 42 Pedersen 2016 1884416434101938372248124541272938216377762580495019326014789824=2^6*241*283*5783*234323*160381703*297766669*6671053390098221095286699793919 1884424494141116802395868161128622600283103960967651074643027776=2^6*241*283*5783*11190453354531416766079*6671053367717362287447586279679 42 Pedersen 2016 1966191955078500110498942356151063765893464858911232199765105216=2^6*241*283*5783*234323*160381703*297766669*6960548247267477634059982389821 1966200364888509966100554976490644122349471504857720804552426944=2^6*241*283*5783*11190453352969969149119*6960548224886618827782316492541 42 Pedersen 2016 2146137129211211381501847091286187263135917281615375919690602304=2^6*241*283*5783*234323*160381703*297766669*7597575096644286224504584762049 2146146308683981140963360643404956313023545216392590236188821696=2^6*241*283*5783*11190453349953049675649*7597575074263427421243838338239 42 Pedersen 2016 2193915569197480821724184702347110852685627912550357392502754496=2^6*241*283*5783*234323*160381703*297766669*7766716332241664362801130548751 2193924953028528934415825178302298253207892667472385997104608064=2^6*241*283*5783*11190453349235153757119*7766716309860805560258280043471 42 Pedersen 2016 2518004081604752633331245429818206260449575600017767363561290688=2^6*241*283*5783*234323*160381703*297766669*8914027367244803689466900958203 2518014851629457312514871308392752828820062390618577694211130432=2^6*241*283*5783*11190453345084713238719*8914027344863944891074490971323 42 Pedersen 2016 2523262750560539157987655367345310990767179763241525029155173568=2^6*241*283*5783*234323*160381703*297766669*8932643667087053023377585639983 2523273543077659549005867631887386932369818911680663714824325952=2^6*241*283*5783*11190453345026158260719*8932643644706194225043730631103 42 Pedersen 2016 2558007519814407801941559684828677438840589400850130461683506112=2^6*241*283*5783*234323*160381703*297766669*9055644192090255358987498836347 2558018460942098746149589211539939209370865845972999174370059328=2^6*241*283*5783*11190453344645327487167*9055644169709396561034474601019 42 Pedersen 2016 2590756397708227671374456787089465634714047243889062188007828672=2^6*241*283*5783*234323*160381703*297766669*9171579029497676059752658648207 2590767478909648655836550241730435013585150898397619449017717568=2^6*241*283*5783*11190453344295724669519*9171579007116817262149237230527 42 Pedersen 2016 2691354130497641864530145814887576441286739838102703770424551872=2^6*241*283*5783*234323*160381703*297766669*9527706706064475441211238629907 2691365641976390551422867655511940152620331929169533438593570368=2^6*241*283*5783*11190453343275025729727*9527706683683616644628516152019 42 Pedersen 2016 2766124449679991129003788164966506242640594424524449095060554176=2^6*241*283*5783*234323*160381703*297766669*9792402333970018569225605401331 2766136280966873032835734221260516881111197535720226395756510784=2^6*241*283*5783*11190453342564477488051*9792402311589159773353431165119 42 Pedersen 2016 2874683558604844904989835462800604422038729630789810118754696512=2^6*241*283*5783*234323*160381703*297766669*10176714208199837404075224957497 2874695854221508313186610259121647804014324719354057069685940928=2^6*241*283*5783*11190453341598623659769*10176714185818978609168904549567 42 Pedersen 2016 2955247369217922953548286988907940954262434533868168172714990784=2^6*241*283*5783*234323*160381703*297766669*10461919469724600777993505273679 2955260009422681728519422217158914360283910840172444236761719616=2^6*241*283*5783*11190453340927715596559*10461919447343741983758092928959 42 Pedersen 2016 3053368258069281076878192295400626003866889295393342934327294784=2^6*241*283*5783*234323*160381703*297766669*10809278830620460014637487478929 3053381317957393304048382999744625662553782013855822278892135616=2^6*241*283*5783*11190453340158416285009*10809278808239601221171374445759 52 Pedersen 2016 3105270715397238468344707997369722335117683916547960568347857513=3^4*7*11*17*83*271*1733*795713*3225245539*292758571672679914487395602828648959 3118531657954095002723934417894419787456744108213464878849224087=3^4*7*11*17*83*1210424706672129630719*292758571672677498785075270650755839 42 Pedersen 2016 3475911147588194138593092539368196255397139945613223571003841728=2^6*241*283*5783*234323*160381703*297766669*12305129813755410991474534852943 3475926014779714708511345003746034983786987751210675084109046592=2^6*241*283*5783*11190453337341786024719*12305129791374552200825052080063 42 Pedersen 2016 3854375563903882072218117577057486355215862702593302222471519808=2^6*241*283*5783*234323*160381703*297766669*13644937874120552466615346092173 3854392049866056486438351045196619914159052207651274690817982912=2^6*241*283*5783*11190453335343262555469*13644937851739693677964386788543 42 Pedersen 2016 3940093259582388306836757986374099291626461732471916265591177408=2^6*241*283*5783*234323*160381703*297766669*13948388488326230419683967509023 3940110112176891409472003509045151218287847869567193014399893312=2^6*241*283*5783*11190453334943946426719*13948388465945371631432324334143 42 Pedersen 2016 4059143556490772860150355398156189715754008744375172542689289152=2^6*241*283*5783*234323*160381703*297766669*14369840388453268063467872610587 4059160918288040235331576847001681434059229306376394923910503488=2^6*241*283*5783*11190453334417327497407*14369840366072409275742848365019 42 Pedersen 2016 4073385635121831902300086583288678447234818506345134046537632576=2^6*241*283*5783*234323*160381703*297766669*14420259003582280604985626550481 4073403057835417810505190051085284877206757805408548603742344384=2^6*241*283*5783*11190453334356389197201*14420258981201421817321540605119 42 Pedersen 2016 4183039068390523196358776291049946804087983246052725406637591488=2^6*241*283*5783*234323*160381703*297766669*14808444913291578480195031283003 4183056960114542361705303981659788270686488468344756703454573632=2^6*241*283*5783*11190453333901105938623*14808444890910719692986228596219 42 Pedersen 2016 4263290536507806235736022289196350560209542625291859947125275328=2^6*241*283*5783*234323*160381703*297766669*15092544446046555335060663669543 4263308771483967255863582746468419991054801925852256948040860992=2^6*241*283*5783*11190453333582742614719*15092544423665696548170224306663 42 Pedersen 2016 4341119254028627706397358523087676190469376257800467942598727104=2^6*241*283*5783*234323*160381703*297766669*15368067159852492432060627412099 4341137821894324750842840028379893803290265899022616197496760896=2^6*241*283*5783*11190453333285233604799*15368067137471633645467697059139 42 Pedersen 2016 4399091370441799866218488080089110968038207987071767688467546304=2^6*241*283*5783*234323*160381703*297766669*15573295195827230832305131744799 4399110186266239517025949486895522480123195488428112447269797696=2^6*241*283*5783*11190453333070469670239*15573295173446372045926965326399 42 Pedersen 2016 4419040634207343501171387383738830603622282601087821882250156736=2^6*241*283*5783*234323*160381703*297766669*15643917910246783758540651393191 4419059535358913939684835313173350365892409837231486190249289024=2^6*241*283*5783*11190453332997868638911*15643917887865924972235086006119 42 Pedersen 2016 4553988953574148105393767147305290170220998460920309561498048704=2^6*241*283*5783*234323*160381703*297766669*16121650659286946279960184819199 4554008431927615893158392276872410008144536038834881186686527296=2^6*241*283*5783*11190453332523458013439*16121650636906087494129030057599 42 Pedersen 2016 5509488740076545114925348036038194542793522514100565540200762304=2^6*241*283*5783*234323*160381703*297766669*19504231056396838662409122378299 5509512305300396126249065981796599217368113766757469399627461696=2^6*241*283*5783*11190453329829230811899*19504231034015979879272194818239 42 Pedersen 2016 5714463502496812228731595931279031229346960999656773821485095104=2^6*241*283*5783*234323*160381703*297766669*20229865559993154878673903257599 5714487944440153581431264907313421635501759158666998933532632896=2^6*241*283*5783*11190453329368634428799*20229865537612296095997572080639 42 Pedersen 2016 5978380189764887171079273953667446196196153774859608260225243328=2^6*241*283*5783*234323*160381703*297766669*21164161334240230235365147052543 5978405760534532904814857560712087136761879033276474813511132992=2^6*241*283*5783*11190453328822103489663*21164161311859371453235346814719 42 Pedersen 2016 6532081277333476125067070801656332337321355080006516346044181056=2^6*241*283*5783*234323*160381703*297766669*23124327596049476995646130740861 6532109216397294091005205798199224471557296668848739270741882304=2^6*241*283*5783*11190453327818996720831*23124327573668618214519437271869 42 Pedersen 2016 6655493238557675002832180908768148620858903228156012620000954304=2^6*241*283*5783*234323*160381703*297766669*23561220295245086961839497080299 6655521705479998420615752466400725723073619436652126560405829696=2^6*241*283*5783*11190453327618164994239*23561220272864228180913635337899 42 Pedersen 2016 7122192394446509157652876930253211518227591381702417726919493568=2^6*241*283*5783*234323*160381703*297766669*25213389598009597773000802997483 7122222857537732894417683303074632137147733498806006906877605952=2^6*241*283*5783*11190453326921618738603*25213389575628738992771487510719 42 Pedersen 2016 7146804933458007070758835049622656104363495286102923070341107904=2^6*241*283*5783*234323*160381703*297766669*25300520849276692090231117154399 7146835501822155158692959270611092551914570323499487822528524096=2^6*241*283*5783*11190453326887409951039*25300520826895833310036010455199 42 Pedersen 2016 7231196000279733698677547635317609627204600756939081936206830784=2^6*241*283*5783*234323*160381703*297766669*25599275043003188965833752313679 7231226929601944231442649312230315449329627286057010648681079616=2^6*241*283*5783*11190453326771883532559*25599275020622330185754172032959 42 Pedersen 2016 7547121713907098085335048758754832138848092405534553859593760448=2^6*241*283*5783*234323*160381703*297766669*26717688820750480506380288958263 7547153994508985036116854881197629974078020061636826147967537472=2^6*241*283*5783*11190453326362339707383*26717688798369621726710252502719 42 Pedersen 2016 7944551210112962095096785574988421489966449476693574837506273472=2^6*241*283*5783*234323*160381703*297766669*28124635470126674255568981687007 7944585190603075508743240144519445070174416082289593369232936768=2^6*241*283*5783*11190453325893400799519*28124635447745815476367884139327 42 Pedersen 2016 8301643659781145611152336720741957090008563877149672728687390784=2^6*241*283*5783*234323*160381703*297766669*29388784282367689109321989517429 8301679167629587343993618032860590140868144600555146377621319616=2^6*241*283*5783*11190453325510352000309*29388784259986830330503940768959 42 Pedersen 2016 8433521201738513488597668119962531713549749985864623859352351168=2^6*241*283*5783*234323*160381703*297766669*29855646122156191099700379708083 8433557273654501914226175213255009020230472349427842704922316352=2^6*241*283*5783*11190453325377090496703*29855646099775332321015592463219 42 Pedersen 2016 8868228649782465488564454466748013555234661342451561313069565888=2^6*241*283*5783*234323*160381703*297766669*31394561057567796524336411239403 8868266581032197232684716092629517025140532486642647675238791232=2^6*241*283*5783*11190453324965885718719*31394561035186937746062828772523 42 Pedersen 2016 9159295558709312661004895512838889436962708604827058397180916928=2^6*241*283*5783*234323*160381703*297766669*32424971774860880591681871684143 9159334734912467141004032713915628404342520031473198950451907392=2^6*241*283*5783*11190453324712372404719*32424971752480021813661802531263 42 Pedersen 2016 9264127520119104918705613903937938926805850147506867854030704704=2^6*241*283*5783*234323*160381703*297766669*32796089113309866667870118248949 9264167144710259430811772471430596342858029430783974127223951296=2^6*241*283*5783*11190453324624967861439*32796089090929007889937453639349 42 Pedersen 2016 9358690739291558106004760770516735483928243608109257578441355456=2^6*241*283*5783*234323*160381703*297766669*33130853909680173399275576428511 9358730768349176386606652172952827026132171035593818591696899904=2^6*241*283*5783*11190453324547804787231*33130853887299314621420074893119 42 Pedersen 2016 10779434482383309262062925667854527155242962756320902361958556096=2^6*241*283*5783*234323*160381703*297766669*38160452034751690150489829460851 10779480588256022443047246329856054400459753126335571419264294464=2^6*241*283*5783*11190453323551455595571*38160452012370831373630677117119 42 Pedersen 2016 10792429346711568194147358031658142087327155469539034565407195328=2^6*241*283*5783*234323*160381703*297766669*38206455366160870955142700064543 10792475508166006151410851255776916847694449687804559845944540992=2^6*241*283*5783*11190453323543553114719*38206455343780012178291450201663 42 Pedersen 2016 11700882994626421588581558764243212470162135227498379193292840128=2^6*241*283*5783*234323*160381703*297766669*41422486959813190724103713803343 11700933041725169090966222402400157021685825204985344927868560192=2^6*241*283*5783*11190453323034606984719*41422486937432331947761410070463 42 Pedersen 2016 12330701896404108695603963522884418748241258854689979248906913472=2^6*241*283*5783*234323*160381703*297766669*43652119138676205792141823402007 12330754637368676819142693951508470065479210732379777898427496768=2^6*241*283*5783*11190453322725779354327*43652119116295347016108347299519 42 Pedersen 2016 14840481315977497299962170818352262359555381657013070020039278784=2^6*241*283*5783*234323*160381703*297766669*52537030245558479092569239451679 14840544791788188021525012719568863810942033121102319990625271616=2^6*241*283*5783*11190453321755477944159*52537030223177620317506064759359 42 Pedersen 2016 16088714114055163483927335239148048885251371106005916376012267712=2^6*241*283*5783*234323*160381703*297766669*56955919557153895208994634508447 16088782928815926089247252954823000404675981252789492415509585728=2^6*241*283*5783*11190453321385621523519*56955919534773036434301316236767 42 Pedersen 2016 18037627067704700814379069939246804532774383511214672271071421888=2^6*241*283*5783*234323*160381703*297766669*63855298129303819382283253150403 18037704218369607267523748717330546590717196848924676664163015232=2^6*241*283*5783*11190453320910506681219*63855298106922960608065049721023 42 Pedersen 2016 20054832701114380678599457685382936917365823169597804084988760512=2^6*241*283*5783*234323*160381703*297766669*70996440732263584172159153597747 20054918479785359462833235276810274793829525500231130447431396928=2^6*241*283*5783*11190453320515996133567*70996440709882725398335460716019 42 Pedersen 2016 20874314768238736282283796337200077876241971915233387499649294784=2^6*241*283*5783*234323*160381703*297766669*73897502579890678738872332760179 20874404052004155718125000928020409802212391171277963050530135616=2^6*241*283*5783*11190453320377507198259*73897502557509819965187128813759 42 Pedersen 2016 23515492573744428391832913420686867798249883329465695014076602304=2^6*241*283*5783*234323*160381703*297766669*83247579258492705721404867168299 23515593154374067610027824886350259648010521818409546058282821696=2^6*241*283*5783*11190453319996846338239*83247579236111846948100324081899 52 Pedersen 2016 25521603332335584889166626694203106574430794811769561783973464205=3^4*5*11^2*79*359*521*14975239*1111048681*2118368194527495219348799444291556879 25641818138422893343644611922911014307769442349572718514604455795=3^4*5*11^2*79*3126654427297970353679*2118368194527488980698427864290489599 42 Pedersen 2016 26106977347681195240846656142827627715568302357494853694676367936=2^6*241*283*5783*234323*160381703*297766669*92421736824571113164137757534141 26107089012627671352864904961666889497343594231307485475739493824=2^6*241*283*5783*11190453319698208466111*92421736802190254391131852319869 42 Pedersen 2016 26380380409177411876259663804268431814825033187550344317995341504=2^6*241*283*5783*234323*160381703*297766669*93389615467131765144020075270999 26380493243525378700943925032635712281562560905809176100431538496=2^6*241*283*5783*11190453319670123582999*93389615444750906371042254939839 42 Pedersen 2016 27540790290414626818272965637548369334344709533069793107129669824=2^6*241*283*5783*234323*160381703*297766669*97497601436708718780180261073919 27540908088075870130480769637109278451944529916179797026366547776=2^6*241*283*5783*11190453319557128158079*97497601414327860007315436167679 42 Pedersen 2016 29388899029724147711132203691776850157473951850348869055135284416=2^6*241*283*5783*234323*160381703*297766669*104040121363582799015686149976271 29389024732129042833420840455349423770195452322985084155588903744=2^6*241*283*5783*11190453319395590158991*104040121341201940242982863069119 42 Pedersen 2016 31223155555015013211456768305258562079626408664261501929549099712=2^6*241*283*5783*234323*160381703*297766669*110533602841408563288792766925447 31223289102914773263249680293428670953213934463381849215626513728=2^6*241*283*5783*11190453319254171453767*110533602819027704516230898723519 42 Pedersen 2016 36794450657459882309214160520364917438699949452403390544565358784=2^6*241*283*5783*234323*160381703*297766669*130256635610497609629359172931679 36794608034942099649479055402870485105580634583816859611353591616=2^6*241*283*5783*11190453318911084708159*130256635588116750857140391475359 42 Pedersen 2016 38757186618798531377398374220193557606227011117754273504116248768=2^6*241*283*5783*234323*160381703*297766669*137204949237891705099854257721183 38757352391308757928654776520714393062300133888525987601503186752=2^6*241*283*5783*11190453318813712682303*137204949215510846327732848290719 42 Pedersen 2016 39692896161588588501356501188469771370425608691064054957299114176=2^6*241*283*5783*234323*160381703*297766669*140517469870069122254535617948831 39693065936322229174483725735438904888233504808831352092378750784=2^6*241*283*5783*11190453318770681535551*140517469847688263482457239665119 42 Pedersen 2016 39904484949881937474054367752795970756990716768208130640885646912=2^6*241*283*5783*234323*160381703*297766669*141266518794663017848421299732397 39904655629624626305747889005810144305379014259029310260018862528=2^6*241*283*5783*11190453318761230812269*141266518772282159076352372171967 42 Pedersen 2016 46889369584491845021534539649659268104408161283436527420588398784=2^6*241*283*5783*234323*160381703*297766669*165993822949896646508124449671679 46889570140032044927742377506761214400179886281176295604757751616=2^6*241*283*5783*11190453318497129823359*165993822927515787736319623100159 42 Pedersen 2016 47586878685921763536015544642259803274582091293628237702736285888=2^6*241*283*5783*234323*160381703*297766669*168463086309901237284154774871903 47587082224852780406744193156591973622893181985764895974621671232=2^6*241*283*5783*11190453318475014405023*168463086287520378512372063718719 42 Pedersen 2016 49576497561527722604577920919089270425405674742331190232389210304=2^6*241*283*5783*234323*160381703*297766669*175506568581079807878183528328799 49576709610470537993017810286082755274112925730874414979295653696=2^6*241*283*5783*11190453318415350218399*175506568558698949106460481362239 42 Pedersen 2016 50652979908155193793160678730057822765402073406030582776600488256=2^6*241*283*5783*234323*160381703*297766669*179317441314883192789406503451561 50653196561435846449942762506125748224816464097760432624791271104=2^6*241*283*5783*11190453318385022973119*179317441292502334017713783730281 42 Pedersen 2016 69166221169821985135962635454284156991230629685151097560543631552=2^6*241*283*5783*234323*160381703*297766669*244856469018813509111932316287487 69166517008067907890750187045596915200823869076674984107674593088=2^6*241*283*5783*11190453318011179067519*244856468996432650340613440471807 42 Pedersen 2016 76325485318644447162264429753472578727131209138903992689382076608=2^6*241*283*5783*234323*160381703*297766669*270201096939855695511876220384223 76325811778545161279313139076113301297610909886486227964785250112=2^6*241*283*5783*11190453317915236429343*270201096917474836740653287206719 42 Pedersen 2016 78578358550401878536274359577900783481927481053200235643860061888=2^6*241*283*5783*234323*160381703*297766669*278176530256079865742933146302903 78578694646307768258345584795643229022181126519812211547809575232=2^6*241*283*5783*11190453317888661561023*278176530233699006971736787993719 42 Pedersen 2016 79310689717889780776384790523189476680719301431564570494270501056=2^6*241*283*5783*234323*160381703*297766669*280769067780766131208288259942111 79311028946127672448444141339055824552937616743945531904493162304=2^6*241*283*5783*11190453317880348140831*280769067758385272437100215053119 42 Pedersen 2016 82868009353675183217412956661444508364519494620016451046539155904=2^6*241*283*5783*234323*160381703*297766669*293362393112955117526634351954899 82868363797305551708731010486602329462177001194863448067115116096=2^6*241*283*5783*11190453317842055867539*293362393090574258755484599339199 42 Pedersen 2016 90875493672969908072313601738313604881709580813377553514293172416=2^6*241*283*5783*234323*160381703*297766669*321709819110567559315132163254271 90875882366268325621406727103742824444444349748870508422866855744=2^6*241*283*5783*11190453317766829636991*321709819088186700544057636869119 42 Pedersen 2016 90967227548321415932404724254387481351800855244756990868005319104=2^6*241*283*5783*234323*160381703*297766669*322034567700675333662168550514099 90967616633984608030255561610956953303506214340255004806620728896=2^6*241*283*5783*11190453317766044573299*322034567678294474891094809192639 42 Pedersen 2016 97056898819759713739838491806819149368006086022539833017134510784=2^6*241*283*5783*234323*160381703*297766669*343592712410484523728868932268679 97057313952207546062305554210359639627507047419661511136495799616=2^6*241*283*5783*11190453317717247994559*343592712388103664957843987525959 52 Pedersen 2016 101499116852130518537888689845956369067292888360917458805780691905=3^4*5*11^2*79*359*521*14975239*1111048681*8424725441906879174017765757465848139 101977209724726517212047934116339375951338418025166435430113068095=3^4*5*11^2*79*3126654427297963460939*8424725441906872935367394177471673599 42 Pedersen 2016 101791841793788756999810588400125375388229252104253195528633729216=2^6*241*283*5783*234323*160381703*297766669*360354961352487481186921473015071 101792277178567861573409237759539022964197691821754900571804122944=2^6*241*283*5783*11190453317683341549119*360354961330106622415930434717791 42 Pedersen 2016 115450592787992802237614243790447461401353059088930451921377870016=2^6*241*283*5783*234323*160381703*297766669*408708528788772777275258181379871 115451086594077383364366153706619631761857529863511275750470926144=2^6*241*283*5783*11190453317601115629119*408708528766391918504349369002591 42 Pedersen 2016 134598998237879351664295006863631808407357590691307620258828101568=2^6*241*283*5783*234323*160381703*297766669*476496111607385980992085119845483 134599573945657920141415175684894526162857495579542636483574437952=2^6*241*283*5783*11190453317513938710719*476496111585005122221263484386603 42 Pedersen 2016 135670527779339520206076303808904841338926812287457210215200661824=2^6*241*283*5783*234323*160381703*297766669*480289450834739356365797440732169 135671108070271752979381741103639293038023691899938474248218115776=2^6*241*283*5783*11190453317509787414729*480289450812358497594979956569279 42 Pedersen 2016 143745846026533139309435026924469508354716965800691538408452167872=2^6*241*283*5783*234323*160381703*297766669*508877016828206407271886136913407 143746460857273172947794192964100196888748461685075992838448834368=2^6*241*283*5783*11190453317480492939519*508877016805825548501097947225727 42 Pedersen 2016 143948901830241217569081709666169718337013430939572436791097181376=2^6*241*283*5783*234323*160381703*297766669*509595857994729908790778899282031 143949517529492957896471891648396993628351190059467691425023179584=2^6*241*283*5783*11190453317479798685119*509595857972349050019991403848751 42 Pedersen 2016 144503254131175697631651349054939421846665479692843560115689710784=2^6*241*283*5783*234323*160381703*297766669*511558329627609789159953284093679 144503872201506984563709232283145827896025481915074943284276599616=2^6*241*283*5783*11190453317477913270959*511558329605228930389167674074559 42 Pedersen 2016 147479879301393601362956241712024146458286068834473936433728494784=2^6*241*283*5783*234323*160381703*297766669*522095928999744990663133123897679 147480510103366927328392989230193756103037734343366968075106935616=2^6*241*283*5783*11190453317468031821759*522095928977364131892357395327759 42 Pedersen 2016 201558044503947309775700719538925829346393911514728801599848807104=2^6*241*283*5783*234323*160381703*297766669*713538924707174796712298793954599 201558906609427834204729924665217059373476314193433746293821080896=2^6*241*283*5783*11190453317339326669799*713538924684793937941651770536639 42 Pedersen 2016 221409955921624362522210722880060267317832468192562914428206038016=2^10*2687*8623*1448663*3962626379*220136910613*7384613580847425754529429759 221410108815952725099476109484403175067604254359778338967058269184=2^10*2687*8623*2874791060779925441927888639*3246124335316729101283648319 42 Pedersen 2016 221553486110219802038728146084136983496990977787567398372639087616=2^10*2687*8623*1448663*3962626379*220136910613*7389400696113094603534295159 221553639103662731048687911397551476467824381051212744265773507584=2^10*2687*8623*2855296154490927431777115839*3270406356871395960439286519 42 Pedersen 2016 222833954596828772945314254335948367148194540648587110409886137344=2^10*2687*8623*1448663*3962626379*220136910613*7432107741226309605327427631 222834108474497383833943104041552888455673268776682978331052573696=2^10*2687*8623*2737258720393932098629525679*3431150836081606295380009151 42 Pedersen 2016 224183254241441076304272364798601106759309470842741659963204299776=2^10*2687*8623*1448663*3962626379*220136910613*7477110489358212669172279499 224183409050866626776455271327301905390817771713170836514757940224=2^10*2687*8623*2656366681108959395033553599*3557045623498482062820833099 42 Pedersen 2016 226602292435178066172063106340506035953035540355922421515126811648=2^10*2687*8623*1448663*3962626379*220136910613*7557791876171650528835050427 226602448915066981199373600762041387894216962667696918764848960512=2^10*2687*8623*2552799944847933746639878847*3741293746572945570877278779 42 Pedersen 2016 238853582325544685421491961643097864827796144765348660046333426688=2^10*2687*8623*1448663*3962626379*220136910613*7966405126333379616711393887 238853747265544310311838966032698727321154000552862717430185116672=2^10*2687*8623*2272265227316843327712185279*4430441714265765077681315807 42 Pedersen 2016 245895201585706733812332261410685097371144449526958533275336866816=2^10*2687*8623*1448663*3962626379*220136910613*8201261942068244392672470959 245895371388286466656688483034849518536642353684952120725762704384=2^10*2687*8623*2177069551527035241390415919*4760494205790437939964162239 42 Pedersen 2016 251748699807687189202433339341550978758779934537776472609604320256=2^10*2687*8623*1448663*3962626379*220136910613*8396491746823746854892823519 251748873652391746542242891703849166954921067890994570533610374144=2^10*2687*8623*2114313004563828617336500159*5018480557509147026238430559 42 Pedersen 2016 253947139402310028403312946342881264159525424083114272244181407936=2^6*241*283*5783*234323*160381703*297766669*899002415048924908787287714555391 253948225586794408758299463465217439614862089050214457721421653824=2^6*241*283*5783*11190453317266915706111*899002415026544050016713102101119 42 Pedersen 2016 260833347145792192780066069562737945155230575351715983087568905216=2^10*2687*8623*1448663*3962626379*220136910613*8699489007407309901455748809 260833527263886975002630498192351294468387749057937796223839017984=2^10*2687*8623*2035869778024621632161449289*5399921044631917057976406719 42 Pedersen 2016 270884074840445245215521697733936361669229577910642805221194602688=2^6*241*283*5783*234323*160381703*297766669*958961136766554836466548485192703 270885233467708580090668360477965965148140012677100197640957978432=2^6*241*283*5783*11190453317249497038719*958961136744173977695991291405823 42 Pedersen 2016 292231352653003523605246345099983624787250348892422133800420719616=2^10*2687*8623*1448663*3962626379*220136910613*9746696378525484033300088159 292231554452946097933903773001415208836369223654896789623696835584=2^10*2687*8623*1859604144831098493809015519*6623394048943614328173179839 42 Pedersen 2016 293775686797991341160648780105325749681429642521945553939652843712=2^6*241*283*5783*234323*160381703*297766669*1040000106067933725850669229864447 293776943337417771329929754566886516137579385654005644616804689728=2^6*241*283*5783*11190453317229146123519*1040000106045552867080132386992767 42 Pedersen 2016 308662512476531744310790433908268453060749161523923535836591422464=2^10*2687*8623*1448663*3962626379*220136910613*10294719458503209824422330511 308662725622988232068892519978571879066499162838329947834058802176=2^10*2687*8623*1798819812384382193496337679*7232201461368056419608100031 42 Pedersen 2016 310192919757918089429452006066339228437553866793335673372303038784=2^6*241*283*5783*234323*160381703*297766669*1098119020555933271312838919917929 310194246517248392113054340297890000240095541976123484573158311616=2^6*241*283*5783*11190453317216400557609*1098119020533552412542314822612159 52 Pedersen 2016 312639640821109645543581502941020815448198776107902292453870386205=3^4*5*11^2*79*359*521*14975239*1111048681*25950010382961711077343805815488220479 314112272195679168131903804215665049175116994763138753205449933795=3^4*5*11^2*79*3126654427297961897279*25950010382961704838693434235495609599 42 Pedersen 2016 322885530348782523553489072125900158668810659321573524113760736256=2^10*2687*8623*1448663*3962626379*220136910613*10769095104814427441469651269 322885753316923658755793987099918950189153272274280505615074438144=2^10*2687*8623*1756159236355657809915424709*7749237683707998420236333759 42 Pedersen 2016 327163192394637517611427237214124477500535050031597798962895010816=2^10*2687*8623*1448663*3962626379*220136910613*10911766562864300949833676959 327163418316712059921242361057669035086044835521785599256500880384=2^10*2687*8623*1744729602437485295550313919*7903338775676044442965470239 42 Pedersen 2016 328716234572658304836118081249102103191327119312940467493598036992=2^10*2687*8623*1448663*3962626379*220136910613*10963564668833396939251324433 328716461567183901746641647286137691939276681553754335895763647488=2^10*2687*8623*1740720139895481897797905553*7959146344187143830135526079 42 Pedersen 2016 341271275387073201645225934644026199582247966260913822041591095104=2^6*241*283*5783*234323*160381703*297766669*1208140014815282838864188302538849 341272735074964006696431248782010218827195175037620567799506632896=2^6*241*283*5783*11190453317195630710049*1208140014792901980093684975080639 42 Pedersen 2016 343110801678013702023485658143259652640818644010143995137329407936=2^6*241*283*5783*234323*160381703*297766669*1214652151876537949406229794742891 343112269233939250572726579272117744579152441118466005180913653824=2^6*241*283*5783*11190453317194519288619*1214652151854157090635727578706111 42 Pedersen 2016 392943108599739135681247744374093535014021311843655328136501410816=2^10*2687*8623*1448663*3962626379*220136910613*13105702515442468654587276959 392943379946040723525442330039299004231018549421005641982286480384=2^10*2687*8623*1620234474949570671696613919*10221769855742126771572770239 42 Pedersen 2016 400048791790729925945981037338765287027352267673271793608725326848=2^10*2687*8623*1448663*3962626379*220136910613*13342696034432935282530765227 400049068043850877542575300236050149312145446002611927968447501312=2^10*2687*8623*1610684765122282200384723647*10468313084559881870828148779 42 Pedersen 2016 422525130535349362574477157174606045572264682436066140357786754048=2^10*2687*8623*1448663*3962626379*220136910613*14092341982603386348647055527 422525422309473884691768177325454384252430077467714029150966490112=2^10*2687*8623*1583685694125618294292256447*11244958103726996843036906279 42 Pedersen 2016 447838406063891793106984095890416493002739517009974466536795310784=2^6*241*283*5783*234323*160381703*297766669*1585400054321058834946985604568679 447840321561460779715917077592006025139167828599250879261378999616=2^6*241*283*5783*11190453317146300939559*1585400054298677976176531606880959 42 Pedersen 2016 462638876841779537102345267247534838127045239165579405263824080576=2^6*241*283*5783*234323*160381703*297766669*1637795442607370388879790121282231 462640855644025860510903100267531464336491725266355199786952536384=2^6*241*283*5783*11190453317141247128951*1637795442584989530109341177405119 42 Pedersen 2016 638356417877657929958192002165143727050816176619033672286006795264=2^10*2687*8623*1448663*3962626379*220136910613*21290892061552798624094552711 638356858693769206790131224786686669028079512076760511301767013376=2^10*2687*8623*1448152208823025782505367231*18579041667979001630271292679 42 Pedersen 2016 666943096175254560630932730951023466027788385665555999168074021888=2^10*2687*8623*1448663*3962626379*220136910613*22244334159081940808857028687 666943556731855646219592804397605058423153738322402677634543977472=2^10*2687*8623*1438432693889825271704380607*19542203280441344325834755279 42 Pedersen 2016 725697519029077787600911586338199396695276469794494895715889344704=2^6*241*283*5783*234323*160381703*297766669*2569053637452470095946217802495199 725700622987592059140193419648159105986897640136872602419400511296=2^6*241*283*5783*11190453317085814981439*2569053637430089237175824290765599 42 Pedersen 2016 727056195379131566266582114470218992634375083669022781642419381824=2^6*241*283*5783*234323*160381703*297766669*2573863509785913260437735385114669 727059305148985844219505465457635684208585450146551563333408995776=2^6*241*283*5783*11190453317085632802029*2573863509763532401667342055564479 42 Pedersen 2016 731195227506498959401943005235382957954683542853514540920279015104=2^6*241*283*5783*234323*160381703*297766669*2588516165008673874611814311652599 731198354979850459963785882936215428560614426170710786627084312896=2^6*241*283*5783*11190453317085081988799*2588516164986293015841421532915639 42 Pedersen 2016 747057000522522206370705148480533442477830052722312235575694498816=2^10*2687*8623*1448663*3962626379*220136910613*24916346912957222647574763959 747057516401665346098905313706237576227395776142567691596390032384=2^10*2687*8623*1415984126755930455285186239*22236664601450520980971684919 42 Pedersen 2016 749427129504456047513762443713545950490233302132681801832370981824=2^6*241*283*5783*234323*160381703*297766669*2653059218990992704910977615183419 749430334959426547734413404322260742734341057323653367830945395776=2^6*241*283*5783*11190453317082728153279*2653059218968611846140587190281979 42 Pedersen 2016 766085981646656364972393841859262053849683013048204885051336276992=2^10*2687*8623*1448663*3962626379*220136910613*25551014274025271823507053183 766086510666235201406765272466506085370515757211443835320092607488=2^10*2687*8623*1411480350828223529722634303*22875835738446277082466526079 42 Pedersen 2016 799702947426161231754546510224550391140086713780853484325701344704=2^6*241*283*5783*234323*160381703*297766669*2831041462998746380428722951057699 799706367921212492936930509515859657790997914399173785709748511296=2^6*241*283*5783*11190453317076793328099*2831041462976365521658338460981439 42 Pedersen 2016 923352287750140100113775811546824031291359771202631098982531751104=2^6*241*283*5783*234323*160381703*297766669*3268774511821789125776628180843599 923356237119016362336158018946697913413430835556016909961076056896=2^6*241*283*5783*11190453317064946486799*3268774511799408267006255537608639 42 Pedersen 2016 938783815268771216611783391310236747645493093924646932560297147392=2^10*2687*8623*1448663*3962626379*220136910613*31310948429832777719900642783 938784463544592038262702274317641501632829846471233768873161049088=2^10*2687*8623*1380249594259935382490963903*28667000650822071126091786079 42 Pedersen 2016 946556156990879156736337890949266037903366690201093332696847920128=2^10*2687*8623*1448663*3962626379*220136910613*31570176791977353330372893947 946556810633879437231405442701470643336913460179894820009516946432=2^10*2687*8623*1379152809811540291143846779*28927325797415041827911154367 42 Pedersen 2016 991541684981608513134539022788598162143849727196072334865988959232=2^10*2687*8623*1448663*3962626379*220136910613*33070564340311114098238546943 991542369689300801486741672796951139674547027306702166926222312448=2^10*2687*8623*1373190730350587023677742079*30433675425209755863242912063 42 Pedersen 2016 1015424996894473207900663028654475256264850494892319136012200165568=2^6*241*283*5783*234323*160381703*297766669*3594722612972558564173726674141983 1015429340077386292189845174663599103309667877142087533150021893952=2^6*241*283*5783*11190453317057999083103*3594722612950177705403360978310719 42 Pedersen 2016 1022788840904420234186739318439530051386286877021865677259593928896=2^6*241*283*5783*234323*160381703*297766669*3620791477400671575760934508205151 1022793215584018525590005481396490476040803894471810092061285625664=2^6*241*283*5783*11190453317057497459871*3620791477378290716990569313997119 42 Pedersen 2016 1298663700123866454215848534617632338393277881111766527920122223616=2^10*2687*8623*1448663*3962626379*220136910613*43313904096900808792503809159 1298664596914226999631103115375616046672587627501265661449472451584=2^10*2687*8623*1344675762180795848983328519*40705530149969241732202587839 42 Pedersen 2016 1339031766797919728570418012062092757702502770687745783106237594624=2^10*2687*8623*1448663*3962626379*220136910613*44660286973645934919788042351 1339032691464390974309923543851392911028937725970106777600071074816=2^10*2687*8623*1341997651756500960728893679*42054591137138662747741255871 42 Pedersen 2016 1603932678211182284596345986472730968941826862263201628118955260928=2^10*2687*8623*1448663*3962626379*220136910613*53495440116866379251922285647 1603933785804598999320872285652844615040669781177654669681836229632=2^10*2687*8623*1328039696155904740742489279*50903702235959703299861903567 42 Pedersen 2016 1683237124192636612679597949361401642272173325107877263817683568704=2^6*241*283*5783*234323*160381703*297766669*5958855229914128884857790494532949 1683244323746260780888582536583750501612958047945998921629534607296=2^6*241*283*5783*11190453317030357173439*5958855229891748026087452440611349 42 Pedersen 2016 1737796069795110660882053644485925740978383738085412887515296365568=2^10*2687*8623*1448663*3962626379*220136910613*57960141874988305482397117007 1737797269827700959139500684288605144284008874327102063221749384192=2^10*2687*8623*1322724530062333546291700927*55373719160175200724787523279 42 Pedersen 2016 1744295400932169937746024910538340044109582952283322348589385239552=2^10*2687*8623*1448663*3962626379*220136910613*58176911932962310812433997123 1744296605452864056223831601989560673193691526662049326550349001728=2^10*2687*8623*1322488756585827040882150079*55590724991625712560233954243 42 Pedersen 2016 1811651602089411031113239686628481813488609683433266051716567931072=2^6*241*283*5783*234323*160381703*297766669*6413457420071333095241819285572607 1811659350898340022069200272924915556903476519744669457995432847168=2^6*241*283*5783*11190453317027377964927*6413457420048952236471484210859519 42 Pedersen 2016 1990539181883741940618634018721150583103577493066421396495332527104=2^10*2687*8623*1448663*3962626379*220136910613*66389799928197211580817474371 1990540556447726774440108215900835760465259251671216567183571956736=2^10*2687*8623*1314762046821472518604147391*63811339696624967850895434179 42 Pedersen 2016 2072426829853035363604051051142918091295865653409864441801364847616=2^10*2687*8623*1448663*3962626379*220136910613*69120971770857054169285660159 2072428260964418372637756407025109439905440366118407698560900547584=2^10*2687*8623*1312624042230741278358635839*66544649543875541679609131519 42 Pedersen 2016 2119153590720851131045985033061527057797113659841003056879557202944=2^10*2687*8623*1448663*3962626379*220136910613*70679434087771239542901895781 2119155054099332020594169749600630094478085661229235891935398276096=2^10*2687*8623*1311482465869875632836735679*68104253437150592698747267301 42 Pedersen 2016 2132757048374623485782896561551385979448273247243458417468848183488=2^6*241*283*5783*234323*160381703*297766669*7550208053983545236328389386197503 2132766170618017719841304055429258157728488099292830412078494541632=2^6*241*283*5783*11190453317021498490623*7550208053961164377558060190958719 42 Pedersen 2016 2149660887391650753687721832638645692876234998740778679468146670592=2^10*2687*8623*1448663*3962626379*220136910613*71696933939448530654543299583 2149662371836901722404881508232322415077220372440482119982902821888=2^10*2687*8623*1310765478658729712193040703*69122470276039029731032366079 42 Pedersen 2016 2249220101983999255723733189847599928022136545804169815480969405504=2^6*241*283*5783*234323*160381703*297766669*7962500811859158542461387514223749 2249229722363982591721643574902555535734141410392302570124636994496=2^6*241*283*5783*11190453317019780891839*7962500811836777683691060036583749 42 Pedersen 2016 2463620634918844014869963172573936468573999717396317044026333899776=2^10*2687*8623*1448663*3962626379*220136910613*82168330339750614269551429499 2463622336168549558550903744199634441604115314372674773142316340224=2^10*2687*8623*1304470230814645965874641599*79600161924185197092358895099 42 Pedersen 2016 2585419334586515807657695438571792891833460859407568597348615130304=2^6*241*283*5783*234323*160381703*297766669*9152685205188490419557415500598799 2585430392960213004382269809995314861046292393152540394517175333696=2^6*241*283*5783*11190453317015690728399*9152685205166109560787092113122239 42 Pedersen 2016 2743154072111990688934200078256840895472265354546559707525054809088=2^10*2687*8623*1448663*3962626379*220136910613*91491517312102402137839052737 2743155966393111448910998632420721840632552010756718141017604406272=2^10*2687*8623*1300132142269773179783806529*88927686985081857746737353407 42 Pedersen 2016 2993517634846687153247949474633745290912978653657253331568944331776=2^10*2687*8623*1448663*3962626379*220136910613*99841811036809368668319359999 2993519702016008046075219404191674863998483827225798043740674868224=2^10*2687*8623*1296962484710172275376763199*97281150367348425181624703999 42 Pedersen 2016 3701194529905260880246943819361987770837766774545957200696321349824=2^6*241*283*5783*234323*160381703*297766669*13102659194279675128441064203153919 3701210360680443142318186895895886623924515837696441361241437267776=2^6*241*283*5783*11190453317007441550079*13102659194257294269670749064855679 42 Pedersen 2016 4109633106169897887724539930457135693583817198449136057418657020928=2^10*2687*8623*1448663*3962626379*220136910613*137067243980957890118863275647 4109635944071161039960771565623385062546707354530572827643267269632=2^10*2687*8623*1287667667401391344868489279*134515878128805727562676893567 42 Pedersen 2016 4182898170640888929005923207770712983704089581983523209124695809024=2^10*2687*8623*1448663*3962626379*220136910613*139510829626608170835030512951 4182901059135237555223111692906688144045203863134068332553714492416=2^10*2687*8623*1287235969976621461008236471*136959895471880778162704383679 42 Pedersen 2016 4286904870198351462104478269548667684847239169779629050073805526016=2^10*2687*8623*1448663*3962626379*220136910613*142979730936190803693669735509 4286907830514377699222171419364704074813320933539119020658147421184=2^10*2687*8623*1286649179932894726397498069*140429383571507137755954344639 42 Pedersen 2016 5039867880604656170924461030472349931728924822824478711197656101824=2^6*241*283*5783*234323*160381703*297766669*17841718583067755389622255266403419 5039889437162875821752664151396556597428238486498245619884821875776=2^6*241*283*5783*11190453317002364394779*17841718583045374530851945205260479 42 Pedersen 2016 5247214631460137638129313176422277662452859217062393625924823194624=2^10*2687*8623*1448663*3962626379*220136910613*175008627176721290566220567351 5247218254916695912215472916188364479149853406202640595383853474816=2^10*2687*8623*1282354959854431107067018679*172462574032116088247835655871 42 Pedersen 2016 5282739584763204046163632952444472096235658458222403275958627040256=2^10*2687*8623*1448663*3962626379*220136910613*176193479282981852543454353519 5282743232751468009703736168989404969079894877595684484669029254144=2^10*2687*8623*1282226717695360373767096559*173647554380535720958369364159 42 Pedersen 2016 5353767354902007381753243760523338539414929953826129960990521547776=2^10*2687*8623*1448663*3962626379*220136910613*178562445185174550560133668999 5353771051938396418350294119294230176385257969061124123273742132224=2^10*2687*8623*1281975528695732497413662399*176016771471728046851402113799 42 Pedersen 2016 5369964133441531148013607174664060693567925703257590635924374208832=2^6*241*283*5783*234323*160381703*297766669*19010297718069626899279860917089417 5369987101889756834668150235496911088838815224679640169273156886208=2^6*241*283*5783*11190453317001501501769*19010297718047246040509551718839487 42 Pedersen 2016 5539762264438943927281482567499020829901164585965740860328362384384=2^10*2687*8623*1448663*3962626379*220136910613*184765872349132559570267501591 5539766089913851702280164539108697331529335334151043923883464057856=2^10*2687*8623*1281348926068902520116694679*182220825238312885838832914111 42 Pedersen 2016 6030281524515000610605534479477739673940985409048964710115086017728=2^6*241*283*5783*234323*160381703*297766669*21347898096916243409570400944808943 6030307317277399075822987924261729517462272429619718590835650550592=2^6*241*283*5783*11190453317000058886063*21347898096893862550800093189174719 42 Pedersen 2016 6373623641429524029288852644089522909259207126987977923894007739392=2^10*2687*8623*1448663*3962626379*220136910613*212577377136426394617375069533 6373628042726212951287916018075740190927041052681671516910704217088=2^10*2687*8623*1278997493394059456954086079*210034681458281563949103090653 42 Pedersen 2016 7492701219260217497856572357278590959153093939780688318019351083712=2^6*241*283*5783*234323*160381703*297766669*26525033938987092153569347890929447 7492733267094383351764469056636610359119642426975177289414469649728=2^6*241*283*5783*11190453316997769057767*26525033938964711294799042425123519 42 Pedersen 2016 8111266404482029847379096615391091222095404074341155567871635315712=2^10*2687*8623*1448663*3962626379*220136910613*270532405821952361955321967463 8111272005705443315815850362512377086841276688383471725695506490368=2^10*2687*8623*1275673254042185988414715583*267993034383159404755589359079 42 Pedersen 2016 8234450751700419575496028217699853452594694612623040764787526024192=2^10*2687*8623*1448663*3962626379*220136910613*274640932918804113421652085983 8234456437988607815873102593703223186134328754711378604347892876288=2^10*2687*8623*1275491601251496534899206079*272101743132801845675434987103 42 Pedersen 2016 8973669508579119188562195738517209448673885137037666439759629274112=2^10*2687*8623*1448663*3962626379*220136910613*299295853464454471181214606563 8973675705333762632047679940058795099636649204007996372838038483968=2^10*2687*8623*1274507635804348910202356579*296757647643899351059694357183 42 Pedersen 2016 9286636790334046320507529125832087055125831425238527904018857294784=2^6*241*283*5783*234323*160381703*297766669*32875774548364769584714057233885179 9286676511202009146886853370015274663080961840791577231744762135616=2^6*241*283*5783*11190453316995945091259*32875774548342388725943753592045759 42 Pedersen 2016 10495268234168228184169822920210183628585455979869184948761879663616=2^10*2687*8623*1448663*3962626379*220136910613*350045236286078738914851587909 10495275481660695127573150386054170547100718691325157371783958211584=2^10*2687*8623*1272923364722539862910811589*347508614736605427840622883519 42 Pedersen 2016 13734244484169223930996822550508900376311586867139160134401021176832=2^10*2687*8623*1448663*3962626379*220136910613*458073747941021769411790256843 13734253968332107364351781366706389069997254671002083499926457422848=2^10*2687*8623*1270729743977278098797381963*455539320012293720101674982079 42 Pedersen 2016 16830816762620968855572426866951527586068703435588312835262741666816=2^10*2687*8623*1448663*3962626379*220136910613*561352706677750691724897045959 16830828385117409916518374330578754897462249010412295328478901904384=2^10*2687*8623*1269427397128953718317762239*558819581095870966795261390919 42 Pedersen 2016 17918880638452244106429811634218121031446669249659515661168967498752=2^10*2687*8623*1448663*3962626379*220136910613*597642543965543484062328755423 17918893012309638284108636295575809734870606053659326152203828118528=2^10*2687*8623*1269077335837259498689030079*595109768444955453352321832543 42 Pedersen 2016 18277649943939304874511521168248989375210542885109486800959495183552=2^6*241*283*5783*234323*160381703*297766669*64705007032935341849641995945649487 18277728121231739702175992245741513027907305841095210070072066401088=2^6*241*283*5783*11190453316992197633807*64705007032912960990871696051267519 42 Pedersen 2016 19431271281962316404371412686256066573762653421976598816315664110784=2^6*241*283*5783*234323*160381703*297766669*68788960769825616347944531865493679 19431354393532023107860236950651896831951601794545041199540494199616=2^6*241*283*5783*11190453316991967834559*68788960769803235489174232200910959 42 Pedersen 2016 20118112445646573114697763706421476054240319875620078916529029893312=2^6*241*283*5783*234323*160381703*297766669*71220458389213818414002446504652047 20118198494978118693230289652006270842184909923733746599992403768128=2^6*241*283*5783*11190453316991843533519*71220458389191437555232146964370367 42 Pedersen 2016 20787874351288269508767712022225143694718762475163735217095582411776=2^10*2687*8623*1448663*3962626379*220136910613*693331149507177068596602967499 20787888706325168350623334264642976140786790034543143626765819188224=2^10*2687*8623*1268330972470648940653159499*690799120349955648444631915199 42 Pedersen 2016 21083627312422096968784037010557535045149143027132897001621950168064=2^10*2687*8623*1448663*3962626379*220136910613*703195300937376586324595024911 21083641871690780084183183784836502127803862132294540557502787224576=2^10*2687*8623*1268265644706924779026497679*700663337107918890334250634431 42 Pedersen 2016 23609040183357610162333110091810802576308606473934170783876500147392=2^6*241*283*5783*234323*160381703*297766669*83578748678877755449647043746528527 23609141164109740824447340075512917127158382457394892961352205808448=2^6*241*283*5783*11190453316991323558847*83578748678855374590876744726221519 42 Pedersen 2016 28856282497791975844069695642809346128257279314297942924620721650368=2^6*241*283*5783*234323*160381703*297766669*102154596881484026751197918383295783 28856405922085707868387736586375889945901096095864969657420641273152=2^6*241*283*5783*11190453316990778655719*102154596881461645892427619907891903 42 Pedersen 2016 30668512799585079252498028026316478695359895574558112064102256190784=2^6*241*283*5783*234323*160381703*297766669*108570102965826325885055107661379929 30668643975162958696085820760274565683681495587041923738758036519616=2^6*241*283*5783*11190453316990633782809*108570102965803945026284809330848959 42 Pedersen 2016 31137714498091583536661022869795945123763881448841451668130421308416=2^10*2687*8623*1448663*3962626379*220136910613*1038525970532924129433259869359 31137736000195791608670417154510891764328236954350829474799704310784=2^10*2687*8623*1266785721544788158822781119*1035995486626628570063119195439 42 Pedersen 2016 31694019009295552923332148308438493656739799615513089991303881800704=2^10*2687*8623*1448663*3962626379*220136910613*1057080212285168196444050278271 31694040895555045483592622027067931629437344729788128715245849691136=2^10*2687*8623*1266731348016504903606153791*1054549782752400920329126231679 42 Pedersen 2016 35202143828564177038276990408549854718410528710453648716051976928256=2^10*2687*8623*1448663*3962626379*220136910613*1174085547821431843007651915519 35202168137354245613065994852979511501292060934206819736588080006144=2^10*2687*8623*1266428179931122058433327359*1171555421456749949737900695359 42 Pedersen 2016 42474920361119421272424521698475080406767102310934636124258218044416=2^10*2687*8623*1448663*3962626379*220136910613*1416652076183811415060422970859 42474949692114921610933172318498157921710931495833660499481297654784=2^10*2687*8623*1265959629857031893439224939*1414122418369203611955665853119 42 Pedersen 2016 44185682778076474642404500512432429059262363848261688892235259546624=2^10*2687*8623*1448663*3962626379*220136910613*1473710573509633650561817452851 44185713290436514980091135909611259179122886679446281071608523682816=2^10*2687*8623*1265871879977690303610216371*1471181003444905189046889343679 42 Pedersen 2016 45808701618513470659240758815517197931311466226636607363285996256256=2^10*2687*8623*1448663*3962626379*220136910613*1527842588130082394247229787519 45808733251646849736332545718863016314680322940603596385006064518144=2^10*2687*8623*1265794704374486807244101759*1525313095240957136228667792959 42 Pedersen 2016 51417136127226625386966818218128764681345754139080148846108289440768=2^10*2687*8623*1448663*3962626379*220136910613*1714898863300459906010889146807 51417171633256432295603409462577452921934993945256096790400270164992=2^10*2687*8623*1265565610197490904975260727*1712369599505511643894595993279 42 Pedersen 2016 53953865110373957805238139523382510710482279510500450619159429469632=2^6*241*283*5783*234323*160381703*297766669*191002958921335639542308452242830467 53954095882223930869642401131033551860770022532300984800300354169408=2^6*241*283*5783*11190453316989638206787*191002958921313258683538154907875519 42 Pedersen 2016 57371667952845168180759770240900422935543812999978319328712953056256=2^10*2687*8623*1448663*3962626379*220136910613*1913498408673280776863882050019 57371707570768410061265557795527079114560903857474356750122211718144=2^10*2687*8623*1265371498135186635157084259*1910969338990394819017407072959 42 Pedersen 2016 61336127815618766069397290639907196364049420327471311620324001201152=2^10*2687*8623*1448663*3962626379*220136910613*2045723737121138276244873813023 61336170171194095526894009265699806963567412715619830014494864688128=2^10*2687*8623*1265263199079586019224390079*2043194775737307919014331530143 42 Pedersen 2016 63896759738337851136170032019587828448936891229771523878437527018816=2^6*241*283*5783*234323*160381703*297766669*226201962557110444225530477880148921 63897033038006409366029130749145976393824605050317228730323490161344=2^6*241*283*5783*11190453316989434165369*226201962557088063366760180749235391 42 Pedersen 2016 65418132740206229789426523946597786861467280193159756993089361099776=2^10*2687*8623*1448663*3962626379*220136910613*2181869507430876146053343291999 65418177914604221126049168649513245223449659009771896978507705140224=2^10*2687*8623*1265165428691878119195249599*2179340643817433496722830149599 42 Pedersen 2016 67173530957986629422363418761401042926078429672960309686511675851776=2^10*2687*8623*1448663*3962626379*220136910613*2240416727969618233959686621249 67173577344572349170825524168583092013404939927192874002044048948224=2^10*2687*8623*1265127044049607356846317249*2237887902740817855391522411199 42 Pedersen 2016 72101983374769281111863747612126810072494826046811559745661953198784=2^6*241*283*5783*234323*160381703*297766669*255249408740319062492473753399096679 72102291769877881466106121878543519414670771552167112135742656951616=2^6*241*283*5783*11190453316989308165159*255249408740296681633703456394183359 42 Pedersen 2016 81658984508083869771072928972900251988433664958005963670020088413184=2^10*2687*8623*1448663*3962626379*220136910613*2723545305298128917715279717791 81659040897578818919374765774857904632313767889020374646017029293056=2^10*2687*8623*1264873380752257734199099679*2721016733732625888769762725311 42 Pedersen 2016 86581705484681707754379970995522430739109321008125805492007164640256=2^10*2687*8623*1448663*3962626379*220136910613*2887731202121011947584344253519 86581765273554585958976308321850535397607663203322820356937419654144=2^10*2687*8623*1264806525173110875288676559*2885202697411088065497737684159 42 Pedersen 2016 93929617742744098092639606314408713318230859771400050533764350729216=2^10*2687*8623*1448663*3962626379*220136910613*3132803707672526153745680743559 93929682605707275837708041999225878304712456746958309495239503913984=2^10*2687*8623*1264719785322133772457174719*3130275289702453248761905676039 42 Pedersen 2016 100877464325048514763518177802919572449790398532423174619874740780032=2^10*2687*8623*1448663*3962626379*220136910613*3364532954064190196993612646143 100877533985837211898032343979248291187151340542986435245255071515648=2^10*2687*8623*1264649404239060444788662079*3362004606475200365337506091263 42 Pedersen 2016 114408026689480561709323040548951842680839576468586034671934865890304=2^10*2687*8623*1448663*3962626379*220136910613*3815813359125367027325393853671 114408105693779745834344586526417090260583480181362165445886865089536=2^10*2687*8623*1264536898833789576061816679*3813285124041782466538014144191 42 Pedersen 2016 127483622067700275650883365906677048681091163392896181936190427184128=2^10*2687*8623*1448663*3962626379*220136910613*4251919399640759302680796292447 127483710101333145210549045856854054390580177929882683280955827602432=2^10*2687*8623*1264450887342901245619090367*4249391250568665630223859309279 42 Pedersen 2016 133372566658996244755123523935556242940095337101296771272539490348032=2^10*2687*8623*1448663*3962626379*220136910613*4448331435516581097614765965643 133372658759231378439496477870873077401102781918776903915550152987648=2^10*2687*8623*1264417662647401211156549579*4445803319669182925192291523263 42 Pedersen 2016 175666169750671413296415221713657967134069692810979002315662385298432=2^10*2687*8623*1448663*3962626379*220136910613*5858936096330985317951687787743 175666291056693666256122046565000522602457830715839275360627949749248=2^10*2687*8623*1264244538303578740521322079*5856408153607930967999848572863 42 Pedersen 2016 176696419589538453028970285378758785708448619913028510575025434990784=2^6*241*283*5783*234323*160381703*297766669*625525880367716603895755783294023679 176697175356702656698031486984327010348336198672523690346913641719616=2^6*241*283*5783*11190453316988727346559*625525880367694223036985486869928959 42 Pedersen 2016 196434300962131729029036807796067501334313089121025467443858172896256=2^10*2687*8623*1448663*3962626379*220136910613*6551608759376272269645293053769 196434436609557283862484669647814118116819930976022914504396307078144=2^10*2687*8623*1264186833615981238602797759*6549080874357905517195372363209 42 Pedersen 2016 198660295199979698393737167670748423607374947901567837304191446383616=2^10*2687*8623*1448663*3962626379*220136910613*6625851614496658366875754274159 198660432384562390168253823271137108153809117756938823632007153091584=2^10*2687*8623*1264181364939810774921473519*6623323734946967784889514907839 42 Pedersen 2016 209343056222924947402292940423301333752761562735859018844061623204864=2^10*2687*8623*1448663*3962626379*220136910613*6982150236221302744906867558111 209343200784472983225326853868294826066213665739003927048787679691776=2^10*2687*8623*1264156739446496364941727679*6979622381297105477330607937631 42 Pedersen 2016 235729154271384703903485788630915460773828417070870604496117228526592=2^10*2687*8623*1448663*3962626379*220136910613*7862197103053261779252601468583 235729317053815005095103411479173110674645429709066258606334724645888=2^10*2687*8623*1264105484561127435414391079*7859669299383949880605869184703 42 Pedersen 2016 324686013994949947826416306362451475055161331353037228396389231328256=2^10*2687*8623*1448663*3962626379*220136910613*10829146044846628085410051265519 324686238206412489524184570379713914581558170385938706741043657606144=2^10*2687*8623*1263994093412096729380533359*10826618352568465217469352839359 42 Pedersen 2016 399230885619931771022057711601530137375590831625771256020719080160256=2^10*2687*8623*1448663*3962626379*220136910613*13315416678400395327719045483519 399231161308248786285914651443525011741888830489473750033419129734144=2^10*2687*8623*1263938988240436744603402559*13312889041227404119763124188159 42 Pedersen 2016 407745231966564498267626197885321977649341762413184280371948982330048=2^6*241*283*5783*234323*160381703*297766669*1443465553994309474979438161420865863 407746975977328252208075627688615200149549824619141224792618268695872=2^6*241*283*5783*11190453316988500467719*1443465553994287094120667865223649983 42 Pedersen 2016 518161360532670398429274246023718013184359957368603180553318642390016=2^10*2687*8623*1448663*3962626379*220136910613*17282065768598183820465536471509 518161718348256749595508270318005537080154400813984924385011728477184=2^10*2687*8623*1263883906265629969911466069*17279538186507167419284307112639 42 Pedersen 2016 521898846559084453597390943394450169814200331896020994811088151026688=2^10*2687*8623*1448663*3962626379*220136910613*17406720913187321622540618168887 521899206955586434300065439692932077340079428302164934918743695516672=2^10*2687*8623*1263882582214833188631215807*17404193332420356018140669060279 42 Pedersen 2016 542693987607569570922160699185687028580671875179028000902203340361255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*351576528848520272646111564479 542695142174665102716233434854315292402014369576622331954242488758745=3^4*5*11^3*79*601*143475831237492547410056529599*147789147021832100083475225279 42 Pedersen 2016 547992892494152134819045179420240200126500381370702713878749682767655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*355009348502439679450058097599 547994058334527570397199555788793725594826187254351989572289651632345=3^4*5*11^3*79*601*130014303772389954060518155199*164683494140854100236960132799 42 Pedersen 2016 548319947373095216841440640220335958216844540224968716408096479570455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*355221226322550944596342305839 548321113909271251437600085497662997858867286835254506355651913389545=3^4*5*11^3*79*601*129595927773731969761734423599*165313747959623349682028072639 42 Pedersen 2016 549846494703556937578006854603986197986699260919245577955479548435655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*356210178151430982900844091999 549847664487422015667853844579405785659691110877299878729527299564345=3^4*5*11^3*79*601*127815621557088329154010274399*168083006005147028594254007999 42 Pedersen 2016 550364256019755422365654489322070988150758256551854863102821173000235=3^4*5*11^3*79*601*473861*58309019*2182799234136439*356545602406126679102073553763 550365426905143997440094502434460189073607929194120443353921108215765=3^4*5*11^3*79*601*127265419776257151911864288099*168968632040673902037629456063 42 Pedersen 2016 554954627974186217252206299444007247392499532911629040782443110889255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*359519409145679852482008146879 554955808625469635204843318204920739640487337546633340473541303830745=3^4*5*11^3*79*601*123182035087531183829335327679*176025823468953043500093009599 42 Pedersen 2016 555347964191188503610052411792032608955971158479730373196955746817895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*359774226381547352449694510591 555349145679284313079700087378713501220037061750039882825283436030105=3^4*5*11^3*79*601*122882018910273962471518195391*176580656882077764825596505599 42 Pedersen 2016 560000791257918536727660585509668307593188511530099454608311274980895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*362788493771287217585553775991 560001982644780787536231852263379473327979526016092465053605245467105=3^4*5*11^3*79*601*119731454212476294738211380599*182745488969615297694762585791 42 Pedersen 2016 560459734928749182349522200594535283811866006351456097386532189642855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*363085813856661580938758741759 560460927292001946308210812111519131995592265887573105167203551797145=3^4*5*11^3*79*601*119453628761868681587316514559*183320634505597274198862417599 42 Pedersen 2016 563099164329174411425317707024123992261979646836576610057574193032115=3^4*5*11^3*79*601*473861*58309019*2182799234136439*364795730398823931922606157867 563100362307743368851405394484605735616220145212371255356354570359885=3^4*5*11^3*79*601*117946157456107252410288173099*186538022353521054359738175167 42 Pedersen 2016 567610947374880748994479141186959937955316763277885337117300618118695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*367718624439201750540783127231 567612154952148725945322364198192109613371354161654306541825952889305=3^4*5*11^3*79*601*115663430979129259306599012031*191743642870876866081604305599 42 Pedersen 2016 576476714432420058018668921658353218401865618513115541506839244207655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*373462184675441510357444049599 576477940871372805810421640008699947583073320809632602888442778192345=3^4*5*11^3*79*601*111946867108595105732251243199*201203766977650779472612996799 42 Pedersen 2016 584033134366140526578083073840727313169095675812591426670077620358695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*378357503126509886447997719231 584034376881176692863385737959719379049415598746083649428807798649305=3^4*5*11^3*79*601*109334640180497291068773604031*208711312356816970226644305599 42 Pedersen 2016 587798233890113775795178386634637795631782340230396473102323757741905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*380796668939352710654431568249 587799484415299531070144331465155102312116986025509996456713170258095=3^4*5*11^3*79*601*108173457516249046267486544249*212311660833908039234365214399 42 Pedersen 2016 587908724959359128589909914903413846067912224153188047951404498976355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*380868248996403449201418516059 587909975719611709394287638260376066903239662276218220387706781663645=3^4*5*11^3*79*601*108140592380023049262497248859*212416106027184774786341457599 42 Pedersen 2016 590513561710172944611324621296257998174279458111441250525933798032985=3^4*5*11^3*79*601*473861*58309019*2182799234136439*382555755185859169096437003713 590514818012146772374353452853472901059658007237884240534305135983015=3^4*5*11^3*79*601*107384294557825532738886225599*214859910038838011204970968513 42 Pedersen 2016 594825521673912163589624592320188434871140558115122380223346356314535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*385349196703920462606528688703 594826787149466692570523474602550166205477707121662952536313188261465=3^4*5*11^3*79*601*106204430298429337361667453503*218833215816295500092281425599 42 Pedersen 2016 600789283227065761184733924676112074132515722345567609888735713317855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*389212734228965187371358056759 600790561390365155781847208442172567285986816390740085987383388122145=3^4*5*11^3*79*601*104701753344670705285601292599*224199430295098856933176954559 42 Pedersen 2016 603310313009336266557177328153996922172981014071435710490732606910655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*390845947273911112974377246999 603311596536059800597640081665073717727417868082464370425882561089345=3^4*5*11^3*79*601*104106168458809187171385527999*226428228225906300650411909399 42 Pedersen 2016 621482964814436445998663361730250642780391797383234013160001895889255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*402618839525354219807361146879 621484287002995732487538480640332582783843610565611423935214518830745=3^4*5*11^3*79*601*100365567463604324277693009599*241941721472554270377088327679 42 Pedersen 2016 634368350407470748196190613424747362946653103279531962139588407746855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*410966452071505346547543104959 634369700009346855350965368615679740247879206482878574035312594493145=3^4*5*11^3*79*601*98167627729374565624358317759*252487273752935155770604977599 42 Pedersen 2016 636044807238813979071469820069011579767160885116179172426406157008935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*412052520623925441982759212223 636046160407307625295127860741108291709157185781793973651914630447065=3^4*5*11^3*79*601*97903516458474905491512377023*253837453576254911338667025599 42 Pedersen 2016 637020186273766135226854113839742117223561862606771351005785910219815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*412684405964929200490201614527 637021541517352863634508735628423245684299386844631059402167260212185=3^4*5*11^3*79*601*97751945974508236313830619327*254620909401225339023791185599 42 Pedersen 2016 642332228359751285205574399704210380574838950587431821383672075145255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*416125736365365467445543871679 642333594904566961433217483608657694261426999386168723561486150774745=3^4*5*11^3*79*601*96952217148451032752268492479*258861968627718809540695569599 42 Pedersen 2016 648967485555843727032404913598719466870395958267908230306189470603515=3^4*5*11^3*79*601*473861*58309019*2182799234136439*420424292727309595758160247987 648968866216993477221754381967015729039040172138963766604980606068485=3^4*5*11^3*79*601*96009944508191932801386052787*264102797629922037804194385599 42 Pedersen 2016 649488770976666352751850271393893640319118895648099927820467743407655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*420762000022723167799667409599 649490152746837039243633121535293722211803560342822254480386118992345=3^4*5*11^3*79*601*95938399024146621409322116799*264512050409380921237765483199 42 Pedersen 2016 656074592667616611450036051960068436091092476923191083336824586975655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*425028530300545041327061223999 656075988448948643088570320617164086309748620391225868731418869024345=3^4*5*11^3*79*601*95063389309098118738304798399*269653590402251297436176615999 42 Pedersen 2016 674337876974789961194598282015948837953955250106697416033878590015015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*436860137520658084987917994687 674339311610775994734986972684109869327013719203842994819097771456985=3^4*5*11^3*79*601*92883302059416562988759799487*283665284872045896846578385599 42 Pedersen 2016 678367005714886822673252396518776391954528106865874971439775973367305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*439470350880440860964053731569 678368448922737614629153004451303667739346391358317836132909768712695=3^4*5*11^3*79*601*92444677872809192164556720369*286714122418436043646917201599 42 Pedersen 2016 678680228758101656198658576962363541650430958707831839179440412896256=2^10*2687*8623*1448663*3962626379*220136910613*22635798889340867300907510085019 678680697419762858380123051525093020675350309184307344863201267078144=2^10*2687*8623*1263840179189343245104735259*22633271350976927186451087456959 42 Pedersen 2016 679177669979871063681549614223470830323525624093669015234236723282055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*439995528116328707246188377119 679179114912388624105656530704771966044489186311038293520345517997945=3^4*5*11^3*79*601*92358083998051814976849261599*287325893529081267116759305919 42 Pedersen 2016 685961542919344054404951468752093981565400547962718781702900398810805=3^4*5*11^3*79*601*473861*58309019*2182799234136439*444390363059541656395349343869 685963002284371749523643014964175654565812049465231056019067954469195=3^4*5*11^3*79*601*91654125123507003451120172669*292424687346839027791649361599 42 Pedersen 2016 688331388910417628308344222582547766929399626483337693913669701462455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*445925633850213683237694559439 688332853317229948374883740796900925097540328335516855271113289897545=3^4*5*11^3*79*601*91416550655925854871914796239*294197532605092203213199953599 42 Pedersen 2016 693787654686352827497637283585062819925477362764199129754989480015255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*449460397502995155039692917679 693789130701226178685070675320212255401308720591355940664960169904745=3^4*5*11^3*79*601*90885006972247425398998338479*298263839941552104488114769599 42 Pedersen 2016 697972778879453942892682438213038811129440083850313626258052351895655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*452171670283253852811390559999 697974263798068250139310217513636021183325397327929138475756288104345=3^4*5*11^3*79*601*90491187671399614604127839999*301368932022658613054682910399 42 Pedersen 2016 698831365026694323121851828124206534986769856775485835689893784100295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*452727893024351320327595164511 698832851771927935021583834202795134059462186154705119487870539227705=3^4*5*11^3*79*601*90411823741889979392653905599*302004518693265715782361449311 42 Pedersen 2016 714285409409050749777989687345090611798018172136088216433907401807655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*462739574385650526957942129599 714286929032354773725575926037844944218302815076947783827722140592345=3^4*5*11^3*79*601*89060198056191162966697963199*313367825740263738838664356799 42 Pedersen 2016 719072913029842212340111514681358095614574816130415800535930177884255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*465841090052458897831507517879 719074442838433482001875858483969231808083193120881304196202460835745=3^4*5*11^3*79*601*88668785567181156644954623679*316860753896082116033973084599 42 Pedersen 2016 720827837137528062664115711958597362206142219227089282711778565608455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*466977992506257470539727246239 720829370679673925075004172788783157364031800104553854797234364951545=3^4*5*11^3*79*601*88528290716972526148337243039*318138151200089319238810193599 42 Pedersen 2016 721432563959523892966909813033104653599733448978286499576196497001255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*467369756118594799359917676479 721434098788210064290849287474848349884819434388654896325443060118745=3^4*5*11^3*79*601*88480239174441482280850929599*318577966354957691926486937279 42 Pedersen 2016 726846337321203902483026268972053121203943434896195013936259621173815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*470876991669264633560488507727 726847883667549618217038641542006358802038754008636643256307130058185=3^4*5*11^3*79*601*88058092457178435058071435599*322507348622890573349837262527 42 Pedersen 2016 734343140351841101457542563136771679747502077721277107837339413136905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*475733688163345583069199659249 734344702647436852214447560449917185366485044558733121348957418863095=3^4*5*11^3*79*601*87496299918823206659145911999*327925837655326751257473937649 42 Pedersen 2016 739169778590146290910336476042118821498013962205276638591381354898515=3^4*5*11^3*79*601*473861*58309019*2182799234136439*478860556631728088609031958987 739171351154287150393243205531105273731757430227076982836105905773485=3^4*5*11^3*79*601*87147792244519169354914385599*331401213798013294101537763787 42 Pedersen 2016 762650683771758569919774804554369073541619051597490047449981964145255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*494072324822427188966660071679 762652306290903750540299094375765846132800663437415665661269061774745=3^4*5*11^3*79*601*85583887134410384954560569599*348176887098821178859519692479 42 Pedersen 2016 788123919336861303658693254524005443775005746675965066120140004175655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*510574795723202241618528983999 788125596049640966673913963271434249163620489503280692029188891824345=3^4*5*11^3*79*601*84097497812231102385843518399*366165747321775514080105655999 42 Pedersen 2016 799143963847067688680086845711634371203559392492270089864117946610855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*517713973759307891791306276159 799145664004700387326415177586954369309101863247963773709559068429145=3^4*5*11^3*79*601*83511524510391383406920928959*373890898659720883231805537599 42 Pedersen 2016 811572098788863013362303792323552736375274739023009670899905759780855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*525765363018584183846695462159 811573825387023873897719444896473206277869163733131899039534839259145=3^4*5*11^3*79*601*82886921147550813500607587599*382566891281837745193508064959 42 Pedersen 2016 841498439992059203797962932433321601965246244781192480132967823023705=3^4*5*11^3*79*601*473861*58309019*2182799234136439*545152714641437159047282314689 841500230257718934530453767705528675496564265527500026740666624336295=3^4*5*11^3*79*601*81521038481912077089987153599*403320125570329456804715351489 42 Pedersen 2016 844473144339423735762997838514023988551816528423835125930257332695955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*547079834257056128130317353739 844474940933688236088045505592768221572934754305122758651032077864045=3^4*5*11^3*79*601*81394829841964805167211663039*405373453825895697810525881099 42 Pedersen 2016 850793448870149850080257279128778994732639623809310306355208636619815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*551174353044658906731390734527 850795258910694964432704501819451842992589089790475854113513813812185=3^4*5*11^3*79*601*81131912154789645907191185599*409730890300673635671619739327 42 Pedersen 2016 853132755430344749485657837435140483140608693021401900081681813696195=3^4*5*11^3*79*601*473861*58309019*2182799234136439*552689839302340865240360076731 853134570447702657857392746671780999581618639098258653606984085311805=3^4*5*11^3*79*601*81036358489993828201692743099*411341930223151411886087524031 42 Pedersen 2016 921576270517428305893317836734807790337528034714405291281726569135655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*597029990485126013478052151999 921578231146553115252128998790472989055534674619256147703808918864345=3^4*5*11^3*79*601*78599398460331321461013047999*458119041435599066864459294399 42 Pedersen 2016 923754820892311582589125288894710770116018610213395382706275509071495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*598441333150077294994049405471 923756786156244656338596535371542974407012373048955983520774200496505=3^4*5*11^3*79*601*78531654825310122954177105599*459598127735571546887292490271 42 Pedersen 2016 934474534015418683541263673648205264681436311518528586564971873274135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*605385945797599755382631918383 934476522085257715529495216061324027894694118269957140206595849221865=3^4*5*11^3*79*601*78205827763463291735539575599*466868567444940838494512533183 42 Pedersen 2016 942543768363434855121946476515402664488396423596730578384627394089335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*610613483723802511055343014543 942545773600356399716355607830166605318915391546435839816407423446665=3^4*5*11^3*79*601*77968487527449287733841875599*472333445607157598168921329343 42 Pedersen 2016 945722845377884597371987360049159815814142953252767050891479473738155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*612673003245309676959947446499 945724857378208351793882321945194162810286817136146800518803022261845=3^4*5*11^3*79*601*77876777420315846930540318399*474484675235798204876827318499 42 Pedersen 2016 945832346662139073603727855836089674325498197716804171116349309661305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*612743942084327149990473196769 945834358895423912182893813269522942651119397844342518695241981218695=3^4*5*11^3*79*601*77873636244850691761769145569*474558755250280833076124241599 42 Pedersen 2016 949735335710070220933628663025499807116067074994878906263397592413255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*615272437650778279153253146079 949737356246860961297015893664076951291908181567872144297864467106745=3^4*5*11^3*79*601*77762435213638734728852786879*477198451847943919271820549599 42 Pedersen 2016 958881035546350404923363458896612181044695920548266664231524701187655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*621197348329270966786897733599 958883075540375494113234139034931615880426814970456076675403017212345=3^4*5*11^3*79*601*77507528566088946084720004799*483378269173986395549597919199 42 Pedersen 2016 1014565284753518339022131224078135507791561448026729062424203794385295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*657271591816097100841899217511 1014567443214309860270675281431547887928690589745584107514692560942705=3^4*5*11^3*79*601*76108328374030453946479530599*520851712852871021742839877311 42 Pedersen 2016 1050823393661341794382296662468949783517191088709131466691454772949255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*680760888479619560384958494879 1050825629260300398942183834636945891387525981231568346250354153770745=3^4*5*11^3*79*601*75317212468801483180376575679*545132125421622452052002109599 42 Pedersen 2016 1074873616597503249622131709446830417291841477640889515117016489250855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*696341481025345367138591188159 1074875903362674630387025720026769872754655828218158928463441453789145=3^4*5*11^3*79*601*74836030493030172947862240959*561193899943119569038149137599 42 Pedersen 2016 1105492929584999185050150868545984246780644894542080981353097437151405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*716177764495754104059929623349 1105495281491948566708871882804286790785166930447881469347213705248595=3^4*5*11^3*79*601*74267501740156198944673156799*581598712166402279962676656949 42 Pedersen 2016 1120096435625627087182116038672773824750011121356380757399994391607655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*725638436771517386293314969599 1120098818601149069466403906478441695384947624088615608199276110792345=3^4*5*11^3*79*601*74012145060593911682578636799*591314741121727849458156523199 42 Pedersen 2016 1143205715144843185734599347295191819005625513238447654782441022927655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*740609452598269606614045425599 1143208147284745727965876004981039136443432278058771313847291943472345=3^4*5*11^3*79*601*73627076904564074532884868799*606670825104509906928580747199 42 Pedersen 2016 1171561787325942929785223733639770037159879046032606583503971346765735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*758979527920383021797365913663 1171564279792638556918531406536721990259010394402587133288478480050265=3^4*5*11^3*79*601*73183837376328314147772225599*625484139954859082497013878463 42 Pedersen 2016 1223053748940464477082800031251882055190477572857978489784400247792655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*792337857921130251456781242599 1223056350954945637271721984635146802804638352373925128709577966607345=3^4*5*11^3*79*601*72451572070352878341227860199*659574735261581747962973572799 42 Pedersen 2016 1229834698954631608489281408250448944495664064709425499941432326975655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*796730799289038178773553223999 1229837315395404457143597997297002079242651576993104694599259129024345=3^4*5*11^3*79*601*72361427926295803027328798399*664057820773546750593644615999 42 Pedersen 2016 1234274126659720916144863055139866464384594113059371098634035118307655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*799606818958078420205057829599 1234276752545258712139545530449509553474159954532966606136215224092345=3^4*5*11^3*79*601*72303147525337370512071256799*666992120843545424540406763199 42 Pedersen 2016 1252594427464103536486763863419464730738257698989448213209828317372655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*811475363499469531955772006599 1252597092325596423180154051523845809601019609018160996512959113027345=3^4*5*11^3*79*601*72068600490652132513063936199*679095212419621774290128260799 42 Pedersen 2016 1261461079571498714141664690110348439633468737480147527425422293256355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*817219497102585081048660540059 1261463763296559291820327559477471192233375956948188024394207643383645=3^4*5*11^3*79*601*71958410526395965181368072859*684949535986993490714712657599 42 Pedersen 2016 1267879690946381257521355638664610689996300416278577777411415035308415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*821377702571484875161397352407 1267882388326867658351533087694763987404506430811922884770790453843585=3^4*5*11^3*79*601*71879947593223673273320757207*689186204389065576735496785599 42 Pedersen 2016 1294980256941984520805823015713157381764604992795326448678696919922215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*838934416189352016296435104447 1294983011978207825500924796821834512198738719853860939696650574989785=3^4*5*11^3*79*601*71560195853432248758629585599*707062669746724142385225709247 42 Pedersen 2016 1296759283014117722959043172608667105517842760620017512415923380648015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*840086932755693434887884386087 1296762041835171911875125104644846459953363150742381939908109262423985=3^4*5*11^3*79*601*71539833667144938586598190887*708235548499352871148706385599 42 Pedersen 2016 1306032076190059868282267808281959530542170221998600270234650541626695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*846094179034392604502010193631 1306034854738736122464866483693327006143224161848547954996959510981305=3^4*5*11^3*79*601*71434902953323773467845578431*714347725491873205881584805599 42 Pedersen 2016 1313028417776057417124105928970300751166025039232981796150075173405735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*850626658747844400225858025663 1313031211209265228222788840075124895866491740843564731723152381410265=3^4*5*11^3*79*601*71357043518556035318382225599*718958064640092739754895990463 42 Pedersen 2016 1392561141929839581262862942217925544379436917423876329814851640998912=2^10*2687*8623*1448663*3962626379*220136910613*46445634651116136707444339339263 1392562103560944257309623445288732734873011282309631212663443056903168=2^10*2687*8623*1263767828772435308765614079*46443107185102613500924255832383 42 Pedersen 2016 1394276177434169114290440019820228360970842472292382317004926616772135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*903261856427560361835076526783 1394279143719835270226834284959464457276709022518693494583568235323865=3^4*5*11^3*79*601*70527770138816121294927825599*772422535699548615387568891583 42 Pedersen 2016 1407141008650660274552880411632147114511369289960006931904482412604455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*911596153115193245994304463039 1407144002305914359057989758155098988625673884779860921519856777155545=3^4*5*11^3*79*601*70407908008464954583593819839*780876694517532666258130833599 42 Pedersen 2016 1411693552036961101532567444753709283539497330864663080710808297166505=3^4*5*11^3*79*601*473861*58309019*2182799234136439*914545453158563779794880694929 1411696555377630751401699170781266522026020413906550216344457576753495=3^4*5*11^3*79*601*70366172218987020933093969599*783867730350381133709206915729 42 Pedersen 2016 1429694174992338672664506654723704999528570811297190720634438671200135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*926206898983054735965395729183 1429697216628857250164799000405435867040917692299092793133788046495865=3^4*5*11^3*79*601*70204520566557251733936093983*795690827827301859078879825599 42 Pedersen 2016 1442467550751948256348017089806198544374802505008181656310918256367655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*934481947562529232030408977599 1442470619563485698389269116482284974390382956881504267693111798032345=3^4*5*11^3*79*601*70092970263104188491175492799*804077426710229418386653675199 42 Pedersen 2016 1455591039511679320896851408233479599473399631751894046844131551767655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*942983811835743200991858297599 1455594136243091769040898592256687100232212091115543285666696582632345=3^4*5*11^3*79*601*69980986151315686327599532799*812691275095231889511678955199 42 Pedersen 2016 1468905689547604413068468964953157499229945745994792316809829273058855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*951609517204434992932959994559 1468908814605582423085918648496830726643255083977595312112394711581145=3^4*5*11^3*79*601*69869994162544701425097927359*821427972452694666355282257599 42 Pedersen 2016 1482214217305149276051072541710835651868555770352474235848983893225255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*960231256342745176539515935679 1482217370676667862722059506576013139436778779373096548949930748694745=3^4*5*11^3*79*601*69761601962603526204768369599*830158103790946025182167756479 42 Pedersen 2016 1513515948510153010669441865277201828501134359025985086295260220950055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*980509634683583688746919971519 1513519168475276294895035477026738285140867306725324034733135933929945=3^4*5*11^3*79*601*69516213127465420201503441599*850681870966922643392836720319 42 Pedersen 2016 1524493157556853606437326809907679617511899819341192899367079571246315=3^4*5*11^3*79*601*473861*58309019*2182799234136439*987621062378032941334352328227 1524496400875698611381801744768691916232725038764843668105574731985685=3^4*5*11^3*79*601*69433183331381311519764248099*857876328457456004662008270527 42 Pedersen 2016 1570145665374646492282595917688574281378306336396412774696109092335655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1017196385853729551945774711999 1570149005817993626493821877658659360991157952179614601264643035664345=3^4*5*11^3*79*601*69103529683018535520596087999*887781305581515391272598814399 42 Pedersen 2016 1584187706544511359818420477111842573913519149634163428670077958095655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1026293321152778818697714519999 1584191076861929442006041556198831576031462083184134063401468921904345=3^4*5*11^3*79*601*69006921797367012964484279999*896974848766216180580650430399 42 Pedersen 2016 1629700861587536706934474705667045338406645901182557078744738983205888=2^10*2687*8623*1448663*3962626379*220136910613*54354877878473417025644603819687 1629701986975135594054484101091139296053214748838358742848614782313472=2^10*2687*8623*1263757821069207972982396607*54352350422467597046460303530279 42 Pedersen 2016 1641855383349747179553344977029712521842109813894252732980679491087655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1063652499807626959522895153599 1641858876353621414694015767989984615672989461544577413702652707312345=3^4*5*11^3*79*601*68631680660445334008541899199*934709268557986000361773444799 42 Pedersen 2016 1661188134324516671394098141978619631081918838407005718975361399709735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1076176945694278790910177948863 1661191668458306938918940956944587412065020785022599702895720055906265=3^4*5*11^3*79*601*68513095288088571590719913663*947352299816994594166878225599 42 Pedersen 2016 1689195663471079928499586144418780810551222312406894162453651253640192=2^10*2687*8623*1448663*3962626379*220136910613*56339188476207160705692697869983 1689196829942729156467530704220466616930703127489971426119146521740288=2^10*2687*8623*1263755751227054083212871103*56336661022271182880398167106079 42 Pedersen 2016 1706584183494266374993281964614171657971401355940089754330184581956895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1105586126107160771698322076791 1706587814206949785585196146707641782938640009915851389161609493691105=3^4*5*11^3*79*601*68247610145672792585766761591*977026965372292353959975505599 42 Pedersen 2016 1711600873428457823558595284303205084472585566142318089243482111386215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1108836116845307176858967355647 1711604514814016295908829250162906488577103914378494658986812916325785=3^4*5*11^3*79*601*68219331556303797377493585599*980305234699807754328893960447 42 Pedersen 2016 1715840569426401032097784954873983087355168683610931604737678267548455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1111582743187900262960448098239 1715844219831800530994864588462750069214741080944309813973522951011545=3^4*5*11^3*79*601*68195590813851114980531793599*983075601784853522827336495039 42 Pedersen 2016 1751736270669577542603724929646472505399359231383240710880789115056455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1134837259235321984483194364639 1751739997442131409866699600795604446815992774905178550515420385103545=3^4*5*11^3*79*601*68000204784313020384901713599*1006525503861813338945712841439 42 Pedersen 2016 1771784341625940368460694769850249334427070588184860954631440412584705=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1147825114929134657122766008489 1771788111050234597072551181275982007455699645167495589956188581975295=3^4*5*11^3*79*601*67895270393284364502051205289*1019618293946654667468134993599 42 Pedersen 2016 1774563184699200489950722001017149377854661916051783494000710138085415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1149625348622930458519007139007 1774566960035409811221755429148842131284191797408283873914707101466585=3^4*5*11^3*79*601*67880952932402330843858543807*1021432845101332502522568785599 42 Pedersen 2016 1780020822851679874348307847954423332804033087761679813250230152969216=2^10*2687*8623*1448663*3962626379*220136910613*59368450203182214378612601378559 1780022052042512998619989055674382953397381586054218650330909688873984=2^10*2687*8623*1263752858252408170690854719*59365922752139211199230592631039 42 Pedersen 2016 1780077244936336792573805591568287118779502768337397025152853933226665=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1153197553589822171649048858257 1780081032003563331565380102348932491108245640286499134067884778325335=3^4*5*11^3*79*601*67852703512766986100940263057*1025033299487859560395528785599 42 Pedersen 2016 1800177808600097860857143320464578104278832372260877838710406676945088=2^6*241*283*5783*234323*160381703*297766669*6372838856377556196506604694357807103 1800185508333236927939941158659703302215401860341922904270776134068032=2^6*241*283*5783*11190453316988366260223*6372838856377533815647834398294798719 42 Pedersen 2016 1854908968839675814606480444867881564468056146356390277144597081857255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1201676214379245321471956881279 1854912915109414438900855142001777511593451714665899581640461406462745=3^4*5*11^3*79*601*67489313309486399075877982079*1073875350480563297243499089599 42 Pedersen 2016 1869094730949496858691869766776029177586022923680384231479286861309165=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1210866257231255313839243536757 1869098707399068926957514391984514331937789240905435010599585354242835=3^4*5*11^3*79*601*67424366378390903661994879349*1083130340263668785024668847807 42 Pedersen 2016 1904909790308137372450864954645194995970095369656148504801841110200365=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1234068530588519445994189313717 1904913842953300334024592126240856964525028757905796907245398475591635=3^4*5*11^3*79*601*67265540713069077034061518517*1106491439286254743807547985599 42 Pedersen 2016 1944786998415576357988410836070610442323245319084324401772751885601255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1259902408845378759003395556479 1944791135898444165880865322246337547105749517194240958527766391518745=3^4*5*11^3*79*601*67096895926807804615633817279*1132493962329375329235181929599 42 Pedersen 2016 1955404514699351010487251784720585475451182913813201026317936780444672=2^10*2687*8623*1448663*3962626379*220136910613*65217964906739319392123527448753 1955405865001141675850918085079648841261088531977558391147424722910208=2^10*2687*8623*1263748032477822339465958079*65215437460522090798572743597873 42 Pedersen 2016 1971880106932194290029407031090014370298119215232784351228951887062016=2^10*2687*8623*1448663*3962626379*220136910613*65767469926279753479476396162009 1971881468611181605520057560134585287399505448515734576086256399965184=2^10*2687*8623*1263747623254160394948776639*65764942480471748547870129492569 42 Pedersen 2016 2194775443313922270461618873364719982252591861573918646454811399175168=2^10*2687*8623*1448663*3962626379*220136910613*73201624914028905974920590597407 2194776958912965300604121223082281140657973350552584604970532967662592=2^10*2687*8623*1263742690784165094563333279*73199097473153371038614709371327 42 Pedersen 2016 2295766583910951562542317371476655740941231240915866895153375264525655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1487279507510393195175283013999 2295771468093598379919696801239368422421809604698326615579817951474345=3^4*5*11^3*79*601*65904590718973949213376428399*1361063366202223620809326775999 42 Pedersen 2016 2310648095955257287793975330488646561607883987621649577535105017686055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1496920281994774966103007280319 2310653011797927120830464679910995500684521860152762954054328244393945=3^4*5*11^3*79*601*65863267671337435130134269119*1370745463734241905820293201599 42 Pedersen 2016 2362307182313883176648566228848947747633443255651874610681886159731712=2^10*2687*8623*1448663*3962626379*220136910613*78789256011702001519448656576463 2362308813601728940127948122727382375250364203623711681682321642554368=2^10*2687*8623*1263739596212361088388134079*78786728573921038387148950549583 42 Pedersen 2016 2386956372351186397504459627128148364810935854280517299886855194227495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1546355506173256404255022350271 2386961450537694664944046302471799108057122409768671022684544006540505=3^4*5*11^3*79*601*65660654178290577027813105599*1420383301405770202074629435071 42 Pedersen 2016 2396423661480508677162146481115014306719459963567610884498931837264615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1552488753870298019268670506367 2396428759808424003095723698321294550070853561083889506153438910127385=3^4*5*11^3*79*601*65636547284030490198974711167*1426540655997071903917115985599 42 Pedersen 2016 2488928762286101243552917928667766930014372984589659147796359034103955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1612416858814645224323992240139 2488934057416170265392164651732163974037761015645770161683795938056045=3^4*5*11^3*79*601*65411989562105057376848629439*1486693318663344541794563801099 42 Pedersen 2016 2509936414744257221584256626598373597183279664751237145048330732098055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1626026365643814939826092949919 2509941754567550853262894056854908694386132146517415880385313832381945=3^4*5*11^3*79*601*65363616284452860579816918719*1500351198770166454093696221599 42 Pedersen 2016 2554454476051598414753894238527019901697457224792125081647974698720256=2^10*2687*8623*1448663*3962626379*220136910613*85197881626355443701456780298519 2554456240026483026270674934269248882091595222219708886757516547974144=2^10*2687*8623*1263736546727388899353355159*85195354191623965541346109050559 42 Pedersen 2016 2587593532507490119392748633745750383416407252435375838078778028975655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1676335417387577742974304823999 2587599037544246495569468909291339345888732348670570543474623827024345=3^4*5*11^3*79*601*65192519885642570517401015999*1550831346912739547304323998399 42 Pedersen 2016 2599406559379331464004606232596878120853751994377722247136676944433895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1683988317691679701512286123391 2599412089547989862879649297059042080905815554590942042595270321614105=3^4*5*11^3*79*601*65167506712986744663722505599*1558509260389497331695983808191 42 Pedersen 2016 2629053110518278660060407863848769174994127819951830509468234562150055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1703194411327819735528306931519 2629058703759189972451303171447052822510937786675146643963371832729945=3^4*5*11^3*79*601*65105850691757529075551680319*1577777010046866581300175441599 42 Pedersen 2016 2641763125488632039994200690112735758668830368886913929758671574210055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1711428412527259671542287279519 2641768745769763814709305378109091301335272105085503714231079332669945=3^4*5*11^3*79*601*65079896053913740976456541599*1586036965884150305413250928319 42 Pedersen 2016 2689750746666432110537867444939301546323068985365817997783648722165895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1742516505755940514511687848991 2689756469039957886118152951519408250103603425143688474066978710282105=3^4*5*11^3*79*601*64984392609798537761137005599*1617220562556946351597971033791 42 Pedersen 2016 2886311636720101775974907595778327668249748442060913334022894506785165=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1869855663753792842046015137557 2886317777271718900736499666905847399147522479045360829631570463966835=3^4*5*11^3*79*601*64630199519037202117384785599*1744913913645560014776050542357 42 Pedersen 2016 2939914849982232989816885590242313260333495307340689191392654523590055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1904581737902700913888012883519 2939921104573267650898628903414749796218932498121716302613274559289945=3^4*5*11^3*79*601*64542761171585107550261841599*1779727426141920181185171232319 42 Pedersen 2016 3049579244233717987019399393634305547529906739799381391436393179783155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1975626245396107570955405307499 3049585732132849007089744347199665255963757120642730261651832100216845=3^4*5*11^3*79*601*64374492258320728264670817899*1850940202548591217538154679999 42 Pedersen 2016 3066542166279988216980318799549149685677007975866405229731810002886255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1986615431545831818637600209479 3066548690267286944662253379892128440173577652760682704317206706233745=3^4*5*11^3*79*601*64349654966575769060686745279*1861954225990060424424333654599 42 Pedersen 2016 3130560586273144541915421867343570020049929735942491248526532237429255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2028088848236484456521855678879 3130567246457937474160159434706343281479943380209520834640586385290745=3^4*5*11^3*79*601*64258598266547540454947409599*1903518699380741290914328459679 42 Pedersen 2016 3149949362252604982301426825583222953541326772677131249592149323824128=2^10*2687*8623*1448663*3962626379*220136910613*105059227091424733646256760652447 3149951537445631479369928022598306173280266277410420504287320950162432=2^10*2687*8623*1263729459149669006794450367*105056699663780833206038648309279 42 Pedersen 2016 3176630403746173150738113028183980687896802221272346095493325683971335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2057934519796724139357671210143 3176637161943283459119977375929241235591992296469299300141916979964665=3^4*5*11^3*79*601*64195576425276851310508625599*1933427392782251662894582774943 42 Pedersen 2016 3181701881196963696357913037368398619735961189935013288241422139538432=2^10*2687*8623*1448663*3962626379*220136910613*106118258432841145756604534547743 3181704078316646732467739677736812423504494812380719656408638742709248=2^10*2687*8623*1263729155737598382522322079*106115731005500657387010694332863 42 Pedersen 2016 3213382757494820086519982470367820756732541673645595216329496076035495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2081744005903111148848679556671 3213389593881590296231615176388281750940626233401544856688718766332505=3^4*5*11^3*79*601*64146728458826000288961105599*1957285726855089523407138641471 42 Pedersen 2016 3219332609331956690073845480068486433867749909246159671598951345273155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2085598532217812302047746749499 3219339458376879212714291334264536668311451374240728081442479182726845=3^4*5*11^3*79*601*64138936002749521633628451899*1961148045625867155261538487999 42 Pedersen 2016 3222195758641617367833471184009596703449952844231901837602439004891455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2087453382499650025058771807639 3222202613777814269800911549165772154319998947990979068443762687268545=3^4*5*11^3*79*601*64135197464819398019308113599*1963006634445635001886883884439 42 Pedersen 2016 3295821608552324534423133257852139944259011286041495151654465123380224=2^10*2687*8623*1448663*3962626379*220136910613*109924456238911421593950965634251 3295823884477222061857551132929542194232183766509276967761741403657216=2^10*2687*8623*1263728113529177961991150271*109921928812613141644777656591179 42 Pedersen 2016 3344685366362809988873776340539936995127375613209666424850717844085655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2166806520890736080745754861999 3344692482092405470651835479891065335190064752675754645751595883914345=3^4*5*11^3*79*601*63981835363456239239987437999*2042513134938084216353187614399 42 Pedersen 2016 3353456163269404727993725966089491827453701907917807598319306372885715=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2172488556074596863022567132747 3353463297658638497986877615328561537146854072129386069003732437226285=3^4*5*11^3*79*601*63971325481615258031877050047*2048205680003785979838110273099 42 Pedersen 2016 3410378838490088151232326274759110830029769198652257502536045084732416=2^10*2687*8623*1448663*3962626379*220136910613*113745245925000006218626329982859 3410381193522316952477144499378709208123930111356506518716726735606784=2^10*2687*8623*1263727137478931719366460939*113742718499677776515695645629119 42 Pedersen 2016 3418885747557427892813157284644350641653654869506527441411789771193895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2214876175346729018259439731391 3418893021146370556397028595271113249411162486215353640340379446854105=3^4*5*11^3*79*601*63894785382093454013207505599*2090669839375439939093652416191 42 Pedersen 2016 3444325435857150364032988235327372163266165014288581736753313862268455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2231356913132002372066622274239 3444332763568356590787125337244628627032532172566075775334661500291545=3^4*5*11^3*79*601*63865884740591962390432593599*2107179477802214784523609871039 42 Pedersen 2016 3488865473522662400557490234250987995994220097914053439883723280047655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2260211538749388988774477521599 3488872895991619950572585844905681830310145192050484309858100310352345=3^4*5*11^3*79*601*63816394149701621298049771199*2136083594010491742323847940799 42 Pedersen 2016 3556894202673952771353935940725671259341894222956823465975023747654195=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2304282976803133900422875753131 3556901769872231121806207782234743791430266012169041475259793472953805=3^4*5*11^3*79*601*63743413147507140933141450431*2180228013066431134337154493099 42 Pedersen 2016 3721377422889845078794162054187270222029336942541536371725132233931776=2^10*2687*8623*1448663*3962626379*220136910613*124117879623530397256961913509999 3721379992681701492923099149749949057270107542317712278953152873268224=2^10*2687*8623*1263724790731510042575403199*124115352200554914975708020213999 42 Pedersen 2016 3747906896496589409674065304247969717722597246392245699223939102605655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2428027815319253633487771077999 3747914870069318468025366230929352043735502400329126670674114529394345=3^4*5*11^3*79*601*63553868511684798485931461999*2304162396218373209849259806399 42 Pedersen 2016 3777894121450983206662308938814246068180923643924497479649950393221415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2447454609608504471849009167807 3777902158820739704515808690754030589002402400096838462031439633530585=3^4*5*11^3*79*601*63525999666742773092964785599*2323617059352566073603464572607 42 Pedersen 2016 3811246235996704243476246291820213517983575205206620821194228389768955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2469061299436477961887758697139 3811254344322201730194415141710864766530207318627526280864375990391045=3^4*5*11^3*79*601*63495561846764472601135861439*2345254187000517864134043026099 42 Pedersen 2016 3831255868922962318778780239265679296898472440886109317975645788335655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2482024253602894728971251511999 3831264019818424275110511185180775116302275131907149860988805539664345=3^4*5*11^3*79*601*63477576133120297611344414399*2358235126880578806207327287999 42 Pedersen 2016 3839738907859868890274960590472680799102137409020469758008000364448768=2^10*2687*8623*1448663*3962626379*220136910613*128065551378942821404121416776307 3839741559386079449233123241789333953105753106082538825064555309396992=2^10*2687*8623*1263723997467677125723777727*128063023956760602955784375105779 42 Pedersen 2016 3896611676781935131215552797708312723875180016899868076874203716102055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2524364077871896836198175533119 3896619966720148580922676739622140854144579901908153880330565789177945=3^4*5*11^3*79*601*63420222834743359843946761919*2400632304447957851201648961599 42 Pedersen 2016 3974007065852261293108520790178854126500248663810632506544459446725155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2574503572429743752726910851099 3974015520447116620145439707397578146833111686101954252636086191674845=3^4*5*11^3*79*601*63354938541807865545487339199*2450837083298740262028843702299 42 Pedersen 2016 4048793150727318757629908147198438475793091544021001301424062137056256=2^10*2687*8623*1448663*3962626379*220136910613*135038068918123498025982196487519 4048795946615637702898975948928217051034339246581864865209120547718144=2^10*2687*8623*1263722709682887649532621759*135035541497229064367121345972959 42 Pedersen 2016 4072790801600618486214858287178262783870640429977286715092283433698855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2638499201115814139175949306559 4072799466355257177636706748506974730268811173217134230790475078941145=3^4*5*11^3*79*601*63275497069742487387307857599*2514912153456876026636061639359 42 Pedersen 2016 4136620095274747705306637195229868499408693006841431729037941891421735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2679850095028850288350803958463 4136628895824519363035515173292145099902880899953109868116111826594265=3^4*5*11^3*79*601*63226337532615155651257923263*2556312206907039507546966225599 42 Pedersen 2016 4401599147196972811440005459603042167743900343179970600800126500039104=2^6*241*283*5783*234323*160381703*297766669*15582173017269166422094737143824334099 4401617973747692774636712145351232759833110355405447741823972215608896=2^6*241*283*5783*11190453316988343033299*15582173017269144041235966847784552639 42 Pedersen 2016 4429321545852570841481202050947184702744985521797853758139240986147095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2869472538492313501644566747951 4429330969116931878358278292013044065550950211308486966814864984540905=3^4*5*11^3*79*601*63020335913882864468826705599*2746140651989235012023160232751 42 Pedersen 2016 4658560021807223353995386106752620922999954510028993707669831925206055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3017981402594454812219947696319 4658569932770374889517181956764341910403115308343257228992186040873945=3^4*5*11^3*79*601*62878283628126267143599485119*2894791568377132919923768401599 42 Pedersen 2016 4992148531125638215387332369136310862339314140918206043330706916714855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3234091941587064599257732239359 4992159151789514471396041793176053443046477336120033662761005759125145=3^4*5*11^3*79*601*62696317458742057714295132159*3111084073539126916390857297599 42 Pedersen 2016 5106600678775489365897390052911939262462758675086547698423654761931776=2^10*2687*8623*1448663*3962626379*220136910613*170318776170114970496687776916249 5106604205131283744177300642883511868894213041382444574912330185268224=2^10*2687*8623*1263717810117424508460759449*170316248754120102300967998263999 42 Pedersen 2016 5677154813971823004659514968365136926386837922095891647484557596955655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3677863453086909644185842307999 5677166891968436432342763644763709310909725788611989759035197155044345=3^4*5*11^3*79*601*62393312136217446634555166399*3555158590361496572398707331999 42 Pedersen 2016 5684058910968341949466801777231339874462750322981610043539469570421255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3682336173463949930366676312479 5684071003653239011323625503315357321629664767481985104059594370698745=3^4*5*11^3*79*601*62390649876369145099074129599*3559633972998385160115022373279 42 Pedersen 2016 5837503543022628095379172816622593643333836962885621509739604645829895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3781743081113523168586114860191 5837515962156918740661245765314267382279130442525205718984143759418105=3^4*5*11^3*79*601*62333190640416734290844044991*3659098339883910809142691005599 42 Pedersen 2016 6268618718593644165063179199478593459204520556731750626337501677866535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4061034874319791029019753370303 6268632054914060812977936149632401069603698762479236542635620497109465=3^4*5*11^3*79*601*62187534776325447693004135103*3938535788954269956174169425599 42 Pedersen 2016 6376629488370239365938764967656465438418194606223585077078029504617255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4131008104875961533521407289279 6376643054480710067839866676990022652326780635777372983689030135702745=3^4*5*11^3*79*601*62154273778733526379396689599*4008542280508032381989430790079 42 Pedersen 2016 6464728317955357330799163219211880651161619961179403110801199430521255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4188081670105046955317648892479 6464742071493756324753799950050745270410529561041337201461140030598745=3^4*5*11^3*79*601*62128005818599005548298953279*4065642113697252324616770129599 42 Pedersen 2016 6516177693595049158614382300846974095858658827714064224290261569789735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4221412411391804064488271612863 6516191556590633151267702647263880055858239984962780958688566701826265=3^4*5*11^3*79*601*62113009131839099414298225599*4098987851670769339921393577663 42 Pedersen 2016 6523297208836140820577197513891507808279864605490323648832825743430355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4226024687393942381721039709259 6523311086978305061408096295077420290934875875444552760131078318009645=3^4*5*11^3*79*601*62110953396480171249071105099*4103602183408266585319388794559 42 Pedersen 2016 6567134943453936253429913524390870679974577512976197192141466569674855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4254424336038386215379085807359 6567148914859720670869693641092607620237843830148233621615150298165145=3^4*5*11^3*79*601*62098398119842183254554300159*4132014387329348406971951697599 42 Pedersen 2016 6690679732789255658396623179781660901587259491618044525483034292077635=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4334461058728673560016791418683 6690693967033309612945828337629224629539652032182106407069102313618365=3^4*5*11^3*79*601*62063939422788073846238263099*4212085568716689861017973345983 42 Pedersen 2016 6808073610679433677303523104271457087593037234181630214089193710517248=2^10*2687*8623*1448663*3962626379*220136910613*227067444350284192179473707097327 6808078311984927438777207122915321697973486284413332931475712781222912=2^10*2687*8623*1263713123361244198154201279*227064916938976080164064235003247 42 Pedersen 2016 7097811653686533707021627800801574165265286130019225684191220064473195=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4598215643819084907096548263331 7097826754092974093902066599703664842025614972041270715045467184934805=3^4*5*11^3*79*601*61959231852461965422393085631*4475944861377427316521575368099 42 Pedersen 2016 7155306904395478947193576652099001693611394469274860723662670744194495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4635463118696480148182935438871 7155322127121543530650102461153938817679160292463909240714861294973505=3^4*5*11^3*79*601*61945445336302764889490523671*4513206122770981758140865105599 42 Pedersen 2016 7366439864256846753978310400115368156573455404138543015803723927068455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4772242583456738512333830114239 7366455536162695533684497748832383899304020232294539674944132395491545=3^4*5*11^3*79*601*61896739719202643346304593599*4650034293148340243834945711039 42 Pedersen 2016 7556883623261494084070410818435409668986964394166333446487047258978185=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4895618845697798448346800053873 7556899700331399804004442268652166287299964406815859950310011346077815=3^4*5*11^3*79*601*61855233493363177965206687423*4773452061615239645229013556849 42 Pedersen 2016 7586385244397400275476898408925165891700725916957418186973300298430055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4914731048506771243650892555519 7586401384231224163218365009998157516981583091792264784550383152449945=3^4*5*11^3*79*601*61848997495895052223597241599*4792570500421680566274715504319 42 Pedersen 2016 7590414269340737903989226737455522897598991566884340162676688192009255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4917341194623309852270979442879 7590430417746205725288053561556385339864824252184265458110791646710745=3^4*5*11^3*79*601*61848149757823707644263423679*4795181494276290519474136209599 42 Pedersen 2016 8107971368564121306078873510681599065486863163333193391006815709279015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5252633150275940170124383485887 8107988618058619902310790419114886912632501520053703227360566744992985=3^4*5*11^3*79*601*61746513523509928730402385599*5130575086163234616241401290687 42 Pedersen 2016 8319093856429920432404135638152922340896652588744232401269975229602816=2^10*2687*8623*1448663*3962626379*220136910613*277464006606293682324958881759959 8319099601168283572420277994788426659185181531777457947026366140048384=2^10*2687*8623*1263710568485747085662289239*277461479197540445806661901577919 42 Pedersen 2016 8541649278041616022631350287390276485346172541335764593371300302767655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5533585173946846411624454097599 8541667450174389181438149589022833333286878763947325431501563031632345=3^4*5*11^3*79*601*61671162019671033969472132799*5411602461337979752502402155199 42 Pedersen 2016 8647672146245307720358352912085889403835072253258817464196073624362535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5602270570934462048736387687103 8647690543938926949203916328177739502416233810330200983188477209813465=3^4*5*11^3*79*601*61653929514399363021414451903*5480305090830867060562393425599 42 Pedersen 2016 9031111110970161226827064212915931259647775020795585914611953631625255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5850676013636208102479454655679 9031130324420029696118849180070707817229281990605554493366552690294745=3^4*5*11^3*79*601*61595094934162917552612369599*5728769368112849559774262476479 42 Pedersen 2016 9037898937486101523700073068272032802089793307518913511106468627145305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5855073409847322766085853163969 9037918165376891256984085253448275043108247932787296229063746100534695=3^4*5*11^3*79*601*61594099850587703494028472769*5733167759407539437439244881599 42 Pedersen 2016 9812373030794172598473298421336846120305618265259203772636426249801255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6356805361234356588583235916479 9812393906358098378947811124900270347004646318584189248714111867318745=3^4*5*11^3*79*601*61489873566768752324417177279*6235003937078392211106238929599 42 Pedersen 2016 9981952915587194062056301880977246585234882394002019730758657393536935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6466665261324450865814598594623 9981974151927836587133496313863524449376796205666800127774805179519065=3^4*5*11^3*79*601*61469273818173244747289759423*6344884436917081995914729025599 42 Pedersen 2016 10304666501150345093798312371117914916832121158420962930007891176880655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6675730636684010218526267872999 10304688424055599869061781455317577857786491643036094302974726935119345=3^4*5*11^3*79*601*61431998138241077884430816999*6553987087956573515489257246399 42 Pedersen 2016 10555544794999385874658014472630596140631207162162306570734896534741455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6838258546940988649844568937639 10555567251641570992908045497260981083009406813377098941198055877418545=3^4*5*11^3*79*601*61404638239652719740457014439*6716542358112140304951532113599 42 Pedersen 2016 11499424212938318891471992390939048997694973566189250286854056270525735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7449737312116649083585162121663 11499448677658984676482902015256154844821490539181957351610429908290265=3^4*5*11^3*79*601*61312667929952671064262225599*7328113093597500787368320086463 42 Pedersen 2016 11533093718000359899249397589078045587505940494008509396333522912403815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7471549618845795809662400841727 11533118254352006596442258488304246253105427726577497405588955134828185=3^4*5*11^3*79*601*61309672315893790640400846527*7349928395940706393869420185599 42 Pedersen 2016 11704428440092096025232551828883501954044166250520426856402678096309255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7582546365151739723209936382879 11704453340953829375988528768710341991571202851361871095674033102410745=3^4*5*11^3*79*601*61294702105847750163184209599*7460940112456696347894172363679 42 Pedersen 2016 11765276532482813213550324896272938552488094863118752736188839816010055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7621965930502170407156601719519 11765301562797252701529596390069886614817053194244585718342622450869945=3^4*5*11^3*79*601*61289493074809603812032368319*7500364886838165178191989541599 42 Pedersen 2016 12096487020671196231615906187677079595106937381355446779485649919274535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7836535902557396696796960256703 12096512755627183423366226778193716185705507651649007156304545817301465=3^4*5*11^3*79*601*61262080149520196306521425599*7714962271818680875337859021503 42 Pedersen 2016 13255318765989644421438948439692086065345045737792567007137464318687655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*8587268455049101828992879233599 13255346966329499786521749579301534260975877677828932143178999399712345=3^4*5*11^3*79*601*61177185669396146573678004799*8465779718790510057266621419199 42 Pedersen 2016 13305594483923901579315247688549635563043547357146960072793600100137655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*8619838858997403993178679643599 13305622791224016237164485372321849959434342426329697121019270658262345=3^4*5*11^3*79*601*61173844515418103576212459199*8498353463892790264449887374799 42 Pedersen 2016 13653885049419222667606497467701208733817536019640754701260686037007655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*8845473914560391463993194289599 13653914097698297453242620790291710096502824873099454698783302545392345=3^4*5*11^3*79*601*61151388271176414525363403199*8724010975700019424315251076799 42 Pedersen 2016 14367828689839805545397369544801820320071341926969590367423808865687655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9307992078800771517701731833599 14367859257015079877377158965656811272078714450331042571754709252712345=3^4*5*11^3*79*601*61108827948103318538620819199*9186571700263472574010531204799 42 Pedersen 2016 14483193799341523884572780317116697390947333940213327057060118074080256=2^10*2687*8623*1448663*3962626379*220136910613*483053208603330587940187359563519 14483203800690285632341807903167605814720975692091380674527493313414144=2^10*2687*8623*1263705669285537052171618559*483050681199476551631923870052159 42 Pedersen 2016 14491907299906942649595687845168390192954927550108526784787258008365095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9388374629608203135944512732351 14491938131056175997366020259638974204267690155846962452827826035922905=3^4*5*11^3*79*601*61101867498255070028138217151*9266961211520752440763794705599 42 Pedersen 2016 14585600385876195103296218612275936522283003937118431507150307664032455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9449072353729656659767646265439 14585631416354989141083772287885826654797129306992195487512297791327545=3^4*5*11^3*79*601*61096691614442707596989702239*9327664111526018327018076753599 42 Pedersen 2016 14640905944702699980633562467274996003885998822664802732461407770267655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9484901268075968864047965597599 14640937092842606688153353041622024111864743004280161802229311564132345=3^4*5*11^3*79*601*61093668076943449568800132799*9363496049409829789326585655199 42 Pedersen 2016 15081002067430428915872579939285953313247536229835438347068486867375655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9770011239296422367145023543999 15081034151863189009466344127877804227504627713929616249080826668624345=3^4*5*11^3*79*601*61070413622331629863015838399*9648629275084895112129427895999 42 Pedersen 2016 15220854686126695595998929625110938504064426976087105481641066011155655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9860612755720746382455172667999 15220887068092200584170381012433934260430743938465445267787268580844345=3^4*5*11^3*79*601*61063310778068441824806686399*9739237894353482315477786171999 42 Pedersen 2016 15491951415244401198458297190272895309903260996120408655768782196407655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10036238889751756780673014809599 15491984373961022456474241876933628863031259341718209595666817265992345=3^4*5*11^3*79*601*61049914320680750295702916799*9914877424841880405224732083199 42 Pedersen 2016 15683173904147497492652329875276525525268622827281486900318221486529255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10160119641006623931241044458879 15683207269684902939745132296356024578495095775497194475140665456190745=3^4*5*11^3*79*601*61040748581208889953866239679*10038767341836219416134598409599 42 Pedersen 2016 15732496325755731385821315290529756245961277601061278167068789403977255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10192072465580691966910365977279 15732529796225283422295116881649165551441644210397294413192647708342745=3^4*5*11^3*79*601*61038421250909534521790289599*10070722493740586807235995878079 42 Pedersen 2016 15875929822235583129716509372277406354676335087867100510658231913645555=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10284993802401283183211213325419 15875963597856102772750128594646180945337127546120554122344798122834445=3^4*5*11^3*79*601*61031736853834308399810006719*10163650514958253249658823509099 42 Pedersen 2016 16018945901759089602131770528542699133714178967912779612426288395286055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10377644721623843988016581360319 16018979981642533324584130825381189366087279077191006216725236386793945=3^4*5*11^3*79*601*61025193232092202511132349119*10256307977802556160352869201599 42 Pedersen 2016 16531895995107461195090828912693150369485229320145685563411694629134695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10709952094489659588479148460031 16531931166278652623800350464261043492994137501191204770234971705073305=3^4*5*11^3*79*601*61002670930002257043828344831*10588637872970461706282740305599 42 Pedersen 2016 16857895105493047911446218781608477318689894488306735945795179746079744=2^10*2687*8623*1448663*3962626379*220136910613*562255841758951746079004990213981 16857906746688399910541884252316402517128563854609540470463205970103296=2^10*2687*8623*1263704737889944898623615679*562253314356029105362895048705501 42 Pedersen 2016 17463617598189989234021307552307495664078385425968876546202135787393255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11313554593402557001502507230079 17463654751574231994897396943292232890447390428549128388763149568126745=3^4*5*11^3*79*601*60965201322127875819275570879*11192277841491233500530651849599 42 Pedersen 2016 18280068614854724051225921862755771397334053790853170617564049105552384=2^10*2687*8623*1448663*3962626379*220136910613*609689127980603365294855172689841 18280081238129958699655121059234257104858448561952255262349911159929856=2^10*2687*8623*1263704295949666918752146111*609686600578122664856725102650929 42 Pedersen 2016 18581243233844670689919670906079136253252390005122829057601320166042695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12037592357793137228164389246431 18581282764947873887832980868511632430938157110658836435114221329765305=3^4*5*11^3*79*601*60925289104938323542220805599*11916355518099003279469588631231 42 Pedersen 2016 19237475574545498630378088655319361805476146010087936544217336408439808=2^10*2687*8623*1448663*3962626379*220136910613*641621208033196099666959525018767 19237488858956739843006326668592957061348797835065298928418645537457152=2^10*2687*8623*1263704035236789154852907279*641618680630976112106593354218687 42 Pedersen 2016 19756640900977535361280067911316801685550262941620704708858197245215655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12799056905519143885208120615999 19756682932708166953996877738715753300044253030985428990648896258784345=3^4*5*11^3*79*601*60888256138135540599019703999*12677857098791812719456521102399 42 Pedersen 2016 20210423337514029149074650628444683508047550223860102929871084341205515=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13093033359161541216906621419587 20210466334654784529889539101680443792925925737229080608289774925866485=3^4*5*11^3*79*601*60875127745492787080813661887*12971846680826852804673227948099 42 Pedersen 2016 20304684038483909178258760977028127530561461665197058912862690246392055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13154098804533275660835864815119 20304727236161811140255654990011112751434682806951045773799325466887945=3^4*5*11^3*79*601*60872475328787750892976393919*13032914778615292284790308611599 42 Pedersen 2016 21452687418065286727422937248903928686418504365186169370990608862411776=2^10*2687*8623*1448663*3962626379*220136910613*715504441494933182843025049529999 21452702232187897900653633685708888973318913583022970807182890939188224=2^10*2687*8623*1263703521220496100356471999*715501914093227211575713375165199 42 Pedersen 2016 22120321441981155069632411154711537993945320633465382952098412636909095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14330333497648564415442167247551 22120368502379579763037029670130325383260112130604335167571564156178905=3^4*5*11^3*79*601*60825852970366235281448732351*14209196094089002555008138705599 42 Pedersen 2016 22668002385487151715019951057832296971823881195525424813970064800687655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14685140754465933093026554833599 22668050611062288627838245074247415009188133342888325031487365317712345=3^4*5*11^3*79*601*60813274172852180342467204799*14564015929703885287531507819199 42 Pedersen 2016 24770383727633028607905422356381430066191748100020034446350252676517735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16047138402249033241322926155263 24770436425968828675236998052714598854898957174478177207371548420698265=3^4*5*11^3*79*601*60770213277692609983995225599*15926056638382145006186351120063 42 Pedersen 2016 24998948149025360507474191414268510143209272076406683547770587866102784=2^10*2687*8623*1448663*3962626379*220136910613*833781711575524032115219985318191 24998965412013246965137764294024330249856115435416675258481333859091456=2^10*2687*8623*1263702887995517721476065711*833779184174451285826287191359679 42 Pedersen 2016 25030362654420970987516774744454971490151492058171947642088070271125415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16215562027240366145770652371007 25030415905855057115242600244365605635765968224972528488270909976426585=3^4*5*11^3*79*601*60765396675760686656008785599*16094485079975409833962063775807 42 Pedersen 2016 25562731256477314074061229724872168598772398036485795922192917840283015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16560449402912293830599998669087 25562785640511511248125527635911706845474796149515527378745563954788985=3^4*5*11^3*79*601*60755842661735609662552473887*16439382009661362595784866385599 42 Pedersen 2016 26028430979315095737313195759465398224041745066647220731666115572098855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16862146299837233199733808026559 26028486354113127898959777968534993155421342570554446152552714620541145=3^4*5*11^3*79*601*60747809078485307126143857599*16741086940169552267455084359359 42 Pedersen 2016 26324061075786672218913271704698286154351680402081118204914787865901255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17053666024606670313741433296479 26324117079529910388239781477700773788014921500301671431168836971218745=3^4*5*11^3*79*601*60742858378750900351196057279*16932611615638723788237657429599 42 Pedersen 2016 26484283476178673084854506051042271903189771965550283588106161976945435=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17157463812420621310918146003923 26484339820790827593626366328993898960347732953895487447535873575310565=3^4*5*11^3*79*601*60740221930342145081320838099*17036412039901083540684245356223 42 Pedersen 2016 26601294574780492145827703944684039692892012185598230799813939087258455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17233267777127389486181388816239 26601351168330662078823235244586874370138568449787772285246735923301545=3^4*5*11^3*79*601*60738316801572071871734943599*17112217909736621789157074063039 42 Pedersen 2016 27117458451012431983671370205337572205983887293240959371562109191916855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17567657153215055322312804090959 27117516142687587650765127902162325300074999159059524102841134594323145=3^4*5*11^3*79*601*60730111107942304043997777599*17446615491517917393116226503759 42 Pedersen 2016 28866681638819831424653014186067818697005901556540000170328520013277255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18700866347703818545602611917279 28866743051921023681737393940446082289706775732261950816904964459042745=3^4*5*11^3*79*601*60704506693680741722761318079*18579850290420942178727270789599 42 Pedersen 2016 29618384554441962906171168814452604253743400396885153161542132896226855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*19187846317695391158565339488959 29618447566771213352489386882422831407575934408223890158225322602013145=3^4*5*11^3*79*601*60694441561620460552931501759*19066840325544575072859828177599 42 Pedersen 2016 29664396485805493515626913538695297091993128938381124255888837397052416=2^10*2687*8623*1448663*3962626379*220136910613*989386878493692151507620087225359 29664416970512055599628963990727118220367138227175976782350794352886784=2^10*2687*8623*1263702285538163631195519119*989384351093221862572777573813439 42 Pedersen 2016 31107913851423484577646131139069329077349514027318349162794668923967655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20152816543659316438727865057599 31107980032686892019005147713678884471172853146660372162520060650432345=3^4*5*11^3*79*601*60675947140598170965455995199*20031829045929522642609829252799 42 Pedersen 2016 31516160201868777878038913438728286848839107529181484589930688669877655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20417293095974507046637185735599 31516227251665491120301936902896938830807605199262588882324116936522345=3^4*5*11^3*79*601*60671186212113413865753988799*20296310359173198007618851937199 42 Pedersen 2016 31741185000809968396572112620806488671740948052319569218880461703990735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20563072189760576581586931818663 31741252529340985811790476656673391275444396627664619343644012442825265=3^4*5*11^3*79*601*60668614818758462894039158463*20442092024352622493540312850599 42 Pedersen 2016 32077485089549800747172240747527464648672052208087528428092943828530855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20780939386653307432463994212159 32077553333550356336461660697702466633728544385898739508674016770509145=3^4*5*11^3*79*601*60664839707506704887588064959*20659962996356605102423826337599 42 Pedersen 2016 32221414727023823610299684008378853274113571677043568711479331879190055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20874182141312557790442179363519 32221483277230873640230280075793427295059640339524126161992714323689945=3^4*5*11^3*79*601*60663248328076851578601712319*20753207342395285313710997841599 42 Pedersen 2016 32748917941643660042995334917834467362959582935475016513919817419423495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21215917545402911331790481127071 32748987614099838116912792337676918863663157111447320888682220680544505=3^4*5*11^3*79*601*60657536523790385618824711871*21094948458289925321019076605599 42 Pedersen 2016 32833980813989629378210694741470027280196111542983092603150307635526605=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21271024309207536814889600967509 32834050667414817068456033309064234426544155809209373781470440713913395=3^4*5*11^3*79*601*60656632795109825206101140309*21150056125823231364530920017599 42 Pedersen 2016 33257590580983281189261244152261175907498663036519033400074432308116405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21545453830939502402317436820349 33257661335627036774211558626308686682223979048310807802577066802283595=3^4*5*11^3*79*601*60652201683409846098578119549*21424490078666896931066278891199 42 Pedersen 2016 35512724748733019053872247114372702139675031558769566324052180715606055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*23006410209469483848718068016319 35512800301115031463040411072152190971710665850300874399076059330473945=3^4*5*11^3*79*601*60630405716655198732472401599*22885468253163633024833015805119 42 Pedersen 2016 36424907712242179809120329400261302818969214542044724319091374243606055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*23597354880515317955588050416319 36424985205269304973664045087598201813551850111267408549265051402473945=3^4*5*11^3*79*601*60622362003030784193752401599*23476420967923091546241718205119 42 Pedersen 2016 39845326481658492114198968534104615968784791429174564788643519241506855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*25813224202121454639436017312959 39845411251536023373682690698717266755092058683338753929599450112733145=3^4*5*11^3*79*601*60595503335995617575503377599*25692317148196263396707934125759 42 Pedersen 2016 42036098914778684224579817587674646769265463055243045851518669608525655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*27232484752489639661363438213999 42036188345466585301069138583570148658660066731340107077143432407474345=3^4*5*11^3*79*601*60580612172340841509230828399*27111592589728103194701627575999 42 Pedersen 2016 45390403010651346295546897541506663978065379607463880831161296143126605=3^4*5*11^3*79*601*473861*58309019*2182799234136439*29405522629559416364872129047509 45390499577532435313818481762953441918363120556436805186022119726313395=3^4*5*11^3*79*601*60560614882803741983464017599*29284650464087416997736085220309 42 Pedersen 2016 46057499653092113494765961394056925538896275213558117825235823845430395=3^4*5*11^3*79*601*473861*58309019*2182799234136439*29837691636976951403970213463091 46057597639203653724149082923737929032652196846146780319819211497417605=3^4*5*11^3*79*601*60556987236991227896466818099*29716823099150764550921166835391 42 Pedersen 2016 46297988408547560989204601268601184699918552656584500078461713729870345=3^4*5*11^3*79*601*473861*58309019*2182799234136439*29993488833557036668949165122801 46298086906292563601871853566072762290009220589590743166072507799217655=3^4*5*11^3*79*601*60555705260997279871463236849*29872621577706843763925122076351 42 Pedersen 2016 47917231020598213209542343003583445788085345333853127433695017371431335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*31042491973278643834872304878143 47917332963239017594974190434792255416171108018414861408421743884504665=3^4*5*11^3*79*601*60547410527282338571948625599*30921633012162165871147776442943 42 Pedersen 2016 48147480365569070357497657948309988796466808685427884508097647511865615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*31191655714397949997452601032167 48147582798059262319584287174794479217246100328270056533136191190726385=3^4*5*11^3*79*601*60546276624433378801211985599*31070797887184320993498809236967 42 Pedersen 2016 48443853615376069597293182491144564460821221557171261247823086688868355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*31383656880414270918111905169659 48443956678392506619650583349130902762632760350252693379268732790171645=3^4*5*11^3*79*601*60544833041664105263293022459*31262800496783411187696032337599 42 Pedersen 2016 50756086583751050353247087925497338761991596857875902332933441391903255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*32881603899311827005196831788079 50756194565981931335889570138857480135049233951603195014023342715616745=3^4*5*11^3*79*601*60534152605211366972922449599*32760758196117420013071329528879 42 Pedersen 2016 52872233190839586334729656144990657405800586873920261757117183519246255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*34252519176878435750424817497479 52872345675116367321724909812879423761665879999624216510899529061873745=3^4*5*11^3*79*601*60525200966766147404524254599*34131682425322473977867713433279 42 Pedersen 2016 53826858556969196111594361155524323109515774005829027159933893950370655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*34870959550714474635292055714999 53826973072186178135498465697709253516399611070972039515628131009629345=3^4*5*11^3*79*601*60521394331313917876201634999*34750126605793965092263274270399 42 Pedersen 2016 54064793478670533303456261951245878859635742080690629490730370712738816=2^10*2687*8623*1448663*3962626379*220136910613*1803205309835430908298324070023959 54064830813036337110775638865716440960822321808048956430122141838992384=2^10*2687*8623*1263700828617363665946889919*1803202782436417540163446805241239 42 Pedersen 2016 54093291992095995105030297563263782889246462545386326078794637515111424=2^10*2687*8623*1448663*3962626379*220136910613*1804155811398920330056212620595551 54093329346141406594762452266909640006159927072184478621568865333462016=2^10*2687*8623*1263700827684211193891923679*1804153283999907895073807410779071 42 Pedersen 2016 54570491704460158236507059993607592686136195290701602766181811678505655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*35352711636976072127385167297999 54570607801736980327507690589976395495537365435710399168650713633494345=3^4*5*11^3*79*601*60518521799632920918622391999*35231881564587243581313965096399 42 Pedersen 2016 57320738428502205918867803715104598789024536629114589058432844298495655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*37134419595411966517509624839999 57320860376856144547225874672967009453853062830473229571902684661504345=3^4*5*11^3*79*601*60508548784394362370666270399*37013599496038376529986378759999 42 Pedersen 2016 58665252610702810926079563827379497689566884301031690876145520728685568=2^10*2687*8623*1448663*3962626379*220136910613*1956642913140699113372232089047007 58665293121909087979991114271704764051757135369821598361475429846664192=2^10*2687*8623*1263700689720007986375380927*1956640385741824642593034395773279 42 Pedersen 2016 62114165048944717986548903921056430881822674995817576580385723300599335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*40239772392730787764393099172543 62114297195186927326791675346655578291394406610173130380069440668936665=3^4*5*11^3*79*601*60493287327511924359818737343*40118967554814080214880700625599 42 Pedersen 2016 62478123265475784264269404500100270365770011279275747179544950291860455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*40475557511666764749227147187839 62478256186029466646053176745616880279169722571599161252408370709099545=3^4*5*11^3*79*601*60492224631135229647384104639*40354753736446433894427183273599 42 Pedersen 2016 62836388713942302186270471944782941511888719888080907535105920574873905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*40707654652328840356700357813849 62836522396696244218791003169592767182765856190133593351539983399526095=3^4*5*11^3*79*601*60491190633801613380421609049*40586851911105843118167356395199 42 Pedersen 2016 62935619435113560603339837361248743821500121493624651309971025970134055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*40771939854120598321724331798719 62935753328978235657416179491453586534363566307440792515117789461545945=3^4*5*11^3*79*601*60490906333129347952512081599*40651137397198273348619239907519 42 Pedersen 2016 63135484176017905859082626730944679012718146961875129817387954355106855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*40901419364583076983675900192959 63135618495089527506436143437556253776926844502913367367070213719133145=3^4*5*11^3*79*601*60490336436073462387127377599*40780617477557807896136193005759 42 Pedersen 2016 63532977520505624324856233402925799911815506149706561943212107464944935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*41158929735964666829869619481023 63533112685233816190683125679461954049665981515661891624022844669711065=3^4*5*11^3*79*601*60489213722079009345628645823*41038128971653392195371411025599 42 Pedersen 2016 65717954228319355316885068533085972687109370976295724157705795860059835=3^4*5*11^3*79*601*473861*58309019*2182799234136439*42574435608684057673271547363443 65718094041527664801641437463474465848977629779641732053845842119076165=3^4*5*11^3*79*601*60483285840489010022592938099*42453640772254373038096374615743 42 Pedersen 2016 67650259988040865544669182139285313006789111440850561122314183990495155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*43826252225764662507690841517099 67650403912178537847932757746033569438803573396912457699978242351904845=3^4*5*11^3*79*601*60478363844328691753434950699*43705462311331138190784826756799 42 Pedersen 2016 68733010032727542717304054211617390074748273120303847623664091076069455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44527696337942279233478008160039 68733156260387278701120612599776028237993747062008374888633932081690545=3^4*5*11^3*79*601*60475727326109398583204433599*44406909060026974209742223916839 42 Pedersen 2016 69115514797101380295716770291839656716103778341477486101101990580847655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44775496572323757786199894161599 69115661838529878998022368069766802517772052884003838741066421169552345=3^4*5*11^3*79*601*60474815745524819129714731199*44654710205989037341917599620799 42 Pedersen 2016 69269358834254716055610845072283418998459674029949367127602325486315335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44875162228847530463014725765343 69269506202982332118793523373748575537367531539159672197361527686420665=3^4*5*11^3*79*601*60474451956724622292821330143*44754376226301610215569324625599 42 Pedersen 2016 70101218323304361222877624801312476365046990897125271948153215480025435=3^4*5*11^3*79*601*473861*58309019*2182799234136439*45414070487144399428934291067923 70101367461791023994199585533115666615925393947367791844219888488230565=3^4*5*11^3*79*601*60472512662207106148883025599*45293286423892996697632828232723 42 Pedersen 2016 70194261565124659228535622848612288958010049072133314179085651841854055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*45474347219039296103987792574719 70194410901558356461946123620843001448771976508722883444431688133825945=3^4*5*11^3*79*601*60472298622198901285396281599*45353563369827901577549816483519 42 Pedersen 2016 71134898598863742883665525662288234673946286366567792315426523893495655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*46083725452039905727746075839999 71135049936477834212578856144278693400464784644767209801020749066504345=3^4*5*11^3*79*601*60470166315175388384792759999*45962943735135534714208703270399 42 Pedersen 2016 72371912641703405025315128196326702471954995432644414463528997441193255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*46885107286461350961240691270079 72372066611032133307597305891003993383486278882539686182650101674326745=3^4*5*11^3*79*601*60467446862430540302304849599*46764328289009724795785806610879 42 Pedersen 2016 75002669714791830037011201542447990468130652962836565506636991871933155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*48589405585540610199888175777499 75002829280986604902081590089394030224803896778361318468027497088066845=3^4*5*11^3*79*601*60461962765382970366849697499*48468632072186031604368746270399 42 Pedersen 2016 75463315930929487288627964187506589567928200411157631697529814429890455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*48887828640512785508005682961839 75463476477136895384403607268057169251212270157064047891132825227069545=3^4*5*11^3*79*601*60461041983075427595131473599*48767056047940514455257971678639 42 Pedersen 2016 75794453933796739067902556963852915303147703001927212021906433073438535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*49102351653990659326209444167903 75794615184491484265160983729888902240195558030442532310996397235937465=3^4*5*11^3*79*601*60460387014026045496514432703*48981579716387437655560349925599 42 Pedersen 2016 76174347764568425002642116367933134879795644449934978015060146978838535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*49348460432424845871916831487903 76174509823477240781570815668761255165615175337742268566390953410537465=3^4*5*11^3*79*601*60459642648865827369824925599*49227689239186784419394426752703 42 Pedersen 2016 76306138273867131768891586534038921903082094007438925011155550869015655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*49433839026720095586464530655999 76306300613156768073316388727716437426231358850495082729222700394984345=3^4*5*11^3*79*601*60459386156118601785489182399*49313068089974781359526461663999 42 Pedersen 2016 79467885135519060950717735368096159247295048275701722978458643395773095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*51482131456893654451437806418751 79468054201341465670349594617208936790603212893476161042133053410114905=3^4*5*11^3*79*601*60453488645309745158223903551*51361366417659149081127002705599 42 Pedersen 2016 80596667946369785146894406257785060131846370662359908930114201069282855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*52213397237471537657398078253759 80596839413647745243969208638154434638858490672802437856276178000157145=3^4*5*11^3*79*601*60451495636129894122994426559*52092634191246212138122504017599 42 Pedersen 2016 83136163194182860835952898791691490015659942432780897414565192791840995=3^4*5*11^3*79*601*473861*58309019*2182799234136439*53858572869855825141237349348571 83136340064169749605596310722274559658461627290175771069691889404127005=3^4*5*11^3*79*601*60447210345732129559039495871*53737814108920897386525730043099 42 Pedersen 2016 84589760126016145795313082582709796470690631763643238758782639888661696=2^6*241*283*5783*234323*160381703*297766669*299457591137590936597756115083728671951 84590121933930984228704030825780123844896479747315598447562380852396864=2^6*241*283*5783*11190453316988327796671*299457591137590914216897344787704127119 42 Pedersen 2016 85004153755765470922593323236571881098358307070569474978836774046946855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*55068723806773726195038778464959 85004334599852840655731388380236377647898498882204050643535026795293145=3^4*5*11^3*79*601*60444222170951030355232977599*54947968034013579539530965677759 42 Pedersen 2016 85316311795504359982423216704622195663074328244354897030456597236697415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*55270950922919551531103449168607 85316493303699697590900395448966722972484872977409355057136155145254585=3^4*5*11^3*79*601*60443735622315846462656073407*55150195636708040059488213285599 42 Pedersen 2016 91310642987554566885135053958338970556287757239924814075314267631220955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*59154292550786204631425134798739 91310837248530867797048682646622058503691309044155778951459579859339045=3^4*5*11^3*79*601*60435039770376259696419983039*59033545960426632746576135006099 42 Pedersen 2016 91605806943562074872832969701977669650606579333239117785187559315455655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*59345510293130821615369849607999 91606001832491880292135394174099964177095507118670576952049686636544345=3^4*5*11^3*79*601*60434641070899392870241031999*59224764101470726597347028766399 42 Pedersen 2016 92301403252544931407651290097647263438584938639954892383718906083401255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*59796142401421059821207294796479 92301599621337474325560825348613266160992974874179199306860974753718745=3^4*5*11^3*79*601*60433711594476031894894929599*59675397139237388164159820057279 42 Pedersen 2016 95851079023918709278438106342490804303026381928495093936606052618717215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*62095749020869591614720110915447 95851282944552509000865099293987496005003811696583316687620882460194785=3^4*5*11^3*79*601*60429179104461550025809645247*61975008291175934439541721460599 42 Pedersen 2016 96176055723299183630859626665019615065619965029818649944823745922415616=2^10*2687*8623*1448663*3962626379*220136910613*3207728416232654415550286588792159 96176122137536895601192714503757484634314913042882454768571234414019584=2^10*2687*8623*1263700053076448996264571839*3207725888834416588330079006327519 42 Pedersen 2016 98434082814103726907648732739093625099486472296713925349025533760086055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*63769111039415664454080529200319 98434292230009727688701512266670865971181999495473617804388431981993945=3^4*5*11^3*79*601*60426087002947458217032189119*63648373401823521370710917201599 42 Pedersen 2016 98618561513195013791308595354908341801579019489646351408980271482326855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*63888622923007611327494762868959 98618771321574564419995727835577855505663350016726696288009614735913145=3^4*5*11^3*79*601*60425872379291816924130881759*63767885500039123885418052177599 42 Pedersen 2016 99844897903651472306019306769737500916822948441254003013173718665558055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*64683087393229598273663593417919 99845110321029237040788896105120995547826035478181504821261303690921945=3^4*5*11^3*79*601*60424465868385628247651286719*64562351376772017020263362321599 42 Pedersen 2016 100320427339199996559691650064738051481779625976253952896420547771536455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*64991152328779133703148285148639 100320640768254049917997040146770898408924750531903227438202929824623545=3^4*5*11^3*79*601*60423929751827998578567925439*64870416848438110079417137413599 42 Pedersen 2016 101721102163918057754572937201703347244400094779503158697337629909674205=3^4*5*11^3*79*601*473861*58309019*2182799234136439*65898559457225118416563897807589 101721318572870730016759700383376426659340597865070660868497015635285795=3^4*5*11^3*79*601*60422379824103173111774917349*65777825526811819618299543080639 42 Pedersen 2016 102905186395697382080384477398446345677927367697213568893835354355787815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*66665651471471408228296567028927 102905405323757919121468928062175228901196964052580560663632378808244185=3^4*5*11^3*79*601*60421102567012069221799185599*66544918818315200533922188033727 42 Pedersen 2016 103426052904730124368257375951856208314777371686051720787601024933829055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*67003087380880447200111160029719 103426272940920373965844413033858801225574231142433119025860102561850945=3^4*5*11^3*79*601*60420550001826690774438563519*66882355280289424884184141656599 42 Pedersen 2016 106881682807116347111138422017207821329881799529405587145471445404204032=2^10*2687*8623*1448663*3962626379*220136910613*3564789682179652535725080096822143 106881756614109528758064554006304390719127702355052466158111206102811648=2^10*2687*8623*1263699953345631083447667263*3564787154781514439322785331262079 42 Pedersen 2016 109318818349485809720293854650615597662628103524765761911736455335614605=3^4*5*11^3*79*601*473861*58309019*2182799234136439*70820631093717433563418999397909 109319050922378583322027235608476807052935509188062245095353272111425395=3^4*5*11^3*79*601*60414666320870734052153937599*70699904876807367204214265650709 42 Pedersen 2016 109653787425704189062211348343517643439612383834732802620420450924207655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*71037636013207370062156388049599 109654020711234806925604703115346337162328815317532493220065967098192345=3^4*5*11^3*79*601*60414350911863525927547243199*70916910111706310911076260996799 42 Pedersen 2016 110267998160672362508680121519365531099645947625899166797848232553987072=2^10*2687*8623*1448663*3962626379*220136910613*3677732346590614510536124729135103 110268074306080767855416432951522395323269582928630265805964019934839808=2^10*2687*8623*1263699925831102544575918079*3677729819192503928662368835324223 42 Pedersen 2016 115595889881292257659487884798618880466841786092039380936625439973615655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*74887142002038381468713001335999 115596135808488584304663507709220619471323952731142853357250493210384345=3^4*5*11^3*79*601*60409060353063991159812983999*74766421391096121852400608542399 42 Pedersen 2016 116365712177013812607711271042584495017556533365661495359822380108535335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*75385860352969690521941859441343 116365959741986699050647022212979355634945109783419259306423015208200665=3^4*5*11^3*79*601*60408414570323796201404625599*75265140387810171100587875006143 42 Pedersen 2016 120069096975938227346672944186985434728049329552420415351474604266651455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*77785045164904135745310448415639 120069352419764258598466344106852244305870572384475078413907531377508545=3^4*5*11^3*79*601*60405423912755621386537717439*77664328190402184498771330888599 42 Pedersen 2016 121136948623287132639790106249852163686303908972706443572973886007830385=3^4*5*11^3*79*601*473861*58309019*2182799234136439*78476837563701785013542245844633 121137206338939281541519422661160717694735902913621895704513580594665615=3^4*5*11^3*79*601*60404595616007405683205981849*78356121417496581982706460053183 42 Pedersen 2016 121830026065102163164747579404837167460888366575166177712319799077240655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*78925837859965877935447472360999 121830285255258226330634912971373959820767203721594339849088831706759345=3^4*5*11^3*79*601*60404065807353932871149342399*78805122243569328377423743208999 42 Pedersen 2016 122024447898494740695387031823590508726881788350411622527548763861577255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*79051791260735734415559404057279 122024707502278108776903085175374566224771466237075328859480780770742745=3^4*5*11^3*79*601*60403918269050278768766289599*78931075791877488511638057958079 42 Pedersen 2016 122651014657354390716205967164535521584869467197544055755723652589981735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*79457703563436673733483326006463 122651275594141955366171079160181944683527457554998808461975310440034265=3^4*5*11^3*79*601*60403445984646440869339971263*79336988566862831667461406225599 42 Pedersen 2016 125461195525057112969649639460360261364165147745128248536165639385234432=2^10*2687*8623*1448663*3962626379*220136910613*4184466071036350464813375116751743 125461282162106226333935697901639074601704871996540709541444482035893248=2^10*2687*8623*1263699820664547402460222079*4184463543638345049494761338636863 42 Pedersen 2016 126248511451517511575590588206238093475549839366368276572396531849037105=3^4*5*11^3*79*601*473861*58309019*2182799234136439*81788290347733504436126694648409 126248780041884293368739263053228722642283248172857373261673013070002895=3^4*5*11^3*79*601*60400825245048894361245493849*81667577971899259916612869344959 42 Pedersen 2016 126628382374676268853679764324201542776694463184505469238959851148210215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*82034384285798677189841985094847 126628651773208385888272810927556023680854006196970066157434668084301785=3^4*5*11^3*79*601*60400557224300908726887699647*81913672177985180655962517585599 42 Pedersen 2016 126921540867715606574487245206630119317889935732037637117242717106158592=2^10*2687*8623*1448663*3962626379*220136910613*4233172489883841659188280202511583 126921628513204107471216577881713610289504519853193386934770051431973888=2^10*2687*8623*1263699811882452328530052703*4233169962485845025964740354566079 42 Pedersen 2016 131096870743022931369358861491324876245292069906219600386916455156052135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*84929230489400500422255439550783 131097149648145787696031931903294212897147737678973620477420782352043865=3^4*5*11^3*79*601*60397521297653239472697825599*84808521417513651557630161915583 42 Pedersen 2016 132299194210248514129759775984007163685321855877403566413838665771991405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*85708138531156723513004057295349 132299475673282725922120337130075607682560610233276873023973511738408595=3^4*5*11^3*79*601*60396739517537645615048194549*85587430241049990242236429291199 42 Pedersen 2016 133427995225435315447247635074769486447820069277541151024579058789398055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*86439416105153060092903857289919 133428279089963811860253747190405264043641644390715357718792802735081945=3^4*5*11^3*79*601*60396018393736003597376721599*86318708536170128464153900758719 42 Pedersen 2016 133761510005354981381848813025453969672304906056384209295830131378466935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*86655478879610447167337342388623 133761794579427345170848076806279774588210663648298090479361060730589065=3^4*5*11^3*79*601*60395807665126337569063553423*86534771521356125204615699025599 42 Pedersen 2016 134961553914655627317161894970618123742310944059520000485216415039892655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*87432910142406778854799239422599 134961841041789647418015452584607113620648350342016854962474445094507345=3^4*5*11^3*79*601*60395058060808844039869080199*87312203533756774385606790532799 42 Pedersen 2016 136095731295735518846722585136161052122540738928303836716990682395365415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*88167670718060909858690054563007 136096020835801899713244356786481092599019100059211760549688351100186585=3^4*5*11^3*79*601*60394361775909248872648785599*88046964805695804984664825967807 42 Pedersen 2016 136469298872387723072507425418489750217472946251898858578153471304350755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*88409681123351612534450247383579 136469589207209236314058158972001787068620344019675632453633825955169245=3^4*5*11^3*79*601*60394134977337143068513586879*88288975437785079766229153987099 42 Pedersen 2016 136930143122777227068873974814304696446472571981689977408284715358333095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*88708232471978125761119419666751 136930434438032686170699472354502605196188270962322888225376383559554905=3^4*5*11^3*79*601*60393856900185534797027151551*88587527064488744601169812705599 42 Pedersen 2016 141470956744707038876949769162747077955050003122262098877932079850113255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*91649933555463453271514915806079 141471257720423300086956462082931056537470500901626977978364053249406745=3^4*5*11^3*79*601*60391213998853862905840946879*91529230790875403783456495049599 42 Pedersen 2016 144556584825115450141204801075951241731078416225960664036346554779572055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*93648913523179573614466568459119 144556892365423787253534214828385457916178725287142648465306988869707945=3^4*5*11^3*79*601*60389512995595476195798487919*93528212459594782513118190161599 42 Pedersen 2016 148805222104448445039243952730342640624193111088498326369642042081660455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*96401332346887729866822360027839 148805538683620148212530372240540231936952096128470646744617879879299545=3^4*5*11^3*79*601*60387286519962288154920273599*96280633509778571953514859944639 42 Pedersen 2016 150634093870353471887835167906615646982666352811709729035689176643793855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*97586140732181483571775582657559 150634414340401453550442731017206202729123358995918124877064167212846145=3^4*5*11^3*79*601*60386366849611133114306190359*97465442814742676813508696657599 42 Pedersen 2016 154055388971637229105537055072993448967980426779653449658529149565807895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*99802577772839445119763266252591 154055716720399989717809270278547271225622599495423824647748298065040105=3^4*5*11^3*79*601*60384705148621592015574937391*99681881517101627902595111505599 42 Pedersen 2016 154670137119202016340645281626443152233232145604832267502179028876426855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*100200833557447793324635992648959 154670466175825190786489146435014606988023229268415403547591329661813145=3^4*5*11^3*79*601*60384414374800085150416661759*100080137592483797614332996177599 42 Pedersen 2016 156160359658965931644213953483471780700732439190422694417693960302363815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*101166252890821508975774709009727 156160691885998118757067795863469710194506082990409753995263764336868185=3^4*5*11^3*79*601*60383719022888952083055185599*101045557621209424398539074014527 42 Pedersen 2016 163005179272400898900258113213551838711266685510165512086961163606274855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*105600571264044205535572442087359 163005526061605656528684436476717302013013965911499616470036341581565145=3^4*5*11^3*79*601*60380688759485276371686580159*105479879024695524634048175697599 42 Pedersen 2016 163065127165175962322662514718449057609868981454620011181920346508255155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*105639407647963904797389642925099 163065474081918275230964198677520837364360123334898641992043424986144845=3^4*5*11^3*79*601*60380663345719856600052715199*105518715434028989315637010400299 42 Pedersen 2016 164866159600935267917795609841811480896333350431478951034122442735919095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*106806180721863756984972439905551 164866510349326421234533056403487693452533725594331601323570239209168905=3^4*5*11^3*79*601*60379908465426207191898705599*106685489262809135152627961390351 42 Pedersen 2016 166281351473524936373836316481023662967899441502627401917701397911437095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*107722992511898729405137347029951 166281705232699343728717355253433320856392310209961902236097858267250905=3^4*5*11^3*79*601*60379326797657771816400514751*107602301634511876008168366705599 42 Pedersen 2016 172857646315224822220627242911324314406166454562127479797223029760868255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*111983350956852000692656947385079 172858014065292455082566806546397949600122779182978430934164071914651745=3^4*5*11^3*79*601*60376748994399367781472849599*111862662657268405699722894725879 42 Pedersen 2016 180778940014054306509509848869105469780735829625392347350005874285935655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*117115047651892521346607321591999 180779324616464636274942083426961150308360606142424467733548892562064345=3^4*5*11^3*79*601*60373893366201179749127774399*116994362207937124541705614007999 42 Pedersen 2016 181522032547114752901855517777070882927636539913885288867441951898723065=3^4*5*11^3*79*601*473861*58309019*2182799234136439*117596449508836554367264574913377 181522418730434779841527180218269797259928357454577029671763493086108935=3^4*5*11^3*79*601*60373638287550540790711466849*117475764319959808201321283636927 42 Pedersen 2016 183482596588514084419125595110615916556317916529824673204422317544004608=2^10*2687*8623*1448663*3962626379*220136910613*6119634814869485532197344815348967 183482723292158709835385066115072377859946318341846291294199729867236352=2^10*2687*8623*1263699579301314298421718887*6119632287471721480111835075737279 42 Pedersen 2016 183788221681543281717945416968603314727849917761678472986894702104694055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*119064567689229496356130622646719 183788612686120714506869019484540093849156338740905041520714369838985945=3^4*5*11^3*79*601*60372873137674222599513681599*118943883265502626508378529155519 42 Pedersen 2016 186046491303714645714404582355203533775306278969738644865040090044606215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*120527555327008871197559544831647 186046887112700931625670032124774488051150606439574837675490294327105785=3^4*5*11^3*79*601*60372129232255174614751436447*120406871647187420397792213585599 42 Pedersen 2016 188179853350378438931388155355054440959897310676680905294690625492395815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*121909623380590472524064134075327 188180253698036016914332479553988586852225341033968110001214492273236185=3^4*5*11^3*79*601*60371442898113165460307080127*121788940387103163733451247185599 42 Pedersen 2016 189120326617676431578910655106085086468757027244374266313559898938685735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*122518895519847249690726371849663 189120728966165994888228880486182096127088415674887670963026026472130265=3^4*5*11^3*79*601*60371145258901029756189814463*122398212823999153035817602225599 42 Pedersen 2016 202076127196617727141539043148575880845158089013205614593939597969271808=2^10*2687*8623*1448663*3962626379*220136910613*6739778737815338202387112755674267 202076266739998318276303880381510318556371992149385535477301936657585152=2^10*2687*8623*1263699531279448638168857279*6739776210417622172167263268924187 42 Pedersen 2016 215468985939327864004837684101690634367333380329215709466535067278555655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*139588497165806608518399339587999 215469444343892782536140595345679750413671636441727549768520679793444345=3^4*5*11^3*79*601*60363863961910527694019651999*139467821751255502365552740126399 42 Pedersen 2016 219222291770477546847299084477202016050172464989880913713309954846213495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*142020022603631654776520930109071 219222758160101285021571179610306088839599370885585958156833886261754505=3^4*5*11^3*79*601*60362969360858646600129105599*141899348083681600504768221193871 42 Pedersen 2016 223547910261058799069406881286370096129895789645604005983750524497580735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*144822312602726386236633020240663 223548385853321392827269905186616840584090351273165871627558264017235265=3^4*5*11^3*79*601*60361975655961985248582225599*144701639076481228626231858205463 42 Pedersen 2016 227254050559250833825680628252066742888703565028411535278036160252294285=3^4*5*11^3*79*601*473861*58309019*2182799234136439*147223282525404411352533550111253 227254534036228824156385380830272069377369136178770119787302067279481715=3^4*5*11^3*79*601*60361154388611773045104876053*147102609820426603954335865425599 42 Pedersen 2016 227778634963696151189301500779272379776716568835719141191085945452293155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*147563127020118655851085524265499 227779119556713578167817186530905201110214122352325992820972492179706845=3^4*5*11^3*79*601*60361040304384099575211806399*147442454429225076126357732649499 42 Pedersen 2016 229074465028135389516341030991045279081127453683211149523058843991354368=2^10*2687*8623*1448663*3962626379*220136910613*7640245437160632413002647870935707 229074623215179552478303770848507644759803265418624144125801555094459392=2^10*2687*8623*1263699475428270869238890779*7640242909762972233960567314152127 42 Pedersen 2016 232854119815759641504847311971573449890548892044274316255151171232639015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*150851207203903684382764121373887 232854615206736761930362240014427358325726134811581879157004553493632985=3^4*5*11^3*79*601*60359963088839719347379178687*150730535690225649038264162385599 42 Pedersen 2016 234460695731582855868378970585333901693315751321173170378138109201359815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*151892004405853153361210267826527 234461194540507717083400100387211801591286820979257581214744772097072185=3^4*5*11^3*79*601*60359631840235071642994331327*151771333223423722664414693685599 42 Pedersen 2016 237635390115692863190936660423434661670419988969406252031821614562877655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*153948684703051122726586485135599 237635895678696004177678438818893747910857623576394872581170624643522345=3^4*5*11^3*79*601*60358990457840282720842537199*153828014162004086818713062788799 42 Pedersen 2016 237946553021779349497331946792259476871517000356416611574829787188058055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*154150267136109902139362423917919 237947059246773337851434380235291038566055729650888311401962227168421945=3^4*5*11^3*79*601*60358928515734181147881786719*154029596657004972333061962321599 42 Pedersen 2016 239559570648576675033761702257166803170049535738735396917475182182659205=3^4*5*11^3*79*601*473861*58309019*2182799234136439*155195237508272860023057093520589 239560080305222973786519777578600748427926873856165620287977642434300795=3^4*5*11^3*79*601*60358610000105197786889768639*155074567347683559200117623942349 42 Pedersen 2016 249964200131684191643331173091243281486260128655895178431152857172691968=2^10*2687*8623*1448663*3962626379*220136910613*8336973914901616330201151709963107 249964372744105050221662850221485243171488557537108272721894286614049792=2^10*2687*8623*1263699440492897348687694527*8336971387503991086532591704375779 42 Pedersen 2016 253822387385221518634943482695478442077284259518971353439263928565989055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*164435199096898779570507720957719 253822927385632940575532582115779746205157398123215945796072570961690945=3^4*5*11^3*79*601*60355969935925752731256266519*164314531576373658192623884881599 42 Pedersen 2016 272637985445874347982924328663757732839186431672419183390818544330226688=2^10*2687*8623*1448663*3962626379*220136910613*9093205233694063299146965159593887 272638173715645223276523686487752337807647696650344360453023926492316672=2^10*2687*8623*1263699408632824031592185279*9093202706296469915551722249515807 42 Pedersen 2016 296619269908233286496303322263054404840116543290514254530362449399471104=2^10*2687*8623*1448663*3962626379*220136910613*9893045142381769903379155660192871 296619474738245845060004763156351842492928503650917078522088793465332736=2^10*2687*8623*1263699380235749447424028391*9893042614984204916858496918271679 42 Pedersen 2016 298211404678842717321101290243673536631216382121920726976402018947634215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*193191988328868892670336209914047 298212039115713618275756789723705046023482344273862899855150368009677785=3^4*5*11^3*79*601*60349370995133292397688518847*193071327407284563752785941585599 42 Pedersen 2016 298789441419378325540473183534593373958652726788759765528581656619990016=2^10*2687*8623*1448663*3962626379*220136910613*9965426160422542850083206677777759 298789647747999716967925926236597198656739480719516836876318193878877184=2^10*2687*8623*1263699377890892670581572319*9965423633024980208419324778312639 42 Pedersen 2016 299423634026980677242368261850719841621100988393072135187040363325219065=3^4*5*11^3*79*601*473861*58309019*2182799234136439*193977313753728461935653393230177 299424271042837433131751642077674783635607824740749407121486206318812935=3^4*5*11^3*79*601*60349218254550835456687466849*193856652984884715475044125953727 42 Pedersen 2016 299942292318256421983666352845314307649807108617449945083311417065801255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*194313319100883864409063408716479 299942930437544965594899463442832398731402052759775852871667844251318745=3^4*5*11^3*79*601*60349153281215026607229977279*194192658397013453757303598929599 42 Pedersen 2016 302749389724146431339015266901565771657363961486445729283946132030700415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*196131856959490370452351875906007 302750033815460412491793904792059523155798774330937159508284935256851585=3^4*5*11^3*79*601*60348805497160584207818160599*196011196603404014242991477935807 42 Pedersen 2016 306036434874238516602303273424781844598291935609382484859858918779145255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*198261322091640324506419787071679 306037085958654058644300456859389265430085282692100281785258220246774745=3^4*5*11^3*79*601*60348406367171850327871692479*198140662134683957030939335569599 42 Pedersen 2016 307374855495254147747703560939856711480025358051389491549025232471916135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*199128398725657179908949989321983 307375509427124137955257214649652095568546057771982619203826531448979865=3^4*5*11^3*79*601*60348246297074118986960686783*199007738928770910164810448825599 42 Pedersen 2016 315280313304069837690289844697316399874422439696614653847373369107659555=3^4*5*11^3*79*601*473861*58309019*2182799234136439*204249836366111854059507652366619 315280984054592087914446179717662146821195397732413199145606198221620445=3^4*5*11^3*79*601*60347328579055556741240099099*204129177486943602877613832457919 42 Pedersen 2016 325784875525991784173037234200317330436376263775490764793175412031691776=2^10*2687*8623*1448663*3962626379*220136910613*10865796012784270439650500330374999 325785100496271584348503327797234741619355429747978415186277905088308224=2^10*2687*8623*1263699351333770761131082199*10865793485386734355108527881399999 42 Pedersen 2016 330101163473627199520012287898638990919970621677786609867652828039855655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*213851311923576278317050147127999 330101865755115932371670408873898440085228791225243157012380316792144345=3^4*5*11^3*79*601*60345726627327607015593911999*213730654646359755084881973406399 42 Pedersen 2016 352445985224252426208448622177858745502108488432275818696669165902952455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*228327084731482281887228884801439 352446735043758048700665171843685866020171249173705367406679689536407545=3^4*5*11^3*79*601*60343566313414286785279938239*228206429614579671975291025053599 42 Pedersen 2016 355957011226997682613351244202262733310974320569922559074925456980394385=3^4*5*11^3*79*601*473861*58309019*2182799234136439*230601652651764240347666732475833 355957768516118202069378841247919612611046034606981776127810651874901615=3^4*5*11^3*79*601*60343251540908863096894481849*230480997849634135859417258184383 42 Pedersen 2016 356918875853687350797435375866246213343473379092970071154346391777782455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*231224782876892635487614806015439 356919635189149406535435302744585109784032714886213586509854517677577545=3^4*5*11^3*79*601*60343166388795459650443202239*231104128159914644402811783003599 42 Pedersen 2016 369312875712851570816180593893828623753237199889686168777023087824650315=3^4*5*11^3*79*601*473861*58309019*2182799234136439*239254058211678429282895493431427 369313661416220303575019802156337629691837975495612329804808974299381685=3^4*5*11^3*79*601*60342108880633412527825748099*239133404552208600245215087873727 42 Pedersen 2016 388664910140541378280827390557900366352821136485574320660182275678792615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*251790996607178250467790818888767 388665737014851179150109418919534792697172643585557136581194932854199385=3^4*5*11^3*79*601*60340592650023739225403985599*251670344463939031103412835093567 42 Pedersen 2016 415708756622807655761821630281980030676647600518110143597257801537230945=3^4*5*11^3*79*601*473861*58309019*2182799234136439*269310965300516368358534242518281 415709641032185097027395559487643178080478286338366003945998272284977055=3^4*5*11^3*79*601*60338710407108032085928496831*269190315039520064701295734211849 42 Pedersen 2016 417709155811480545339695995006652172374377029904276613940238867474398208=2^10*2687*8623*1448663*3962626379*220136910613*13931716358507743898908092840970367 417709444259940610535626221971342455130728127967312415570763213157450752=2^10*2687*8623*1263699286647496995081780287*13931713831110272500639886441297279 42 Pedersen 2016 436720402903042221067311764542661743487609754210801884570391215987855655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*282923059470130775956820565527999 436721332014141022942767054101295619815373463731396973113753698444144345=3^4*5*11^3*79*601*60337409025208278793902206399*282802410510516372052874083511999 42 Pedersen 2016 455040557561433470068435467566296073415236447424850327981295906985242055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*294791509332934092818337634145119 455041525648176440913899977857792385046721644425314297437075016248037945=3^4*5*11^3*79*601*60336372481462904771580973919*294670861409863434288413473361599 42 Pedersen 2016 456643764060753942764957493024463263610698552397332163695863900631202816=2^10*2687*8623*1448663*3962626379*220136910613*15230289566951609217031535492034959 456644079395452043435419050188816207043087976074335934207930375586448384=2^10*2687*8623*1263699267100904938794114239*15230287039554157365355385380027919 42 Pedersen 2016 459104280346135430966947067643454805916818333625000274463099801717085735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*297424133949150184197751542569663 459105257078341074548818880427300691736449173711479060751588723373730265=3^4*5*11^3*79*601*60336153775230867561702225599*297303486244785757705037260534463 42 Pedersen 2016 463399379439519854726546643817228696130539039565617303237075880917088295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*300206652393788762054243040414911 463400365309435144091359053922264634397654823401982692978092700583839705=3^4*5*11^3*79*601*60335926788683805779461905599*300086004916410882623310998699711 42 Pedersen 2016 475083371335670024299176055373840296172749759853527349066695497338174464=2^10*2687*8623*1448663*3962626379*220136910613*15845299735491817504597480364128511 475083699403812553123445418059897921702952473201962584042553940930610176=2^10*2687*8623*1263699258961529938757287679*15845297208094373792296330288948031 42 Pedersen 2016 488802587022550497138165656040166778718283756983632010762664076621097255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*316663756669133323441345966073279 488803626937117590421066104869085075714048959249766406656804043115222745=3^4*5*11^3*79*601*60334665898494258434584774079*316543110452645633557758801489599 42 Pedersen 2016 506920863713438002902774243369938537990278611874769257878674627121290655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*328401422781449830145966779850999 506921942174159232254851971820372736620568415537061381566075254222709345=3^4*5*11^3*79*601*60333843848209868111478218999*328280777387012424652702721822399 42 Pedersen 2016 537212883566687142046888522426550394665389165195461704260237737074068155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*348025674081460450794580796560499 537214026472878891421873065012614203880732413239066343686652337037931845=3^4*5*11^3*79*601*60332593374908706962191504499*347905029937496346462466025246399 42 Pedersen 2016 584902216638885173242728996612004449227297506698826436106432628096912935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*378920525632217639000914442015423 584903461002870873397828716019267183890301233986876318277879865311343065=3^4*5*11^3*79*601*60330887322336526034179180223*378799883194306106849727683025599 42 Pedersen 2016 629060156910829506642195805050928594864667631601132550416803319878140655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*407527614924566247791038573580999 629061495219664437948217006571394076988142929990097820785807302585859345=3^4*5*11^3*79*601*60329538355675452850218782399*407406973835621376713035774988999 42 Pedersen 2016 658882322177401791074834428506676345840246286358100598978097302751311055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*426847477658608718973140732305319 658883723932104044562435991059737943848726440857061822173804604110768945=3^4*5*11^3*79*601*60328729662661971358788669119*426726837378356861376629363826599 42 Pedersen 2016 671969901748234164093486770097111349688046114700184484117710238355396905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*435326078677990775215184343167249 671971331346415574685377763196007328562384098752550068241858546028603095=3^4*5*11^3*79*601*60328397436453343827968183999*435205438729965126246203795173649 42 Pedersen 2016 677085258351106330056063468943180319983349802840915325900974316101350055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*438639989204599804180871762291519 677086698832073528682587949574590184147126689303519126471589870133529945=3^4*5*11^3*79*601*60328271076337830652977441599*438519349382934270725066205040319 42 Pedersen 2016 684734040677987884613695286803172011248219847761830252366754749215135755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*443595143309508514051391294336579 684735497431537048692931365700560398409415596022942841465124777676384245=3^4*5*11^3*79*601*60328085658745987132239212099*443474503673260572439106475314879 42 Pedersen 2016 687614340092867733772656162759438553577363678819370492540609985242587565=3^4*5*11^3*79*601*473861*58309019*2182799234136439*445461104041434184692797884007477 687615802974177672132799079294708097731749921636811755129962432772644435=3^4*5*11^3*79*601*60328016905697587796335185599*445340464473939291479848969012277 42 Pedersen 2016 688909813636023572733878976149363311428499944619794581981358687578222055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*446300358026033646277841116629119 688911279273419187763230098568742132892834828630876413323464668551057945=3^4*5*11^3*79*601*60327986170122493534267657919*446179718489274328159154269161599 42 Pedersen 2016 704811838940373007824058886823183223621923627255605845024981848310966905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*456602257412852147999154974273249 704813338408906590042736836576730923275348673467320771255424912137033095=3^4*5*11^3*79*601*60327618098222034964210855649*456481618244164730339038183607999 42 Pedersen 2016 723470854634356678846615224830472522171528328273365288941324742280982055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*468690233545295561562654991037119 723472393799452314859463562143846728543567592295134089983944871000297945=3^4*5*11^3*79*601*60327206852050266425703761599*468569594787854315671076707465919 42 Pedersen 2016 728689971026805212813755364618776291382164098232771123811150411260127655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*472071363365809300663412269185599 728691521295432843046968617127988558139843694446002151319450071146272345=3^4*5*11^3*79*601*60327095593121129013888388799*471950724719626983909245800987199 42 Pedersen 2016 742193058310178647957578206097882323549794363289502328514035512829643055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*480819145106962334222926581510919 742194637306267096773326355709988368965710872379650561573286455318836945=3^4*5*11^3*79*601*60326815003961544140637654719*480698506741369177053633364046599 42 Pedersen 2016 790768581088431931254755431293782993444522297661920354001448094754307072=2^10*2687*8623*1448663*3962626379*220136910613*26374244911011054714415622415565103 790769127152544506852491038247749930052147814213020137371485018304119808=2^10*2687*8623*1263699178493808123872668079*26374242383613691469836287225004223 42 Pedersen 2016 792414492739230550143085916088848645707872458688315954983070422734516785=3^4*5*11^3*79*601*473861*58309019*2182799234136439*513354382263721572938080056401753 792416178580091571084765575747474417990671954674926613098707324029259215=3^4*5*11^3*79*601*60325855373745066987690581849*513233744857758632245939786010303 42 Pedersen 2016 816632751881262046195642201009841510689082528538361141245347407191177255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*529043834659251693744556379737279 816634489245828424033763581522042487676893759713046219172778539361142745=3^4*5*11^3*79*601*60325434808953755598337638079*528923197673853544363805462289599 42 Pedersen 2016 829730984470529155958874259570416284171558466704794507923883471475914305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*537529337084082436038492598984169 829732749701238705675177703803969280993232861043679429317956437920565695=3^4*5*11^3*79*601*60325217583405773008424852969*537408700315909834640331594321599 42 Pedersen 2016 904809854933683457766744444502404307774985113951570009319452768044755655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*586168108233304783467815991547999 904811779892702857737210360632595000415740723701512700556226349267244345=3^4*5*11^3*79*601*60324093830254869681776891999*586047472588885332972981634846399 42 Pedersen 2016 915739902591873817942385581725080825968869423768661658095934259881551785=3^4*5*11^3*79*601*473861*58309019*2182799234136439*593248983097527925320269373604753 915741850804280332763787247177972990340578359975413450089343332514224215=3^4*5*11^3*79*601*60323945603472947277945425599*593128347601335256747838848369553 42 Pedersen 2016 948757096105779406929238258265238872133040063265389162473178399496841255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*614638699130889953607648702348479 948759114561391279549328138115046321779295592912325162430505314428278745=3^4*5*11^3*79*601*60323518590713943897397329599*614518064061710044038598725209279 42 Pedersen 2016 1066989910871643902049417398815354698497955564937883644218076758960282855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*691234135160358354794585286053759 1066992180864440003590116817229550754566034337810478997637453383309157145=3^4*5*11^3*79*601*60322206294830951318419017599*691113501403474328218114287226559 42 Pedersen 2016 1075595791171380283295984631182948965407313863962221309338526489335518055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*696809331481963923819104125585919 1075598079472958956693445610590637349551602794224386120049235235612961945=3^4*5*11^3*79*601*60322122042893141674069854719*696688697809331835052277475921599 42 Pedersen 2016 1114019906059643554852191890986773857578131221068621026479763067133807655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*721701844104124994846055267729599 1114022276107509708776933476721570408747880319162060776823025128808592345=3^4*5*11^3*79*601*60321761753870566958919556799*721581210791781928653943768363199 42 Pedersen 2016 1123430933867091100837436927710794005632370025263796096448543023835812135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*727798643709415404523072060558783 1123433323936669839996844131505139037196532776138146491278326461224283865=3^4*5*11^3*79*601*60321677268380630920287825599*727678010481557828266999192923583 42 Pedersen 2016 1139146263687295059321591673059318199791323840830309115731705021830676095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*737979595100187515015255406376151 1139148687190822064290006821381280905295949747306732975098170949560811905=3^4*5*11^3*79*601*60321539299980316579240080599*737858962010298339073523586485951 42 Pedersen 2016 1187070058269027022695663042583794942008188214600389156385261883404668455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*769026339182560755265932784194239 1187072583729158634648368232926811829115072574139571570684806784437891545=3^4*5*11^3*79*601*60321141127203853132768593599*768905706490844355787647435791039 42 Pedersen 2016 1219393328254914942951400734229979355321028473826107766424972974159977855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*789966506794827712649172523084759 1219395922481947972435296826256248663526623225302657826592932987373462145=3^4*5*11^3*79*601*60320890248197565357054192599*789845874353990319458662889082559 42 Pedersen 2016 1277941982734728023918267953232035400374862168345733416996295461725547655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*827896414221126489343513181421599 1277944701522473892796593525715027317144033191852159741699190643464852345=3^4*5*11^3*79*601*60320468139895038035684740799*827775782202397398680324916871199 42 Pedersen 2016 1397048597405098154035788980584818975358856234120886575441017724813016064=2^10*2687*8623*1448663*3962626379*220136910613*46595303280551088449608984614876911 1397049562135008789781580983531464249370909966743254737038539177393816576=2^10*2687*8623*1263699125940631578686797679*46595300753153777758206194610186431 42 Pedersen 2016 1397164750169965141310770939632775177450434188413264049350815872456928256=2^10*2687*8623*1448663*3962626379*220136910613*46599177285589928525903649132853019 1397165714980084902693536656619679235810355391034917865901033222000006144=2^10*2687*8623*1263699125934933124925127359*46599174758192617840199312889832859 42 Pedersen 2016 1401951358198232974947703024164701391234281665147246739276106718711696935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*908234112381989269774939978322623 1401954340812643072773137752492018376624603502547721119761944663093359065=3^4*5*11^3*79*601*60319690534245581863619025599*908113481140865828567923779487423 42 Pedersen 2016 1422749392662280840901327823122528914965034226651424111005871349211169255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*921707821195268654662076464970879 1422752419523958813914413064616619564252844368074823221486665525059550745=3^4*5*11^3*79*601*60319573395587220532873809599*921587190071283871816391011351679 42 Pedersen 2016 1423165978998504940024834364960209365289358634538657393570302136507782705=3^4*5*11^3*79*601*473861*58309019*2182799234136439*921977700687947501652500578476889 1423169006746459317854645470440524504947172193161877550808385399456377295=3^4*5*11^3*79*601*60319571084272551853075669849*921857069566274033475494922997439 42 Pedersen 2016 1457951686122207591483691084032319142586314275139993262470761643972164455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*944513122939458067162398060311039 1457954787875833225939042932345924526906367857886862635915719911729595545=3^4*5*11^3*79*601*60319382746206009775318233599*944392492006122665527470162267839 42 Pedersen 2016 1523711970559243261611996930982374486141623060372687632605271927752507735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*987114981567718079611004668497263 1523715212216133604271950734965009529363733361573611172600599328192708265=3^4*5*11^3*79*601*60319050203058821947098975599*986994350966925825163904989712063 42 Pedersen 2016 1565676787655596123313446834169183291582264263691853587445185693978383155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1014301287414849579974396661187499 1565680118591524184915130843125913315629880239222861843612959842021616845=3^4*5*11^3*79*601*60318852594865356027790377899*1014180657011665518993216290999999 42 Pedersen 2016 1573362404719268735548190282007776280484737692025920970839763323301641216=2^10*2687*8623*1448663*3962626379*220136910613*52475839819946954929329196555506559 1573363491202426817363943236243573068273296707004696019243530123576361984=2^10*2687*8623*1263699118259368356298158719*52475837292549651919189628939455039 42 Pedersen 2016 1581397690231577187206515882899497719147985948924084821483834879107575655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1024485849035653669412932384703999 1581401054613309405042758727389553843329086667820039230128305689468424345=3^4*5*11^3*79*601*60318781267535861892472358399*1024365218703796937925887332535999 42 Pedersen 2016 1680007050124153860048292050211555470620046930476503301037410415148990695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1088368510820504879019247210664831 1680010624294689424180577606231795394516596137063615003992451382116417305=3^4*5*11^3*79*601*60318364319086975756591305599*1088247880905596596418338039549631 42 Pedersen 2016 1730832797852071597601072906842640726124567642294057569624443940014607655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1121295243694563060161020248369599 1730836480153040283257705063149673452193104072719403610607247260087792345=3^4*5*11^3*79*601*60318167970690249040386436799*1121174613976003174286827282123199 42 Pedersen 2016 1814243878404819853912079055981089652092977699396727072258705376638413395=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1175331917838528666141638117484491 1814247738160654832640224131062350844929653954730660475778129097706034605=3^4*5*11^3*79*601*60317869585389644816123481791*1175211288418354080871669414193099 42 Pedersen 2016 1853438690016780762227777499990663817175520166591599411808038756758330295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1200723715297264113980140388898511 1853442633158540103657201922128667655403934405338552342806703760460997705=3^4*5*11^3*79*601*60317738650763267016333905599*1200603086008024155087971475183311 42 Pedersen 2016 1858452667387810815692290690198666927118197181777074897146001621392083968=2^10*2687*8623*1448663*3962626379*220136910613*61984361768321815651309943783871107 1858453950739641997498107612760391934795322668724614809372330159312417792=2^10*2687*8623*1263699108922769314308075779*61984359240924521977769418157902527 42 Pedersen 2016 1860262726298638049012047057151233769077626555042663465833665263155824935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1205144569486727928552569605785023 1860266683958353973083471900676752004488549973062298180981529367954831065=3^4*5*11^3*79*601*60317716418330538070931025599*1205023940219720402389346094949823 42 Pedersen 2016 1912238080641334769544649630916290082671507379270341721922737404274658855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1238816058544555659450954113274559 1912242148877241462246137957404816487204592162119044401064460076029981145=3^4*5*11^3*79*601*60317552292337155304146257599*1238695429441674126670497387207359 42 Pedersen 2016 2118636611354163696597386161011331108333164586770757208897983402926149235=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1372528391174862750401228283977963 2118641118697481874866683457254444796784030533284399529218446828199866765=3^4*5*11^3*79*601*60316980028413711601777942763*1372407762644245141064473926225599 42 Pedersen 2016 2142759248719771834306415058764399731197902732457282299268427795864702455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1388155896371778311346298282951439 2142763807383362570886331807282052285922060082235092926142729213174657545=3^4*5*11^3*79*601*60316920341886108906045588239*1388035267900847229612239657553599 42 Pedersen 2016 2164765568529899150143467802199518990482951781962434111644617598668868215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1402412375544659190329114831631247 2164770174011352856849434883448501677903998975032512289484257123725243785=3^4*5*11^3*79*601*60316867052179830048725585599*1402291747127017814873913526236047 42 Pedersen 2016 2225924795049219060011347009551100287411815178531600487710367352210259735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1442033504685067871441571891138863 2225929530645308527972893374990878323489251233498508583859087360605356265=3^4*5*11^3*79*601*60316724485292955379389353663*1441912876409993382861039921975599 42 Pedersen 2016 2270925266788518002036396411094461677631378526204319688475283560159714855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1471186415924042468681909661639359 2270930098121920099253005844527017612790333065386530171428088306116125145=3^4*5*11^3*79*601*60316624490091882524704532159*1471065787748963181174232377297599 42 Pedersen 2016 2312490808050808892268260612868433411232001789800154900589557330120777255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1498114056639445784552639035417279 2312495727813799938814812112778907739088527755476701907287906938351542745=3^4*5*11^3*79*601*60316535585546905570297318079*1497993428553271042021916158289599 42 Pedersen 2016 2496658435267897766237747906738556790108946796689434810699686341588789415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1617424416772039311011087324582207 2496663746842641480984748196094088641140674565641921743544715628431562585=3^4*5*11^3*79*601*60316177288938509574031987007*1617303789044161176876360712785599 42 Pedersen 2016 2611313384678058158005748822333756264309697853460160913274934449317295655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1691701983963507193936030925879999 2611318940178172250280143562938611749125377993013911501574111341402704345=3^4*5*11^3*79*601*60315979757044290418795319999*1691581356433160954020459550750399 42 Pedersen 2016 2641698131132427175773852149486062884985655426010244054350304234457447655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1711386306864269032347030522441599 2641703751275285177823408611274137330241915242992306332271233833612952345=3^4*5*11^3*79*601*60315930283467191840750980799*1711265679383396369530037191651199 42 Pedersen 2016 2894982451870982792375989691046296219115037992856576347329519512611066735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1875472927188887854418569164699463 2894988610869529666219133143703027868757800254677739219533538562610949265=3^4*5*11^3*79*601*60315558290688852741446225599*1875352300080007969940675138664263 42 Pedersen 2016 2899703777584700397175924622167078206108235756811450687154781448522221095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1878531570446222783169915500137151 2899709946627742770918129667384242398618714778762247954068460555253266905=3^4*5*11^3*79*601*60315551973619662973050705599*1878410943343659967881789869621951 42 Pedersen 2016 2941954090084797560409995420061681136731811256757692578122484217316860115=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1905902830402562528513689623880267 2941960349014261568552177901443766511742165889445776817173549886192131885=3^4*5*11^3*79*601*60315496345936543737855397567*1905782203355627396344799188673099 42 Pedersen 2016 2967273116563173441897697228946078410920020383513825641141242518090914585=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1922305399154674877022554081060993 2967279429358196181767555200197909716163570196860230228909265825475421415=3^4*5*11^3*79*601*60315463769527522815223844543*1922184772140316153874586277406849 42 Pedersen 2016 3216783198843132834870935017425857749585568742176649949944520292833967655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2083946933138518948913660943057599 3216790042464252016008148063018846321535122648783532259483776068740432345=3^4*5*11^3*79*601*60315170170317921650117995199*2083826306417759435366858245252799 42 Pedersen 2016 3232757860372867634336873491155455068456056808834319828564935480851711015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2094295888863850107086450748471487 3232764737979656429758453299438397201227895548561267467353130419208960985=3^4*5*11^3*79*601*60315152916729422719254276287*2094175262160344182038578914385599 42 Pedersen 2016 3486395343253904297811495757728159787734231197597316697045070613498207015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2258611300225424322088307442788287 3486402760467725076258950270623768973588194720528170676571743355221664985=3^4*5*11^3*79*601*60314900159580528816012593087*2258490673774675545934338850385599 42 Pedersen 2016 3738227932317884946072189885496931072256457310341238030660841395018818905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2421757436972518066849826631494849 3738235885298873880624819585605323192884166589839337187979604225819581095=3^4*5*11^3*79*601*60314683137327517413569146049*2421636810738791543707260482539199 42 Pedersen 2016 3758286382206039313809012750694760547329936583951851356766404117368124455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2434752016508672373257882243279039 3758294377860849512405079794521718011334487257496877985841912096125635545=3^4*5*11^3*79*601*60314667102143419197311835839*2434631390290981034213532351633599 42 Pedersen 2016 3947193128662738462051173195339112170268663298141919206628471461527996455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2557132547179558738502845879016639 3947201526211652084154563837373758563556997653124884297077268363460163545=3^4*5*11^3*79*601*60314524081168230788507893439*2557011921104888374646904791313599 42 Pedersen 2016 4087442037631116953986800590474151192421994480545167925659850575296687655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2647990794582052822285092071633599 4087450733555872536247487978740582548504669514126099598266488314021712345=3^4*5*11^3*79*601*60314426450239170254364804799*2647870168605013387489685127019199 42 Pedersen 2016 4331160846403204392431294033194027467856026189053871282612663698223282855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2805880534951071860596252931453759 4331170060833275301559011654539319047588505530268967442022414501646157145=3^4*5*11^3*79*601*60314271832856788689514017599*2805759909128649808182410837626559 42 Pedersen 2016 4363967531809652891450631742838363965447858985372760496606503496978876455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2827133876321356264069326873320639 4363976816035078731133356190899868835231419499803721014838483558985283545=3^4*5*11^3*79*601*60314252338907153782290513599*2827013250518428161290392002997439 42 Pedersen 2016 4378071103085388119260637652966115918592659077707997931041516472938164955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2836270673018422761207541780033939 4378080417315788578684546031551335190659987242438465064369620946981195045=3^4*5*11^3*79*601*60314244048272352559913553599*2836150047223785293229829286670739 42 Pedersen 2016 4379041138782876925206779337489993903420021984694036340143831617408061095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2836899096754763986834708663609151 4379050455077002657779793073333694197291616367886002489876083647935426905=3^4*5*11^3*79*601*60314243480010119047193093951*2836778470960694781090508890705599 42 Pedersen 2016 4479848218838258703119242733701167233079695000918705949123881698343842816=2^10*2687*8623*1448663*3962626379*220136910613*149414907108687761055162097427113709 4479851312391038362326585757169119030607151089306940274230165194373008384=2^10*2687*8623*1263699078771588112134626669*149414904581290497532802773974594239 42 Pedersen 2016 4590358596477189738640105875826911435255860856880206638559319012839568845=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2973798085794207445934781418614101 4590368362343613924077801941201464471503577829734881734723734487076719155=3^4*5*11^3*79*601*60314125412237596100684098901*2973677460118206012713528154705599 42 Pedersen 2016 4718537341490265345282073756940109037163364146525405632349047207181825655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3056836850315113909416077835353999 4718547380053577128582183645203518337453895152132470967955800074994174345=3^4*5*11^3*79*601*60314058948976964302025408399*3056716224705575736826623230135999 42 Pedersen 2016 4767185415088313739815832100698867969426362922426520946483888750879761408=2^10*2687*8623*1448663*3962626379*220136910613*158998370295238814236187391872693417 4767188707061383269771066723358324531061887872824466187161369964738583552=2^10*2687*8623*1263699077483181137845783337*158998367767841552002235042709017279 42 Pedersen 2016 4882183628804217878024968698877446177908244972821672046649261800284305455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3162852754243629396150112842168839 4882194015520674809595161230748810534677693147711726532845227544780654545=3^4*5*11^3*79*601*60313979167382919857429073599*3162732128713872817605102833285639 42 Pedersen 2016 4905191415256883067501911811929392860863522790380369182082659605528165555=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3177758019240530958352083934341419 4905201850921796746078248012817688772949329335133357385778434095612314445=3^4*5*11^3*79*601*60313968377372878675381709099*3177637393721564389848255972822719 42 Pedersen 2016 5226506425891785963625041926360275650896810093505207338409986297330211255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3385917347859503223273929776694479 5226517545145880747647042608769668454709988199628651822338480291218908745=3^4*5*11^3*79*601*60313827617453258585512529599*3385796722481296574390191684355279 42 Pedersen 2016 5229784597336064146196665694181832530305368455692618601953224266786175935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3388041064288407305350836259660823 5229795723564381916842990444473197196397794033804195709103589374679680065=3^4*5*11^3*79*601*60313826270506959402444825623*3387920438911547602766281235025599 42 Pedersen 2016 5567084035907081925578135535953437312304265647135046183715398816258786855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3606555675659235512463569072736959 5567095879731028187047452959576100551577827394841424653445759321351453145=3^4*5*11^3*79*601*60313696158753861681098577599*3606435050412487562976735394349759 42 Pedersen 2016 5721813367241162190667836268558314283565558435009380451204272649356636455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3706794857341169728328429262728639 5721825540247665752084467000949765657907633322717474439916548823759523545=3^4*5*11^3*79*601*60313641605372056277174005439*3706674232148975160646999508913599 42 Pedersen 2016 5813061441550006215310664269599613314094526281199871425039010943358319616=2^10*2687*8623*1448663*3962626379*220136910613*193881130091395923003238086664988159 5813065455751269824246943026683942609726727409761124223327228829687235584=2^10*2687*8623*1263699073869084095153379839*193881127563998664383382780193715519 42 Pedersen 2016 5843342824235790135824497855521625780832243778068218828317288784092579495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3785525975832781436039129904471871 5843355255792997017925096769971396458395415942243547259704615581098588505=3^4*5*11^3*79*601*60313600783213343097899556671*3785405350681409027070879425105599 42 Pedersen 2016 5889112337616968953281176196949152492789737388157299286244309993481717705=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3815177099687274462813735187699889 5889124866547604204047445957368835190308569288155588792868217094994442295=3^4*5*11^3*79*601*60313585845849781560086976689*3815056474550839417407022520913599 42 Pedersen 2016 6523547029343204565209235862751443961863414919347531107678515011583293455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4226186530032177321138025890219239 6523560908016855322993108824358803214634927774090541673784907793859266545=3^4*5*11^3*79*601*60313400381695398384604218599*4226065905081206430114488706191039 42 Pedersen 2016 6749331086135265587148096950994007885934539016648834446728590121714733095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4372457498144857353745704862786751 6749345445158521500866252976055964875025428789268525950800615522483154905=3^4*5*11^3*79*601*60313342790934884097320271551*4372336873251477223236454962705599 42 Pedersen 2016 6752071634337690625279095626656341391860302458081553384964300218599828155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4374232923054940156346320564368499 6752085999191390307478429427446065474270958173834290755502866282264171845=3^4*5*11^3*79*601*60313342115562786965186294899*4374112298162235397934202798263999 42 Pedersen 2016 6805142133844985348862055429126866593087024102776079631091749581825140305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4408613886225890044279659952334969 6805156611604768152930356822237720156379585340565092144615118592326539695=3^4*5*11^3*79*601*60313329144300859833408081599*4408493261346156547794673964443769 42 Pedersen 2016 6946511944388556197551134739416180269064494004657493600136588452675831455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4500198293663294879134731472859639 6946526722908869396878167101110646502665849249427226001250489646104328545=3^4*5*11^3*79*601*60313295558517580343815336439*4500077668817147165929235077713599 42 Pedersen 2016 7327506701811516917930805832396761474742825371416505718065066527913249255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4747020291663960026687432924234879 7327522290888093012057293772901579336515306394178237875304086419573470745=3^4*5*11^3*79*601*60313211496944985512546815679*4746899666901873886076767797609599 42 Pedersen 2016 7727243662175964035123902207089961588949109989660821921453135310357569005=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5005984157464176239270870151629429 7727260101682343745247198071604284037447657700062962264113242586684350995=3^4*5*11^3*79*601*60313132211543110097137356479*5005863532781375500535620434463349 42 Pedersen 2016 7835268351500996862529348753069356390337132900971675215296785000511420455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5075966405600483228261839531035839 7835285020827044097541058429577698480767666903127767054306426369001539545=3^4*5*11^3*79*601*60313112174057276169254673599*5075845780937719975360517696552639 42 Pedersen 2016 8433838038720141527661615576978674837244979451654466262073969482639443495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5463741206338880208869544634043071 8433855981487356394917963291006489019640026975419587283538658740164524505=3^4*5*11^3*79*601*60313010447825570807009105599*5463620581777843187673585045127871 42 Pedersen 2016 8673739737882056005902391763939934003157121807742985656481440416299877055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5619158086905462366032929107428119 8673758191033786529160902354304408076331660402251721373516377852085402945=3^4*5*11^3*79*601*60312973618178806046804656919*5619037462381254991601729722961599 42 Pedersen 2016 8739880395449369916678140010482502709171042609194039094388381306732750655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5662006364819478630970239532718999 8739898989313598915737832190599906048309336742842825256726753018003249345=3^4*5*11^3*79*601*60312963819850171399671470999*5661885740305069585173687281438399 42 Pedersen 2016 9173236440598641883330262199801863339446254200255804430577955828267241255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5942749873294232482191733906668479 9173255956416387605229652125744971171127415795099996690408569403737878745=3^4*5*11^3*79*601*60312903116677535899381329599*5942629248840526609030681945529279 42 Pedersen 2016 9370556565175619921037350948974971547347574732455518665513898613707557888=2^10*2687*8623*1448663*3962626379*220136910613*312533097182810829184331113050205187 9370563036000052600209078347762479986643451940270412841385631307804521472=2^10*2687*8623*1263699067615045357646105279*312533094655413576818514544086207107 42 Pedersen 2016 9505288704155800304731967917701337408614722695844513745900760928798186535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6157865177468447059389055080026303 9505308926405948548790423086450961866112291001273488730201013868640789465=3^4*5*11^3*79*601*60312860349357608710250791103*6157744553057508506155192249425599 42 Pedersen 2016 9937558907868789644371209777866925023438912494423370194351642066594774016=2^10*2687*8623*1448663*3962626379*220136910613*331444140197093585068475162564593759 9937565770235879044758577727174824757274288970685879145471247391819613184=2^10*2687*8623*1263699067031967834285020639*331444137669696333285736116961680319 42 Pedersen 2016 10028908842858134152260774293099777709835659426956923385949189048909602235=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6497084986428754608710486597525363 10028930179096269196481699358201473656476612583908924424573486265762013765=3^4*5*11^3*79*601*60312798662917611564219490163*6496964362079502495473769798225599 42 Pedersen 2016 10165390392335226620454309943097403835053387824875947484146139220197576935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6585502603930943541472948375626623 10165412018934246015197919500115918638036622077342781641997833824583479065=3^4*5*11^3*79*601*60312783628461145104014025599*6585381979596725884702691781791423 42 Pedersen 2016 10228376793588470539222749501309319891916449600015726281325773100740311055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6626307442058777462118996828505319 10228398554189391583085805779983826980479814145833321787236476018921768945=3^4*5*11^3*79*601*60312776825353971296119869119*6626186817731362912522548128826599 42 Pedersen 2016 10448328085029000601920661121523312966535152826697674428019511115638562855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6768799736659854045291912615277759 10448350313570472888068833952576307398998071927288230634652876262086877145=3^4*5*11^3*79*601*60312753711946745041968250559*6768679112355552902921718067217599 42 Pedersen 2016 10752373680841592888153037564628851860321237415018380782630366747978074405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6965771322172920444597493861296749 10752396556232023302839940801111720214960042882513124194221898409653925595=3^4*5*11^3*79*601*60312723318639329761909680749*6965650697899012609642579371806399 42 Pedersen 2016 11823054465718538307085343751325031136856895917674300236607977133992695335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7659396537206711034312637561969343 11823079618954001585803539000973339427355776108282688597520816503756040665=3^4*5*11^3*79*601*60312628735218846857337534143*7659275913027386619840627644625599 42 Pedersen 2016 11869082472270966173978018300123704532488568532461492063955902737168242855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7689215122160744570003475458621759 11869107723429795201835739630946257702310853883673918641068695445293197145=3^4*5*11^3*79*601*60312625051696461451632394559*7689094497985103677916871246417599 42 Pedersen 2016 11946121591003129260088476726237597717558662645057632801657690878045455655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7739123812081570820940041683607999 11946147006060644449992636358853813816282618456401612580613425663906544345=3^4*5*11^3*79*601*60312618949936663972687031999*7739003187912031688650916416766399 42 Pedersen 2016 13582091627903526901107694659273090886182704909681561277180025362886638592=2^10*2687*8623*1448663*3962626379*220136910613*452999043670983768924200739924031583 13582101006997473075713781681990515360290662109734095247239762110905893888=2^10*2687*8623*1263699064446244648139572703*452999041143586519727184880466566079 42 Pedersen 2016 16736477350676364761985873211542448576295963972052906409684314968604497955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10842487196223734474274254513485339 16736512957088975651469286439901286902724290168611334300978079732236462045=3^4*5*11^3*79*601*60312349882160008464456273599*10842366572323263118640637477402139 42 Pedersen 2016 17821201853750747665014394699975771439634144201085587411001019064112012455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11545210432994873312121464287749439 17821239767886030198281517541184593959996737002645369072286756070239347545=3^4*5*11^3*79*601*60312309040821493089025986239*11545089809135243295003222681953599 42 Pedersen 2016 19297371772844466758920692721689057427685973094367545484675594123070049755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12501525977291741563491333222597779 19297412827492183404266725058844112053995664806219307305069582204794270245=3^4*5*11^3*79*601*60312260836963754896760702099*12501405353480315404111283882086079 42 Pedersen 2016 19595308385568569328748745822735089498230746808796179045633777632634238455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12694539945587573161449423364500239 19595350074068544264066803644573200719311945513431669070203859456072321545=3^4*5*11^3*79*601*60312251988791043761651297039*12694419321784995174780509133393599 42 Pedersen 2016 20166759806875597188426999068886926764543775762600954272700766930267854055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13064746566070640933410858503374719 20166802711123346748193556560741849008386090019522181852690123004907825945=3^4*5*11^3*79*601*60312235749360367222131281599*13064625942284302377418483792283519 42 Pedersen 2016 20546140433774556410303286381525486978460793087248276966458428277180524535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13310522872724625359881405775506703 20546184145144548895123040022145696318075810838622510890228214014556051465=3^4*5*11^3*79*601*60312225467109484994643021503*13310402248948569054771258552675599 42 Pedersen 2016 20975694658064838568857133956694045533056449160498307788825253815446641255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13588803425995471415172298443188479 20975739283300074519157158479670882105001878549436681395289266931438478745=3^4*5*11^3*79*601*60312214274004374566005329599*13588682802230608215172579858049279 42 Pedersen 2016 21653198519280294787644280386656048364755019344275197874953520736935631872=2^10*2687*8623*1448663*3962626379*220136910613*722192022434912073006003096246635303 21653213471865560098982056458347955984967479201777544308230073695040939008=2^10*2687*8623*1263699061818210942187904423*722192019907514826437020942740838079 42 Pedersen 2016 22323870964111425240451175924578990313911954616489573524455137159614755495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14462200140864600797536221888932671 22323918457556071062753184091158383562337128893128695333889409458171612505=3^4*5*11^3*79*601*60312181941484252010531105599*14462079517132070117659058778017471 42 Pedersen 2016 22976836194556654727627695196879964128119809222341764110707619555597532455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14885214315373406203058895300565439 22976885077167546746761187198615675527194049985776452289833857309057827545=3^4*5*11^3*79*601*60312167645681634289116753599*14885093691655171325799453604002239 42 Pedersen 2016 23713041768880126978095235668249667929254083509994372743276699562270242855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*15362154554716436367863552730221759 23713092217748893730889785112683466893917074407609769146995386210591197145=3^4*5*11^3*79*601*60312152471701631398023994559*15362033931013375470607002126417599 42 Pedersen 2016 24352113402982176043433028322892556661241533571513133797493439077530850855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*15776167961781527172341572376468159 24352165211458930485068118174926230101793468381062489058227205244732189145=3^4*5*11^3*79*601*60312140043645110046733137599*15776047338090894331606373063520959 42 Pedersen 2016 24765802046507437164956464277433601892971777847422782165530382334342949955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16044170225738496655909384052186939 24765854735095831897751458068568571640859527288386372205490054304008410045=3^4*5*11^3*79*601*60312132340609086670240423739*16044049602055566851197561231953599 42 Pedersen 2016 25389375002924137534377278301561920573121440012168197611748456089266912655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16448143036396064425967042512938599 25389429018147493373127409677057714137569694167181671950835232001971487345=3^4*5*11^3*79*601*60312121203818692506340189799*16448022412724271411649383592939199 42 Pedersen 2016 25541895696305041218639965757641355741594302609020254311899546008189131776=2^10*2687*8623*1448663*3962626379*220136910613*851890462894496404347719948297684999 25541913334224579832094376595750543139174888233107768573218831317174068224=2^10*2687*8623*1263699061144900292036708999*851890460367099158452048444943083199 42 Pedersen 2016 28309827570710177526205023749533887894506249094312489714735308105984210655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18340116413465116682412623797586999 28309887799119077748286722997924044389944306799078922255370501990143789345=3^4*5*11^3*79*601*60312075575182227314037689399*18339995789838952304560157180087999 42 Pedersen 2016 28577530154900543189485038695625186597962854795353518382767103737748782655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18513543699306885883785042588584599 28577590952839606178962319479355068448859586763452675898187107055313617345=3^4*5*11^3*79*601*60312071859259426870032091799*18513423075684437428733019976683199 42 Pedersen 2016 28685853255585614611204101417353159567731735562604433650797774163804604455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18583719268969738326736291658063039 28685914283979207396206543126502187282938375650466819833771059173785155545=3^4*5*11^3*79*601*60312070375359553438267419839*18583598645348773771557700810833599 42 Pedersen 2016 29072052759223480087256068212266824225823479674258804468740046109904207655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18833913087277167022620461672049599 29072114609246295588879409778812950145393956709602677006951196404118192345=3^4*5*11^3*79*601*60312065174870967873688996799*18833792463661402956027435403243199 42 Pedersen 2016 30819042282233521201188910803298651643997045320157458692075147027201790055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*19965675234011580994431743834443519 30819107848930310553271529085892290220660084497752528757624397574521089945=3^4*5*11^3*79*601*60312043278553671084000792319*19965554610417713245135507253841599 42 Pedersen 2016 33565231500663057714186456301104259481679535314975294359959647638947005735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21744754595537237257009666368905663 33565302909804727800180455944822898899227476491767517065185089619327810265=3^4*5*11^3*79*601*60312013466168213059782225599*21744633971973181893171454006870463 42 Pedersen 2016 34996208989790140678904369657666696024448741725094592865789488161346742655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*22671792871206266811507713623152599 34996283443298546199486886598896237677528922315534159774004648399907657345=3^4*5*11^3*79*601*60311999785832992027472875199*22671672247655891782890533570467799 42 Pedersen 2016 38048623034734980400327282159419936920605390829402650154489930939413348155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*24649255601650582045406101199584499 38048703982173480427198124574453627653758358116170639078948225637354651845=3^4*5*11^3*79*601*60311974042921866805193440499*24649134978125949927914143426334399 42 Pedersen 2016 38164876223238670862357823876812887501318166763754647890626862340390870016=2^10*2687*8623*1448663*3962626379*220136910613*1272900588848198382543145972822022759 38164902577939356763480927595942216996228531427835954978323135518274397184=2^10*2687*8623*1263699059904872354520872639*1272900586320801137887502406983257319 42 Pedersen 2016 42525562131752680025669327768197194336069428667004456424814198248212901415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*27549576488813027895568587934511807 42525652603760620932709213575342396601756875389204187327538079354549850585=3^4*5*11^3*79*601*60311942971171066199409916607*27549455865319467528877235944785599 42 Pedersen 2016 42641599401185560243333707837765646536768174029708469709294067347637577255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*27624749572237295969173845144857279 42641690120059720791337368226278862965362872008500707598326183112194742745=3^4*5*11^3*79*601*60311942252571162822038758079*27624628948744454202385870526289599 42 Pedersen 2016 43407936684598646414637113290358513973535475968107675709418424780337606935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*28121210207847660989073511403000623 43408029033835095309523995812837265764701762952987844176275800853499449065=3^4*5*11^3*79*601*60311937603240106666720415423*28121089584359468553341692102775599 42 Pedersen 2016 44705452930379210660175027390420722571819494475493390884197984965117188135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*28961787528092384953873320776379583 44705548040047131995587314048609895269964100347022658221472943896378107865=3^4*5*11^3*79*601*60311930094688403495724744383*28961666904611701069844672471825599 42 Pedersen 2016 46832332520152213850793573900131257651305028150407633537362112998489988135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*30339656014801831863652705890619583 46832432154700171789394795778056231728020916819324728088770592185565307865=3^4*5*11^3*79*601*60311918686690702477671825599*30339535391332555977325075638984383 42 Pedersen 2016 48502418028049676038656712439934422087416575027016012411662162113040208935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*31421596996560771692247674169772223 48502521215660351040642791223165140672065525398343006458527428896387247065=3^4*5*11^3*79*601*60311910430073970681467025599*31421476373099752422651840122937023 42 Pedersen 2016 49328529286418583187242068864109731658473990440095256736119896546505464832=2^10*2687*8623*1448663*3962626379*220136910613*1645238244935395955586065331561856343 49328563350163923665336076869044473009634406997440079903701563072605774848=2^10*2687*8623*1263699059337025992588406463*1645238242407998711498268127655557079 42 Pedersen 2016 51141172080759918502264316288824062515955412461598471139033272149333831255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*33131076024376506278992996298490479 51141280882250002581972457265260265304622008415558144173032834606639288745=3^4*5*11^3*79*601*60311898483669229429156479599*33130955400927433414138414562201279 42 Pedersen 2016 51798229991719353042352298775554935189053237880440311127462110964382098855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*33556741583351930602564787306026559 51798340191082752794742126710795900140623432928379984373039605977810541145=3^4*5*11^3*79*601*60311895698251912404793857599*33556620959905643155027229932359359 42 Pedersen 2016 54154685497936499275197868820976955017268584652829584883416326947987559855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*35083337540152708099996272737940359 54154800710596621840010339894303749216882681178818303448212991548432280145=3^4*5*11^3*79*601*60311886264588563307158097599*35083216916715854315807813000033159 42 Pedersen 2016 55317396452683787728897115400379661809713440584373755894936443276148847655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*35836583182925144928780637308561599 55317514138980693858569028976135405501044169532726197722649473129201552345=3^4*5*11^3*79*601*60311881905999414551572420799*35836462559492649733740933156331199 42 Pedersen 2016 56206439632806752155152000045960194246674843823724956262488180638169900032=2^10*2687*8623*1448663*3962626379*220136910613*1874634931007490231160686381069182393 56206478446083244345718134653768653148571973511542948241984352499475995648=2^10*2687*8623*1263699059099473928324627513*1874634928480092987310441241426662079 42 Pedersen 2016 58579268743762950819986592932694207218047119403760173930037521382054747655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*37949740438822458291159375218781599 58579393369606826521389768071378573809079859176717435303783802710975652345=3^4*5*11^3*79*601*60311870601976079136157060799*37949619815401267119455086481911199 51 Pedersen 2016 59359732928408870022018913543416540617167789198102956930714597956269662518=2*7*11*37*41*97*163*718121*8190097*25404257*149445671982657270439*719697154927189845311791 59359825172565657214553229066337348460412649224873770821163494152446123722=2*7*11*37*41*97*163*16070410590103228974829777144223561822304315472803214093415255039 42 Pedersen 2016 59596704515713053679817004628097279455922851186477103232249995650971827655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*38608871634665362984108130525045599 59596831306124606442019458447722177657018420188499975225284150083274572345=3^4*5*11^3*79*601*60311867329229154736287108799*38608751011247444559328241658127199 42 Pedersen 2016 64888008723478730026920986757381370298640308299110809603502147875838729255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*42036767297649999885176058735218879 64888146770999943552142561891928842517041409773218706122914592608543990745=3^4*5*11^3*79*601*60311851963702542477439999679*42036646674247446987008428715409599 42 Pedersen 2016 65257127096580488689089242750086196762327635642816313717860031736509634855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*42275895350130231982314012183975359 65257265929391271789734460983609990867326410256064705087405965886950205145=3^4*5*11^3*79*601*60311850984788631768086097599*42275774726728657998057091518068159 42 Pedersen 2016 68605090656950414961102379743095031212726215191418928285261831248386918735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44444825602066883723501358536321063 68605236612465064531990885240402370860564981182004306067435816880825497265=3^4*5*11^3*79*601*60311842586949281382462285863*44444704978673707578594823494225599 42 Pedersen 2016 69272876581177856454958560949443345153590044048276724209149630760113935655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44877441150819851229473924643991999 69273023957389385995367803795401254913131947543395652621276121152334064345=3^4*5*11^3*79*601*60311841009015692535655607999*44877320527428253018156236408574399 42 Pedersen 2016 74976857381291773585140986101676187146576717174312657281796045527640587264=2^10*2687*8623*1448663*3962626379*220136910613*2500678512682329703620877764360935711 74976909156453393269762161277506726967294452621521003603018748974682981376=2^10*2687*8623*1263699058672946297701867679*2500678510154932460197160255341175231 42 Pedersen 2016 75869364413715021145563510596401336018818570966509016049589223679278253095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*49150881335736628697927558648002751 75869525823779829765535563172927118949158163415031400877794325640823634905=3^4*5*11^3*79*601*60311826914376806594585487551*49150760712359125125495811482705599 42 Pedersen 2016 77114441626962193539596742282534347106461943019325276049242947154969050455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*49957486779647251590274709184489839 77114605685895820752607561114207347947577776736541497387125223983119909545=3^4*5*11^3*79*601*60311824524558967716321873599*49957366156272137835681840282806639 42 Pedersen 2016 77524471923768044200697312214435016148690259897017632160244148937651763735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*50223119036067183894958538027222063 77524636855030275882233672962684122165350297620126897604960970404104652265=3^4*5*11^3*79*601*60311823754343818728774225599*50222998412692840355514656673186863 42 Pedersen 2016 81753089382353279662282129195734819735748113682380185110412616114906186855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*52962568305574646665655577243656959 81753263309887238614551754726044620752083353037766259008486597211184053145=3^4*5*11^3*79*601*60311816261857423992749269759*52962447682207795612606431914577599 42 Pedersen 2016 87397843316051407757616387542270334220849660240261185798305301302893086855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*56619441312335662167867132263676959 87398029252649964886786065715147691765946253404124652394932890962077153145=3^4*5*11^3*79*601*60311807390082742632335789759*56619320688977682889499347348077599 42 Pedersen 2016 88455697089502101110345114452507520610012387882136786555284092530087535655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*57304756731691371604037569114871999 88455885276656563777761028387981853922912122357356306304934981653080464345=3^4*5*11^3*79*601*60311805853452488702433527999*57304636108334928955923714101534399 42 Pedersen 2016 100415505666430150191276892112183267797907673895390027750301311299180372495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*65052747461615712985931056688791271 100415719297760828359952336185748165402452803125717531364313416102324395505=3^4*5*11^3*79*601*60311790732897744021160251071*65052626838274390892561882948730599 42 Pedersen 2016 100756776675546725396899496544489856276992338036196180854480629995368818215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*65273834998094187305328715999341247 100756991032922443279283392118570587231887307248136597590319582465265293785=3^4*5*11^3*79*601*60311790354111438389925585599*65273714374753243998265173493946047 42 Pedersen 2016 108286167498122016441349788482947973041151641944903762236545392089886016935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*70151643026546357840877118178178623 108286397874077434216553789469458759499412004876864462951154079667983039065=3^4*5*11^3*79*601*60311782604455498339649025599*70151522403213164189753625949343423 42 Pedersen 2016 108856807069005879454650141496849326371686958557760817975110494092739593735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*70521323701357945470904241303836063 108857038658981881565698419293077644500165983553535168794439771600632822265=3^4*5*11^3*79*601*60311782060825955377381725599*70521203078025295449323711342300863 42 Pedersen 2016 111195863716809012035510158999308732368634003858112642217145394424970335655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*72036648056875479879004049387111999 111196100283066126166619195014299289181330143348557457940243601232757664345=3^4*5*11^3*79*601*60311779890793512852227687999*72036527433544999889866044579614399 42 Pedersen 2016 114577041666655013147851530883794828233794648631882236442589214326082860195=3^4*5*11^3*79*601*473861*58309019*2182799234136439*74227095775425867762963378910987931 114577285426278728297469612897782455025138799818163468229641128222388947805=3^4*5*11^3*79*601*60311776910552093035942872731*74226975152098368015245190388305599 42 Pedersen 2016 121303282152525787539361206930177487492762781503059015273617413559042889255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*78584594358831671711144733293746879 121303540222048117662806878722104115117719871903707394863031627231771830745=3^4*5*11^3*79*601*60311771475899356497100927679*78584473735509606616163083613009599 42 Pedersen 2016 126118071063494573257299170807653456409830923970777414419238895896979900655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*81703786410173907464163144522188999 126118339376352881806430847372117695740494003926861398589482027427436099345=3^4*5*11^3*79*601*60311767941652765441173278399*81703665786855376615772550769100999 42 Pedersen 2016 129572993626577213724223883525971867859673792370491226560011811252205794855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*83942008520435011021354284476103359 129573269289691836205563758319609824203457880272735753458550214396086045145=3^4*5*11^3*79*601*60311765567460371825548497599*83941887897118854365357306347796159 42 Pedersen 2016 132126032973561819200858814023660299259350370091653530485671824859842115685=3^4*5*11^3*79*601*473861*58309019*2182799234136439*85595958503524930210291354655251373 132126314068200082879969429790567833870297121371864705809934972900202940315=3^4*5*11^3*79*601*60311763892810656563656416173*85595837880210448204009638419025599 42 Pedersen 2016 133070001788154780010986944779728402221730368090165787672542230670690453055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*86207495183042800919286193184608919 133070284891061713372303670029649320802025517162694139385304870817970026945=3^4*5*11^3*79*601*60311763289892414486089896599*86207374559728921831246554514902719 42 Pedersen 2016 135830314982455633383379610245881587453748216526496653068676254900760106535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*87995724560090590772532522231962303 135830603957855832335414620327963865600818249672198722475325615196262869465=3^4*5*11^3*79*601*60311761574945025070729425599*87995603936778426631882298922727103 42 Pedersen 2016 140026561386563410997592305193827433554661572982103144975316465799044015655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*90714202705487165682335145945655999 140026859289366775561693184010855529337402874040549656281291998212219984345=3^4*5*11^3*79*601*60311759097391101663796663999*90714082082177479095608329569182399 42 Pedersen 2016 141715078138785116781290085899133959758487111763997977224849353806130392615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*91808084104958199895427181582168767 141715379633863182901713983485700264430252086433202770264282430498722599385=3^4*5*11^3*79*601*60311758141852761659998373567*91807963481649468847040369003985599 42 Pedersen 2016 143867826571163314348258380770227030397348894493221677986064768342025970688=2^10*2687*8623*1448663*3962626379*220136910613*4798376394241686935593822336239606137 143867925918885168230038173327642987500428657751714215369684526312020892672=2^10*2687*8623*1263699058061359756871471807*4798376391714289692781691368050241529 42 Pedersen 2016 144257845375318534311226684086739126244357886044240404412771130339534902595=3^4*5*11^3*79*601*473861*58309019*2182799234136439*93455379448382221866361924895649851 144258152280066598509302791100435426983608293166088178309253607053629385405=3^4*5*11^3*79*601*60311756745097526337921134651*93455258825074887573210434394705599 42 Pedersen 2016 146849335605215904188742989352272172516870299473731902127867211120507535655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*95134239285375674575283606350871999 146849648023290845328792633395527955759745415374571053678485485846660464345=3^4*5*11^3*79*601*60311755371348740861813534399*95134118662069714030917591957527999 42 Pedersen 2016 152578100787222392360799283368694656308587854874627183837774195286962902855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*98845537776367118981006458762049759 152578425393093638986663193560601528762379819624217424963132648187530537145=3^4*5*11^3*79*601*60311752500132132037556817599*98845417153064029653249268625422559 42 Pedersen 2016 154737768020417071536154488585399119805148418133277044468842794187847119055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*100244647268369684191575832590711719 154738097220923198377129748306467492643602398428697110539560658867456560945=3^4*5*11^3*79*601*60311751472902849163858595519*100244526645067622093101516152306599 42 Pedersen 2016 164297783616358901730322355473791183322876825263565461030565675276759616295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*106437966479028405372868100634597311 164298133155545190671654784318406146682313132722927756193137770577726911705=3^4*5*11^3*79*601*60311747250111764360209905599*106437845855730566065478587844882111 42 Pedersen 2016 173319804134324921193608881703467460491796032029801929562301257733032802695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*112282753282158227860650605374854431 173320172867621082582307005348783048511952143638925237410746119438415005305=3^4*5*11^3*79*601*60311743692218950710489239231*112282632658863946446074742305805599 42 Pedersen 2016 175274723881996817787620288034167594849540178490649031299663606701673135655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*113549220047514969975757933015351999 175275096774333002850623901159819815426201337125842014520810790494614864345=3^4*5*11^3*79*601*60311742969565051336113694399*113549099424221411215081444321847999 42 Pedersen 2016 181633855797466272850656182674116242196694748891581141353053789779867522665=3^4*5*11^3*79*601*473861*58309019*2182799234136439*117668892600340960956492021964415057 181634242218687305365201933361346629905945930278700900761817934358063229335=3^4*5*11^3*79*601*60311740726454872739199819857*117668771977049645305994130184785599 42 Pedersen 2016 184914683223720220698466432432725663522588906732572887102698921654254282535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*119794329669136117378496218934023103 184915076624814771196754132090372935985590135245092448774789879309763893465=3^4*5*11^3*79*601*60311739629511985690873425599*119794209045845898670885375480787903 42 Pedersen 2016 185565759115067020428110612171240943915152513791412030987162396324766309855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*120216119862364105546678800954690359 185566153901308298195140831672726532047011960472637827474167492283653530145=3^4*5*11^3*79*601*60311739416437627262816783159*120215999239074099913426385558097599 42 Pedersen 2016 186484150330370111307355930651324345605631020830805398093632443665940821805=3^4*5*11^3*79*601*473861*58309019*2182799234136439*120811086460436531071257954865247669 186484547070464393211877274323237083644186371938058682037970483123199658195=3^4*5*11^3*79*601*60311739118409837233789521599*120810965837146823465795568495916469 42 Pedersen 2016 205593655171645062145153726660959174506034132916201528957540813002260338695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*133190905536242578656953777432803231 205594092566705135923940613915120672377772978368799995694091342770454669305=3^4*5*11^3*79*601*60311733521264984084724305599*133190784912958468196344540128688031 42 Pedersen 2016 214740393096102507191219297535145251033711240553479815475372643922923176255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*139116488725296160956720145951491479 214740849950605434919256678130055681097113682687012626090698091267993943745=3^4*5*11^3*79*601*60311731194720048302663304599*139116368102014377041046690708377279 42 Pedersen 2016 217155659610771837255253559210454384869913079797968630197823985562354392064=2^10*2687*8623*1448663*3962626379*220136910613*7242721432487161651023127999086525911 217155809567301967609217796826224075918406000291642145699829732582701720576=2^10*2687*8623*1263699057836721569756985431*7242721429959764408435635218011647679 42 Pedersen 2016 219678384391796800695272316573161740733121043709671055850432874945018855305=3^4*5*11^3*79*601*473861*58309019*2182799234136439*142315495677405227716740553591481969 219678851751745519640914932227180978447703529011740728746124216877900824695=3^4*5*11^3*79*601*60311730019232932102025012849*142315375054124619288183298986659519 42 Pedersen 2016 233766378011275317801571582424388631233828453318841565890739209323305625255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*151442200612927666442875471723855679 233766875343057605085210824967091135201072332782122725354018009707816294745=3^4*5*11^3*79*601*60311726938540444357452369599*151442079989650138706805961691676479 42 Pedersen 2016 245876627551040950387121261800133969794487839951118349404183939762630971815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*159287652366410119389036000469656127 245877150647058619992928896744034181511025326254247934043812377305009860185=3^4*5*11^3*79*601*60311724572499178493986660927*159287531743134957694232353903185599 42 Pedersen 2016 253539179779531300860629730433251150493484987765867447991507255457767926055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*164251727104900100572802221880272319 253539719177426037153479144294674098027173373241794805575199896063942153945=3^4*5*11^3*79*601*60311723192179762882475601599*164251606481626319197414186824861119 42 Pedersen 2016 273582740411128725154171442848918271413111457121994803908358405861516086265=3^4*5*11^3*79*601*473861*58309019*2182799234136439*177236660849398409221264619190307937 273583322451168226229130960574450111426540869929082408487597075305053385735=3^4*5*11^3*79*601*60311719947218434173392112737*177236540226127872807205293218385599 42 Pedersen 2016 286251571228296436344442494157236579167081136334453464391370648593986583005=3^4*5*11^3*79*601*473861*58309019*2182799234136439*185443981484927153703417976313670629 286252180220938203833362812908155002968947336226731892865969530352348136995=3^4*5*11^3*79*601*60311718130580682505149009599*185443860861658433927110318584851429 42 Pedersen 2016 286857828283015584391572892108213816567929162266720431052887472056350329895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*185836736436622351920922826280960191 286858438565453190412800379594777913008949757439223979149729300690454918105=3^4*5*11^3*79*601*60311718047669984262503505599*185836615813353715055313411197644991 42 Pedersen 2016 300852887952514984512272571701630846516017389439487489005451783863994082855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*194903235443404215394313314274093759 300853528009071639908969822788572549901392085760140023501983887068035357145=3^4*5*11^3*79*601*60311716226618619734678266559*194903114820137399580068427016017599 42 Pedersen 2016 357223570635762671164394505912894972902153108566705055441568393097709492955=3^4*5*11^3*79*601*473861*58309019*2182799234136439*231422175028430087484204853753256339 357224330619454811623327063914605522742769583268612747607412713488955467045=3^4*5*11^3*79*601*60311710336456459939081886099*231422054405169161832119762091560639 42 Pedersen 2016 397699208373474251711468011002841219878005473647904850802526360180588277655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*257643737352140499173242576968455599 397700054468014438674377661801062950213582354370526149603648614952698122345=3^4*5*11^3*79*601*60311707137067681492415467199*257643616728882772909935931973178799 42 Pedersen 2016 512134649299688652456086696111146602875179777616380604208702974144310306855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*331779099115501928854530765608352959 512135738852600726929260331520291483739834055507222219420681584846803933145=3^4*5*11^3*79*601*60311700827643745897133165759*331778978492250512015159715895377599 42 Pedersen 2016 548990005826934617116721948722090990542123650165841294743942210287921271895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*355655314097071881526159523909703791 548991173788642278286387998591754626441947959340725743060843161480042376105=3^4*5*11^3*79*601*60311699355602487447514388591*355655193473821936728046923815505599 42 Pedersen 2016 568320202505770991570301632490601893322729090104350615857186331269952322855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*368178105219679290363391060473485759 568321411591960488129201631432766777458483684908287573232495750672125117145=3^4*5*11^3*79*601*60311698659862955836392058559*368177984596430041304810071501617599 42 Pedersen 2016 571713521565537401202070701776719753040146458993256476869186238387236735655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*370376418382438859722837453508231999 571714737870923388804859483570036151493272007235559709240920489847771264345=3^4*5*11^3*79*601*60311698542583735582725767999*370376297759189727943476718202654399 42 Pedersen 2016 604103356471699570812540721506532231896806827477595637379276750358301384615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*391359709125139356953623870383202367 604104641685602082102661548241269424539549393739742442198392144189470007385=3^4*5*11^3*79*601*60311697489441716626385985599*391359588501891278316282091417407167 42 Pedersen 2016 665796164054539267130961110566254819472191162401617319733072886489900426455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*431326511117017402186808957070310639 665797580518257130397103435036886696022611544831273123509432900504623733545=3^4*5*11^3*79*601*60311695766978775934261263599*431326390493771046012407870229237439 42 Pedersen 2016 800156001208538252226531497249303133695920821618827864857623248534960644455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*518369607672223335073329185556695039 800157703519253652514404677954192824161839264209585894682988822375237115545=3^4*5*11^3*79*601*60311692934795504952737433599*518369487048979811082199080239451839 42 Pedersen 2016 900738745462102587554856503147741192332717054080607506706476748221601055655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*583530698257766716760014667810087999 900740661759944333952325904956355862226323523904694260514297684677470944345=3^4*5*11^3*79*601*60311691367619542909796126399*583530577634524759944846605434151999 42 Pedersen 2016 913599420662316930153659108891382754928740884647424363045333952325247350205=3^4*5*11^3*79*601*473861*58309019*2182799234136439*591862302529766100127710927332168389 913601364320904790485298520093655304508943133076995855469616673078492809795=3^4*5*11^3*79*601*60311691192119638701165301439*591862181906524318812447073587057349 42 Pedersen 2016 937557260180198981769084164333250325369867080334457744244838777259203367655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*607383045800829736973570894381577599 937559254808456340963805155900903707005275903865643766020930762105251032345=3^4*5*11^3*79*601*60311690878024074624482692799*607382925177588269753871117319075199 42 Pedersen 2016 953682904298076697836602880751323391148698826301890054857679468659653327872=2^10*2687*8623*1448663*3962626379*220136910613*31807872855521254506487945457203714303 953683562862442137401072402448226040694703355333480663184041343973022123008=2^10*2687*8623*1263699057496156418589238079*31807872852993857264241017827296583423 42 Pedersen 2016 1025316142663844368135145896911586609790836596159172705825817956160060097255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*664236381168046355939695285672273279 1025318323996801558143356104763442948062703709245754964709710007012476222745=3^4*5*11^3*79*601*60311689852836717119441489599*664236260544805913907353013650974079 42 Pedersen 2016 1041442122920558016930326265457953126511862084085729751652544310972513366695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*674683366563865536194156877927885631 1041444338561111408023183741772327293170030906204404683224952222322787241305=3^4*5*11^3*79*601*60311689683246447694285770431*674683245940625263752084031062305599 42 Pedersen 2016 1098517614167908554760917527158018499285944454682107636791020249492701475495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*711658906284747665446849142796708671 1098519951235058997368074137293609699308206971323103706821728249617628892505=3^4*5*11^3*79*601*60311689123005011537601105599*711658785661507953246212452615793471 42 Pedersen 2016 1102094714482284352242761736721456411380708506649306320145523365981447405735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*713976279501678532323871274407225663 1102097059159621041064978012584478269608228837201143196990431436090907410265=3^4*5*11^3*79*601*60311689089825277425632225599*713976158878438853302968696195190463 42 Pedersen 2016 1120373203675399215073019873352174105079285143247016507953312258058678349255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*725817736989424760785098454345814879 1120375587239737898220546915141519686416740103922646476502262960020328370745=3^4*5*11^3*79*601*60311688923588776844207395679*725817616366185248000696457558609599 42 Pedersen 2016 1188954788717941840755045236444088997933903987702918445616038971677961333155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*770247334815782586600637620790297499 1188957318187787600927593456220410830326118686305245584716866509957878666845=3^4*5*11^3*79*601*60311688345429922596221977499*770247214192543651975089871988510399 42 Pedersen 2016 1282979252473613173057902150320589695335992791650614716334314515146343907655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*831159737291054362010599036470309599 1282981981978017093509056438492735437969752391088273152840973933445118492345=3^4*5*11^3*79*601*60311687653242674551131583199*831159616667816119572299332758916799 42 Pedersen 2016 1314069228180170278793972107102096678908027199024224179650168151196803719215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*851300932864424499939054401891607047 1314072023827674678239635037325910197861327753843655284007255418094345592785=3^4*5*11^3*79*601*60311687446156933294410211847*851300812241186464586495954901585599 42 Pedersen 2016 1572135159375746595825097474780956990972793265769629819187362352800675317395=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1018485251054089056388552944442887691 1572138504051689562826484853614360554238675047699227386603033663660689930605=3^4*5*11^3*79*601*60311686043374805026879884991*1018485130430852423818122764983193099 42 Pedersen 2016 1645714625237346732437766563687541415728767394565040642174209193281790252055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1066152654402687995608357238241603119 1645718126451655943582775878279205298859730109385158523408813465997795027945=3^4*5*11^3*79*601*60311685724015276328826711599*1066152533779451682397455756835081919 42 Pedersen 2016 1689895783260086790542684491790407736760007132198259894661457724864080569255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1094774784982426604967800531203490879 1689899378468640383168500707985440869907016932763057716881091562213070150745=3^4*5*11^3*79*601*60311685545617147232565871679*1094774664359190470155028146057809599 42 Pedersen 2016 1748717216317866756145268450082688075068281173335078730278717094330482035655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1132881408104450356910712501282971999 1748720936667462393349666417071516550190185897401533017671507282739085964345=3^4*5*11^3*79*601*60311685322093363625279234399*1132881287481214445621723723423927999 42 Pedersen 2016 1753247096705407022834037335588223616084746287445125488174491808151392813095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1135816026248593185007800144822850751 1753250826692203295345149308583792560837084018734429519653375839921221074905=3^4*5*11^3*79*601*60311685305501633882200335551*1135815905625357290310541110042705599 42 Pedersen 2016 1813226846544521978485649685979562913479062383905867488794094359935020370055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1174673048311065906242851811529407519 1813230704136648591503061324284006933105564156039645570932496678640718509945=3^4*5*11^3*79*601*60311685093627947323116141599*1174672927687830223419279335833456319 42 Pedersen 2016 1831940609009971373210048143691145715269775195617213803029025947191364615168=2^10*2687*8623*1448663*3962626379*220136910613*61100113787971210196885877658949907407 1831941874053938564364551320693322683262121643388071891153498290939485422592=2^10*2687*8623*1263699057448017855715931327*61100113785443812954687088591916083279 42 Pedersen 2016 1862525677363622741971382797083053179142889120002546619239506281597545872384=2^10*2687*8623*1448663*3962626379*220136910613*62120207533057683239343483555412088591 1862526963528065136645521406746619250892652965908326790651974292730489209856=2^10*2687*8623*1263699057447159470287826111*62120207530530285997145552873806369679 42 Pedersen 2016 1932993387008143974503640889989528713709908544589487866545921540512250666585=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1252262086571877391055055781255302593 1932997499400415646372280682575241317887725218920682125670303448798586069415=3^4*5*11^3*79*601*60311684709902472856945086143*1252261965948642091956957771730406849 42 Pedersen 2016 1977490832370401895548504421263572801779309180234306856043696342727975008295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1281089119375494761226575554389150911 1977495039429810892765759568682804617689237084358905275683432236532309919705=3^4*5*11^3*79*601*60311684579177710319627435711*1281088998752259592853240082181905599 42 Pedersen 2016 2027939684651795474438183710814389843682264537319853290050392037481254865555=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1313771685931418614536196638677201419 2027943999039802505728584567573726596480136102487658451499341219199725614445=3^4*5*11^3*79*601*60311684437907886061341209099*1313771565308183587432685424756182719 42 Pedersen 2016 2142728037862584595677876189036375006039316928857605772478189171282759855655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1388135676864868625444726212323127999 2142732596459775059627934338936011623008291105975752447482064308006072144345=3^4*5*11^3*79*601*60311684141258563100537911999*1388135556241633894990537959205406399 42 Pedersen 2016 2166400387644601962719549750477498503742785751229849978148925091660536329216=2^10*2687*8623*1448663*3962626379*220136910613*72255240996554400313065696331368737309 2166401883649290887361987086252804697414662331598231292162665606073686313984=2^10*2687*8623*1263699057439947729574469789*72255240994027003070874977390476374719 42 Pedersen 2016 2207061635301315481575169498517878341113157566786095105007894245359963014355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1429813276750501811481062401915856459 2207066330766531823966253118939787810792694298610510341117193777921455225645=3^4*5*11^3*79*601*60311683988493536232139181759*1429813156127267233791901017196865099 42 Pedersen 2016 2222140845178262703431033566866274301156309234631631816065380441116981562655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1439582126944856683989385485013908599 2222145572724098968095343626133283288699734283900805057013366469829936837345=3^4*5*11^3*79*601*60311683953966431852936494199*1439582006321622140827328479497604799 42 Pedersen 2016 2281763400891305735986074675692554727780659030800022399774735057421301985155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1478207745907540031704496942869759099 2281768255282551291546505425342127032711064052561218668029349306149488414845=3^4*5*11^3*79*601*60311683821917160273276978299*1478207625284305620591711517012971199 42 Pedersen 2016 2505177835719728618261047802230485750704316973332304640034634040386825875495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1622943588362514157154410986414228671 2505183165419271317247622084795890630656649040192699712668578068702384492505=3^4*5*11^3*79*601*60311683383013031114833313471*1622943467739280184945754719001105599 42 Pedersen 2016 3045593561270035468687766539968971322723610330760320017914739387387195965655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1973044177760459717427825833214965999 3045600040689731469815048149426246329144298409289213459857977897472708034345=3^4*5*11^3*79*601*60311682587613984540754103999*1973044057137226540618216139881052399 42 Pedersen 2016 3075787031986048995343195288191808172232600361763895467362473683948808316455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1992604585413071452044438444533672639 3075793575641554835255907906614634475494995933857573355747023295183443843545=3^4*5*11^3*79*601*60311682551418664931260113599*1992604464789838311430148360693749439 42 Pedersen 2016 3254844743327312590585804099394515151112703493552474417764399395707974614016=2^10*2687*8623*1448663*3962626379*220136910613*108557768303937563213383497918632003759 3254846990955694449141234724555040137752491116425974670130390908334554973184=2^10*2687*8623*1263699057425166050499760319*108557768301410165971207560656814350639 42 Pedersen 2016 3729687925997564344419022618827294352343861465726970720785017981378676269095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2416224916165204699336152204337935551 3729695860809915854881287341985511253781328222339780319517351919103588818905=3^4*5*11^3*79*601*60311681911314352603259420351*2416224795541972198826174448498705599 42 Pedersen 2016 3733489412163813420670358834285613434199796570143181126982177622768191308455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2418687654543212993336796977244306239 3733497355063726138544222780014274077916715228542776727593404936469379251545=3^4*5*11^3*79*601*60311681908248624981308193599*2418687533919980495892546843356303039 42 Pedersen 2016 3854156547119649766358790252064617620412552161872292472564213733431887107335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2496860130049881300321352350491638943 3854164746735698489863535600354749859367721109069827855708883005153164028665=3^4*5*11^3*79*601*60311681814078684373000125599*2496860009426648897047042824911703743 42 Pedersen 2016 3952150587078532827042139261666867953336825060952080887376171227221933132245=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2560344165626668205979245614114737821 3952158995174308023153345371255282741790017739307180192834538189666214835755=3^4*5*11^3*79*601*60311681741834249851329105599*2560344045003435874949370610205822621 42 Pedersen 2016 4492127568322129112062551337957549994763402684427144248483594722311404545895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2910160520808042910706743324584852991 4492137125204640709727334401569048309864944213752843606025856497095803902105=3^4*5*11^3*79*601*60311681400281925240125537791*2910160400184810921229192931879505599 42 Pedersen 2016 4890027582126343635085610760507699947153865419754005397879283435205642541735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3167934347083086029888705840861254463 4890037985530603659035931457005387227540992765822334390277565247527499474265=3^4*5*11^3*79*601*60311681196869198095185219263*3167934226459854243823882593096225599 42 Pedersen 2016 5129496388343875404175171218060576344443990982092155373499936093318347480935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3323070784154393750757809708476429823 5129507301211682802029112448074853822067292338265817545674272976491054375065=3^4*5*11^3*79*601*60311681089660390275080025599*3323070663531162071901794280816594623 42 Pedersen 2016 5225379199788531161498323087365018474702618462097263798244841519544861575655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3385187090569650323313113189117903999 5225390316644482244352910693090642827811225030513288049480186443564514424345=3^4*5*11^3*79*601*60311681049489100832937758399*3385186969946418684628387203600335999 42 Pedersen 2016 5673905776980401515470139153962186718532483835737838398266824721885368361984=2^10*2687*8623*1448663*3962626379*220136910613*189239916889599749668195223319628045241 5673909695087920000545733605756763161305894798997092378465338900167018208256=2^10*2687*8623*1263699057412622485963272761*189239916887072352426031829622346879679 42 Pedersen 2016 6209562782025319792561697388288165274806796255379159471439461738407552136295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4022776331456398015990926628508013311 6209575992705794383655524208114344533491367050902251222324634566783638391705=3^4*5*11^3*79*601*60311680708873268854273298111*4022776210833166717922032621654905599 42 Pedersen 2016 6475172451328283072830471107896520474798784430378369624561284751475203802112=2^10*2687*8623*1448663*3962626379*220136910613*215964301259037763873660169504760247313 6475176922749357417614430400493915907287009568057991150057871443782723795968=2^10*2687*8623*1263699057410534006730525329*215964301256510366631498864286711829183 42 Pedersen 2016 6979769848759154652808434376116145390676397049375221599383377306800747810055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4521743950778343309949715398118159519 6979784698034779186821848965447975368540743370343326707765802249060879069945=3^4*5*11^3*79*601*60311680509313534474553308319*4521743830155112211440555770985041599 42 Pedersen 2016 7515348316031288347941652078688466175256357711783097585311891541802633941255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4868710791667149929649474038361528479 7515364304735927221623863999167198941086779649379097813293302298537211178745=3^4*5*11^3*79*601*60311680394656572171168389279*4868710671043918945797276714613329599 42 Pedersen 2016 7701068447347638726538905909692222595039253618035472368994942106230534720935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4989026919349606477906905260164021823 7701084831166941650557096103668605167081161888606139755421542731849715135065=3^4*5*11^3*79*601*60311680358621414813919186623*4989026798726375530089865293665025599 42 Pedersen 2016 7787026026238005090904327039361735346056252975119671276468112403548290815655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5044713305977406894788938539289095999 7787042592929782124880911010860529976675837863067668485449498063550333184345=3^4*5*11^3*79*601*60311680342525001973961223999*5044713185354175963068311412748062399 42 Pedersen 2016 7928691801529809358426631274557733724714087505314958345944779009199511679015=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5136489449938933081919337871653405887 7928708669611773956435950941513855459226086928868966480835103320827422592985=3^4*5*11^3*79*601*60311680316758271368802385599*5136489329315702175965441350271210687 42 Pedersen 2016 8280408229871846719959096783083094432345305833754819084784203282310137507655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5364343901691049841969287233897189599 8280425846221203982221311638268556707961028883659493278187362391016044892345=3^4*5*11^3*79*601*60311680256598399113407876799*5364343781067818996175262967909503199 42 Pedersen 2016 8441218166764645894064618594908785683790952538540940177110292370369977126855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5468522316613904512322838026064708959 8441236125232887851301749697884718329717065240328519273901340772133201113145=3^4*5*11^3*79*601*60311680230762502179946677599*5468522195990673692364710693538221759 42 Pedersen 2016 9115532188122795094905340857067626391265237042726114805734443749190634910855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5905366999614918712207302500970416159 9115551581176270892649612379704204770606108267438481538559396075714540129145=3^4*5*11^3*79*601*60311680132351745714285037599*5905366878991687990659931634105568959 42 Pedersen 2016 9403820282311359366742566019983924141933918460158999648206211550873007561728=2^10*2687*8623*1448663*3962626379*220136910613*313642531021445444734460350273076029847 9403826776106004334434598083717109053579568536078779568362295746116239352832=2^10*2687*8623*1263699057405928281441567767*313642531018918047492303650780316569279 42 Pedersen 2016 9928343799409217145851725635234647024296782788818006470041045072607817852455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6431935363056038050785756140207221439 9928364921697883837375394207133744739235557636877202688816174209452101507545=3^4*5*11^3*79*601*60311680031496476227913553599*6431935242432807430093654759713858239 42 Pedersen 2016 10626149382440192004463010093747320357889472475117168827971336477899531359405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6883998717902989952390799864234749749 10626171989291768260649978558514470963001341538393423483017544816703732640595=3^4*5*11^3*79*601*60311679957220350084628663999*6883998597279759405974824627026276149 42 Pedersen 2016 11782863542654987190219223186740069142989459427863128362187438824108492045312=2^10*2687*8623*1448663*3962626379*220136910613*392989979949966070580551709042897652863 11782871679294552665975683239497624376281812995331736794252983453871948448768=2^10*2687*8623*1263699057403872231260374079*392989979947438673338397065600319385983 42 Pedersen 2016 11845822090473881871913168509392902137321670101583737237178744428760879506855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7674146216886961249761678627437712959 11845847292146864242777911854142685036266247571930428786404773355866074733145=3^4*5*11^3*79*601*60311679848410124423684525759*7674146096263730812155929051173377599 42 Pedersen 2016 12276123489948802310891120891604598001982023790677775376798775012649746620455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*7952910816902115136836297028263195839 12276149607076623577589524267244605294931240278580513083535191826198806339545=3^4*5*11^3*79*601*60311679815181387722740712639*7952910696278884732459284152942673599 42 Pedersen 2016 14317161726245900650364609487200470460542092916355837023666487046524439047655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9275168211954248583913034921759721599 14317192185628550903503431527201491490224191800879928286484430294095951352345=3^4*5*11^3*79*601*60311679684774513293550571199*9275168091331018309942896475629340799 42 Pedersen 2016 14521890178246197811530236269566502513211200436767945844790377856883487915008=2^10*2687*8623*1448663*3962626379*220136910613*484343836226644088247718458103743773567 14521900206316688661617751818293038403963532211976295044400813422023763837952=2^10*2687*8623*1263699057402339348997577279*484343836224116691005565347543428303487 42 Pedersen 2016 15108743013595423242509955609311334524721173309479781869379315929460452439355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9787982814037204217282228347896521459 15108775157046312101852771609274119835577579146674968094633640310898725800645=3^4*5*11^3*79*601*60311679643680573846084177599*9787982693413973984406029349232534259 42 Pedersen 2016 15372314046159054623094012118974860406861873651141115602641188852056747418635=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9958733533318711353313170305091836483 15372346750350339510850897833378364520784163866857719937798196146509861477365=3^4*5*11^3*79*601*60311679630936812861728201283*9958733412695481133180732290783825599 42 Pedersen 2016 17333318725739595266577874982269964242850465830273290300528115297966729440256=2^10*2687*8623*1448663*3962626379*220136910613*578112489704679523821457307520791641019 17333330695238048193220868692036480620316578993424691708715268103163198854144=2^10*2687*8623*1263699057401269780214266559*578112489702152126579305266529259481659 42 Pedersen 2016 17428643744817067401907449005836940874156840726129519945549541569309953615655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11290897283297621052818852882085335999 17428680823795362740479760889153832796768579222519068971381946089919230384345=3^4*5*11^3*79*601*60311679544746704260428983999*11290897162674390918876523469076542399 42 Pedersen 2016 17866592062183968913063434890750757305122454851223650894676523506074815592455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11574615829570230860905293157115713439 17866630072885718577016040446214741390783118432112279603547090154585551767545=3^4*5*11^3*79*601*60311679528952961225357250239*11574615708947000742756706779178653599 42 Pedersen 2016 20040928377264496760132491345919409709161503920656977891011068254345397997755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12983228476220882404710327709445016179 20040971013809210114979035897404302464189865337017808532567607840782235922245=3^4*5*11^3*79*601*60311679460760764511963236979*12983228355597652354753938044901969599 42 Pedersen 2016 20269932336055482315481729372440733422415467697698029685011286601506152258355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13131585411736674513797297228710431659 20269975459800057110073767135550007555598701646136256804705735465004654781645=3^4*5*11^3*79*601*60311679454430230108985937599*13131585291113444470171441967144684459 42 Pedersen 2016 20390775292151760950578319007477422651588151804346272856568028321638277993472=2^10*2687*8623*1448663*3962626379*220136910613*680086834937694801323387668980370832453 20390789372972472505988268927832208770982435851551376182211174446125822225408=2^10*2687*8623*1263699057400441396839461573*680086834935167404081236456372213478079 42 Pedersen 2016 20956459662835934897256554435504666836424461307094112350167340815230476990855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13576342309768980395538392629641680159 20956504247149227577268785825967723611414545654160255429196665017875914049145=3^4*5*11^3*79*601*60311679436281128508735132959*13576342189145750370061638968326737599 42 Pedersen 2016 21001022016540339492089534110769091496261274502665367263514639285968533437735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13605211392512612471303725711469091263 21001066695658860277483603031990587620066468975329116441412137106236147778265=3^4*5*11^3*79*601*60311679435144084450450225599*13605211271889382446964016108439056063 42 Pedersen 2016 23134413144077203036379315618663997342076921316290918204525578260514250999335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14987298285721413322501542950147492543 23134462361928884681246192959719960021326875567695663388126190144903798536665=3^4*5*11^3*79*601*60311679385833620996300625599*14987298165098183347472296801267057343 42 Pedersen 2016 23981891847612224071752802456844000372211603365791472218824069023477398655655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*15536325228465694767029573294220167999 23981942868452417859538746606044247519846516023784946667127885560697193344345=3^4*5*11^3*79*601*60311679368680056384063671999*15536325107842464809153891757576686399 42 Pedersen 2016 27068281485273622009560655680106232456437770714428835641240562872605507589415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17535798560143160633707485806245622207 27068339072326084599793742872340621396378139491229113953612346032906272762585=3^4*5*11^3*79*601*60311679315288307877512785599*17535798439519930729223552776153027007 42 Pedersen 2016 28760603681111775354497967008293351412633975900348576815859617965503505335655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18632145261769646130170472129290111999 28760664868534920079023874418344756275062923872417891057652948264586222664345=3^4*5*11^3*79*601*60311679290876953036080614399*18632145141146416250097893940629687999 42 Pedersen 2016 30732200939344663859331795752680313786335025077931676352100084853179542295655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*19909416313532280777113712480230879999 30732266321288794584631901065421532092043356615826365471531880946531177704345=3^4*5*11^3*79*601*60311679265827741627335750399*19909416192909050922090345700315319999 42 Pedersen 2016 32217045740739083179570560353948093675903309993138459827154443721200792598055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*20871351756109015490042922779763849919 32217114281651230519629077726276137086953622910976141249947342319573371881945=3^4*5*11^3*79*601*60311679248986690326495318719*20871351635485785651860607300688721599 42 Pedersen 2016 32699299015204140900268513801317980479222712394952741238102114631648946914304=2^10*2687*8623*1448663*3962626379*220136910613*1090608986333679268008195564664516835921 32699321595658303614066317429465906990613335472443031137094605666897806785536=2^10*2687*8623*1263699057398673648958591679*1090608986331151870766046119804240351441 42 Pedersen 2016 32868475711936267671913331858291050573813603864206486948338261534449716149248=2^10*2687*8623*1448663*3962626379*220136910613*1096251481166627086305690365565114515327 32868498409215156328089965093401829191670330456093903779680007206281200550912=2^10*2687*8623*1263699057398658575633221247*1096251481164099689063540935778163401279 42 Pedersen 2016 33188584113510335902838505218297606440133767017057427563499722176649499964416=2^10*2687*8623*1448663*3962626379*220136910613*1106927951607025895266434461055324832109 33188607031839623391171986841140847597488701041529605578283826786435833334784=2^10*2687*8623*1263699057398630475050661869*1106927951604498498024285059368956277439 42 Pedersen 2016 33339822025839546464207113228752935789218101186285593006077995371304640664295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21598726294989113337655416877968995711 33339892955428524618556731180446004853211057833338099946347026867018735463705=3^4*5*11^3*79*601*60311679237248213317311280511*21598726174365883511211578408077905599 42 Pedersen 2016 37808451878586185200600380577205765791463647573619070489039491518530652691715=3^4*5*11^3*79*601*473861*58309019*2182799234136439*24493664157233497071371718523145047547 37808532315066906963410485054859427229508651798310220452639530045889328620285=3^4*5*11^3*79*601*60311679197438438283503652347*24493664036610267284737655087061585599 42 Pedersen 2016 38444089192953539164730360855236514414317205318054796220370032934858771823735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*24905452689435678608949982734553970063 38444170981735824274562596227338278959755224169271962798428992159229096592265=3^4*5*11^3*79*601*60311679192527568422214225599*24905452568812448827226789159759934863 42 Pedersen 2016 39355614865448138664167821999816713957174291044649150384289114502713349375655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*25495971543909706742741664449499143999 39355698593477167291959443130838148554498477006604315370126126022766586624345=3^4*5*11^3*79*601*60311679185762064673419038399*25495971423286476967783974623500295999 42 Pedersen 2016 43443376044189970315010793544748006990165847795543229286015286919885491061455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*28144169089490444057187866188784393639 43443468468822718791623402548761459773188955441382281280353371183369385098545=3^4*5*11^3*79*601*60311679158913395881400913599*28144168968867214309078845154803670439 42 Pedersen 2016 56550385991901364848828514767591611975346262569438910243032609746400209030055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*36635357800303282691048629317078035519 56550506301350882989614179739512812283104296819310339601413517027336361849945=3^4*5*11^3*79*601*60311679099001646763439984319*36635357679680053002851357401058241599 42 Pedersen 2016 58357629027275216268582895884106927947783859557696066212379998388436541398016=2^10*2687*8623*1448663*3962626379*220136910613*1946382844741731065146264504864773694759 58357669326052467803422486638539953003051730948103098995123183398707663709184=2^10*2687*8623*1263699057397386055253833639*1946382844739203667904116347598201968319 42 Pedersen 2016 58791003489494619010032728764827654258921257653853184323606383468979206266405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*38086909761941610594002502560842090349 58791128565798562419702670461016312175784799166167503304679219267634784133595=3^4*5*11^3*79*601*60311679091433513220795139949*38086909641318380913373364187467140799 42 Pedersen 2016 58918570513355203552364896322041595022591881649682065539541312468092216548455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*38169552231673322630523748875512298239 58918695861054613997969658041767702774810156106243356673985050192113802011545=3^4*5*11^3*79*601*60311679091019949095040695039*38169552111050092950308174627891793599 42 Pedersen 2016 65746166354788340105537597936667103209889704435632673370318653397681782701895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*42592712430837785888301315782697197791 65746306228017201982382209049553068876209441243909256940872776544468516946105=3^4*5*11^3*79*601*60311679071226901020108005599*42592712310214556227878789610009382591 42 Pedersen 2016 67663194347053795898271885185736577065362293908179174878397182361628284195655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*43834631565039625941353695496829899999 67663338298708974676884858116891983701253913379876548100841255305597315804345=3^4*5*11^3*79*601*60311679066387707018888990399*43834631444416396285770363325361099999 42 Pedersen 2016 69352788384932714495180430010611733200169837086271127359690300003238290943535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*44929210868597659283954505402674896903 69352935931154491554068461672840845890869715688539872208115468220858194432465=3^4*5*11^3*79*601*60311679062344430401009536703*44929210747974429632414449849085550599 42 Pedersen 2016 84556226223326042940062905456205731501950577067060720277702894445799022786405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*54778540368912214702881677537214706349 84556406114459442393946704259305010287638622142021236079574085531796471613595=3^4*5*11^3*79*601*60311679033230570142598181549*54778540248288985080455482242036715199 42 Pedersen 2016 84779397209371782303122790330506222212391682288065720943667667933052166046235=3^4*5*11^3*79*601*473861*58309019*2182799234136439*54923118496559354691194199382429860563 84779577575295548058462702354090679226544225572797953126148416032657334369765=3^4*5*11^3*79*601*60311679032880971832312038099*54923118375936125069117602397538012863 42 Pedersen 2016 91052490743124186676200168603528683287136927461873835020518191862218563094055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*58987052315803321457162063846337366719 91052684454888419897904985903014531858599975522388231120120286810989060585945=3^4*5*11^3*79*601*60311679023755252300419875519*58987052195180091844211186393337681599 42 Pedersen 2016 92742847720248881422379249560976170522433306916348394254563348232495955246905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*60082125878626939752250411579346297249 92743045028202845977566917996361857757763174246755373605996734725503148753095=3^4*5*11^3*79*601*60311679021507369409455902399*60082125758003710141547417017310585249 42 Pedersen 2016 101495914027272975060657970395063481859971115383250215633530188229954586070055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*65752674547446471451632562592298467519 101496129957143846507803891584483654628629366011291954235814954392733792809945=3^4*5*11^3*79*601*60311679011065007496348016319*65752674426823241851371929943370641599 42 Pedersen 2016 102283430109621860109734931591943751744626300874454217333423375116579084811264=2^10*2687*8623*1448663*3962626379*220136910613*3411425669361249280551752899660921811711 102283500741298218724113048453398691860319288228359781608593667862594757477376=2^10*2687*8623*1263699057396681356818151231*3411425669358721883309605447092785767679 42 Pedersen 2016 104317467689954698045090679411708341260105176390267423887362341619911044246995=3^4*5*11^3*79*601*473861*58309019*2182799234136439*67580577685011344625897931587752343371 104317689622606310754485762286489723415742962079297229407023028763587842921005=3^4*5*11^3*79*601*60311679008072396772109793099*67580577564388115028629909663062740671 42 Pedersen 2016 106054973589835234958757781691135494812793659999546922984682208053266185109215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*68706196002300591327494837273341269047 106055199218984664307031706580104990985001185307487392580028884163829892202785=3^4*5*11^3*79*601*60311679006308773909219873847*68706195881677361731990438211541585599 42 Pedersen 2016 109126472726351991848334630432963849103743853832289454874822725106691904297984=2^10*2687*8623*1448663*3962626379*220136910613*3639659423491578463033165310260838977991 109126548083481641333730049090006751131993192134888193753451479786965648352256=2^10*2687*8623*1263699057396622648399480511*3639659423489051065791017916401121604679 42 Pedersen 2016 112294061729626570813715757076472460127146652700993403772168828628042716089255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*72748099914001885796537744703686306879 112294300632270891973228858620160311651024553537557753827580321248444738630745=3^4*5*11^3*79*601*60311679000425747494341487679*72748099793378656206916372056765009599 42 Pedersen 2016 134244000695154190443762709077082756936669496861331153598299670898306047581735=3^4*5*11^3*79*601*473861*58309019*2182799234136439*86968053564045679732182428630564086463 134244286295712727035968036995463937069163001358062457503683044269564502434265=3^4*5*11^3*79*601*60311678984074565669178051263*86968053443422450158912237808806225599 42 Pedersen 2016 134341139125292618499852890117661568515537332226472695557093069802684089552535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*87030983305052058022535517397915389103 134341424932510594316475095815835891142864891226489756477962954219421432623465=3^4*5*11^3*79*601*60311678984014079695582153903*87030983184428828449325812549753425599 42 Pedersen 2016 140725347483887345507213542390434469030613092130759806889960140897371458020935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*91166901272478487961184422437991161823 140725646873339637843661370487485743843153419627373608197107912463808951835065=3^4*5*11^3*79*601*60311678980221862491983826623*91166901151855258391766934793427525599 42 Pedersen 2016 152188771523496754478070121675100411022614092605438942660885731582250220711335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*98593316387802944888593949428065902143 152189095301080296633754971505784346752163296604719038884765437894965691224665=3^4*5*11^3*79*601*60311678974211136586618625599*98593316267179715325187187688867466943 42 Pedersen 2016 154223263710450779274840921730741698306798076669527630328319595635269575592695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*99911333018523314377504740656136636431 154223591816362603689300156973187166747808785535025407875716182284588080215305=3^4*5*11^3*79*601*60311678973237737278708305599*99911332897900084815071378224848521231 42 Pedersen 2016 156493012571231437839406306354199748882066475912624257155855035671749193898005=3^4*5*11^3*79*601*473861*58309019*2182799234136439*101381757316660529909208098075855697629 156493345505973891704478614720142810654441318826249307928094520908924628821995=3^4*5*11^3*79*601*60311678972181648388694128349*101381757196037300347830824534581759679 42 Pedersen 2016 156852209693054666215478001632572883464765036652270070495657264086726085054495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*101614458028565797122474540005814826871 156852543391979490139739551262077109410961641290582230472675084247724226113505=3^4*5*11^3*79*601*60311678972017319180209911671*101614457907942567561261595673025105599 42 Pedersen 2016 162535793639834002857742757197674163510262381875948349291170929771141287136256=2^10*2687*8623*1448663*3962626379*220136910613*5421002972022664544107441115521689970019 162535905878693813830604660989321214045995936305662289638370591124464540038144=2^10*2687*8623*1263699057396334295407756259*5421002972020137146865294010014964320959 42 Pedersen 2016 163637402048307614246573185220235711905526801274389175516943630866731073660455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*106010147736398620389185025347793627839 163637750182549595017221212745136374621213739953309395054121462269709287299545=3^4*5*11^3*79*601*60311678969048686565400273599*106010147615775390830940713629813544639 42 Pedersen 2016 180047513712065196304113520889977613436853603471951351455519972323020643575335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*116641203595695252893918248063516273343 180047896758385426737572008053577707777109229204092973138568069680088081160665=3^4*5*11^3*79*601*60311678962793945443964625599*116641203475072023341928677466971838143 42 Pedersen 2016 182778212808177772562263956796720046742305016768307078260683979973369850027655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*118410247903286289292518180802306605599 182778601663988058466565862015450518013271574809944998966769137897277036372345=3^4*5*11^3*79*601*60311678961862130225818567199*118410247782663059741460425423908228799 42 Pedersen 2016 183728765874243382088794890852931154360255299565597303249789128776965296331776=2^10*2687*8623*1448663*3962626379*220136910613*6127845218250025373716047626029814234999 183728892747879855651212536526024795452017408701736716390273282362250882868224=2^10*2687*8623*1263699057396266335585438199*6127845218247497976473900588482910903999 42 Pedersen 2016 196230924560386237248323981408918946049707657093972659654628077899943921007616=2^10*2687*8623*1448663*3962626379*220136910613*6544825613008250435392131303826151000159 196231060067370508760791338033788905496853974518977628722555261372440309187584=2^10*2687*8623*1263699057396233128792151519*6544825613005723038149984299486040955839 42 Pedersen 2016 196349763597561266185564774115094982188505100772238780246324020949821699945495=3^4*5*11^3*79*601*473861*58309019*2182799234136439*127202382746455300358923269203612634671 196350181326486667732931984262704602588971073116675130505143858891374774422505=3^4*5*11^3*79*601*60311678957615522217111719471*127202382625832070812112121833921105599 42 Pedersen 2016 226928825097947563004765180207067925702953905266507602027704163921799193980935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*147012589867315033517791004922946129823 226929307883016991928242307551130053259278624859856047306752441546807007875065=3^4*5*11^3*79*601*60311678949908766162411294623*147012589746691803978686613607955025599 42 Pedersen 2016 241337654604281368310613111066435072838289909907115846949183803117437182294055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*156347143737976560360424094572056726719 241338168043754223517037210170426847514239370966318881742518460073566281385945=3^4*5*11^3*79*601*60311678946954283421827235519*156347143617353330824274185997649681599 42 Pedersen 2016 245529136437446860908541397942103338970328457235662929873832788755370853653155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*159062535224313716339671346362074553499 245529658794186383147896442719189535708977205645050917481259119867114650346845=3^4*5*11^3*79*601*60311678946159942436787641499*159062535103690486804315778772707102399 42 Pedersen 2016 286926267094988428327468082098107799563040306610473740608471270875551441412515=3^4*5*11^3*79*601*473861*58309019*2182799234136439*185881073540959922451632152478447500187 286926877523027795498611897955082316881183716276297923848922750371289112059485=3^4*5*11^3*79*601*60311678939561150993929304987*185881073420336692922875376331938385599 42 Pedersen 2016 290940643467537205440387270867628269153156120377816290759668005106902923582215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*188481729790670928924221348878310732447 290941262436056059509117516760457516974585581903351099023863413710293403329785=3^4*5*11^3*79*601*60311678939021129691977085599*188481729670047699396004594033753837247 42 Pedersen 2016 294351131718271791751288553067219624098792455277031347836681735217514414691815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*190691165767947643538674363496300032127 294351757942514136243699432209415873894535053931362218266641303624180170140185=3^4*5*11^3*79*601*60311678938573917165497036927*190691165647324414010904821178223185599 42 Pedersen 2016 311458010642902053918323520518022781734169271495840908641028516564144943217664=2^10*2687*8623*1448663*3962626379*220136910613*10387956791208880025481631258860524265311 311458225719785801854839779883538998523207063430702993177514993106059742462976=2^10*2687*8623*1263699057396052588490564831*10387956791206352628239484435060715807679 42 Pedersen 2016 334107164280979655095919834716322910563492147983818221653013400214099225487655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*216446542183307464845892191857450673599 334107875085129081560233478596883459075452709305509691344424035400683852912345=3^4*5*11^3*79*601*60311678934034301915720779199*216446542062684235322662264789150084799 42 Pedersen 2016 369762842419712715557447101347601005496136005024169641897713891788606757821895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*239545562699489405641559716808013693791 369763629080373708208335624588095955592475152064833500620546477485307765826105=3^4*5*11^3*79*601*60311678930793241306755878591*239545562578866176121570850348678005599 42 Pedersen 2016 400236348434042400774069803170930415620645560682555681288013356668243373655655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*259287387210192902270436800530875167999 400237199926280917879065034574236722475964688378951953556678332628251218344345=3^4*5*11^3*79*601*60311678928480909592383671999*259287387089569672752760265785911686399 42 Pedersen 2016 435786850374701889098298339217635083713915923619718615967057312726788808470055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*282318270832507262746878858764804387519 435787777499692394613431161201811695035906317030167610667594977753328050409945=3^4*5*11^3*79*601*60311678926192031857714641599*282318270711884033231491201754509936319 42 Pedersen 2016 459623138235485549445799209204208580854394190723334401048427862236891486780455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*297760268603059955785973316920570523839 459624116071547620370127838747550651460649501037044402064887361954730698179545=3^4*5*11^3*79*601*60311678924855651379097640639*297760268482436726271922040388893073599 42 Pedersen 2016 490775603432425554862152915676431355829858375985694261572944996707504205567655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*317941947097966013861479124733842337599 490776647544532841704845740081075757446273944914589388416720074204337688832345=3^4*5*11^3*79*601*60311678923304782516059115199*317941946977342784348978717065203412799 42 Pedersen 2016 525936866287955918853713191581251239618711156125428950298595424864675187795655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*340720667752628653013174873458694779999 525937985204719342213753098102178328215594579572521587276019056532757132204345=3^4*5*11^3*79*601*60311678921775050376267550399*340720667632005423502204197929847419999 42 Pedersen 2016 617127914828620126825730480212945673345528105897666386538420260591798912247655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*399797482753511217208135930150792281599 617129227751925830561269405895957154444793459339876383815608399020678118152345=3^4*5*11^3*79*601*60311678918619966494098411199*399797482632887987700320338504114060799 42 Pedersen 2016 654765210363404116104813463079863757282287561017372279832531241748217004810055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*424180265724259388519900939389288759519 654766603359059950039582369039911033732645056650110853781775497813891022069945=3^4*5*11^3*79*601*60311678917573982284905041599*424180265603636159013131331951803908319 42 Pedersen 2016 666517429287663539498060776320701134239998026904381491586194092302114670806055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*431793772470250447430996822482976176319 666518847285854097012157943675613790813742960162078391053434962715748415273945=3^4*5*11^3*79*601*60311678917271576375971965119*431793772349627217924529620954424401599 42 Pedersen 2016 707509555040521854637688443304072905357282619429721029242978125687062553832448=2^10*2687*8623*1448663*3962626379*220136910613*23597333945457326441602064852959076449627 707510043610233084418358313270351274009557935678908618943999440139236878963712=2^10*2687*8623*1263699057395880478359235547*23597333945454799044359918201269399321279 42 Pedersen 2016 712253288600010949044199851578653113374046429248442524006706940725391502032455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*461423094018155306402407484091826665439 712254803900031734483917876638056649061039864571218399461086284324311553327545=3^4*5*11^3*79*601*60311678916189698160509253599*461423093897532076897022160778737602239 42 Pedersen 2016 741293664426496638965316571228800041709881274619301075147637410563698852700455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*480236485658151259834416098984425659839 741295241509148403878297511204084325716591929540680827973640102417443716259545=3^4*5*11^3*79*601*60311678915572044545767976639*480236485537528030329648429286077873599 42 Pedersen 2016 919875686400686669591833313343138886861732539888101952988903160007793358072805=3^4*5*11^3*79*601*473861*58309019*2182799234136439*595928291416347511548921966876179143469 919877643411863778756690581822374283770843914545017247456271172857105017607195=3^4*5*11^3*79*601*60311678912631106918290083519*595928291295724282047095234805309250349 42 Pedersen 2016 946059416883369320406594438099285716576360064405520107123260132212636981276455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*612891046275654074928666190068103240639 946061429599740044943917677662148964910250288633730474455966190955303462883545=3^4*5*11^3*79*601*60311678912293235484016917439*612891046155030845427177329431506513599 42 Pedersen 2016 1083090903610873948449372744052879149283016607364480464790684048378071199679488=2^10*2687*8623*1448663*3962626379*220136910613*36123975377730572874805421977114742392337 1083091651537748211595558429984346634106205048157429750471999358390521008847872=2^10*2687*8623*1263699057395833543735696529*36123975377728045477563275372359688803007 42 Pedersen 2016 1144148684734127799372175363315153619971179372549826352587960399198937682279424=2^10*2687*8623*1448663*3962626379*220136910613*38160415508990060009263391412010135377551 1144149474824365481703207943303864170618410199719881581017217273516488325334016=2^10*2687*8623*1263699057395828825494011071*38160415508987532612021244811973323473679 42 Pedersen 2016 1160939259620345118506393728613049614873225124371375245924969215367815915407655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*752097875453962323971398717999545009599 1160941729487894191013284097084302271065555869295824331286544235372692346992345=3^4*5*11^3*79*601*60311678910096209097723883199*752097875333339094472106883749241316799 42 Pedersen 2016 1204819279212954131936795182930676693398144508013276648248447457605879425642215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*780524917813845945940887485562933080447 1204821842434083545841519550175165040308673033915266599137883326139509413269785=3^4*5*11^3*79*601*60311678909743916991003685247*780524917693222716441947943419349585599 42 Pedersen 2016 1251096223799228639768157322348619898798741966828828885705596383668541639232512=2^10*2687*8623*1448663*3962626379*220136910613*41727401673324599164083798968659186558163 1251097087741936448498212013563969723878676740669312844943467788541635034477568=2^10*2687*8623*1263699057395821670913811283*41727401673322071766841652375776954854079 42 Pedersen 2016 1430755813949166645453742202543114931313197221642041696495468296343709440857255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*926894666579260064992372173232199081279 1430758857844294005947634021194507723855856424619834967512702454594385847462745=3^4*5*11^3*79*601*60311678908272056858030182079*926894666458636835494904491221589089599 42 Pedersen 2016 1560568842528261019218100324752012632146024508240924631474625132443283831881435=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1010992178306539753093271016794658872723 1560572162597171010835895487932423840362114459690523888788124715892637467574565=3^4*5*11^3*79*601*60311678907619170886039838099*1010992178185916523596456220756039225023 42 Pedersen 2016 1624762333312998125275744606498999842312962173181198270359657606951655875494255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1052579012102618740564695132724876055879 1624765789951860797067903368188735353299394261875491494307520238757452635225745=3^4*5*11^3*79*601*60311678907334865082505809599*1052579011981995511068164642489790436679 42 Pedersen 2016 1670011876050013884775008916029139900145872129350623433443314299842379474753255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1081893280420930354218717759043356318079 1670015428956081141476358595839874234894379891147599786939764377782620952766745=3^4*5*11^3*79*601*60311678907147593319418449599*1081893280300307124722374540571358058879 42 Pedersen 2016 1695154368365408482660576413147757160999632335677159846040296856357735074328765=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1098181484043409059189191626892854314437 1695157974761462711553502288246744415856588243975516388026162902115266631143235=3^4*5*11^3*79*601*60311678907047858450875729349*1098181483922785829692948143289398775487 42 Pedersen 2016 1860396755548417271903470342772917765899949179601417447351263539763333579042855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1205231398416986180834199000692113261759 1860400713493276877621506283547766073600697606150497745638806662666109042397145=3^4*5*11^3*79*601*60311678906459456451135034559*1205231398296362951338543919088398417599 42 Pedersen 2016 2210496347366400018641422066479953737894403542841445628269673060354701724267455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1432038405779035959763515856393748028439 2210501050138875375370905172079892157311861797641197696326369527701494003092545=3^4*5*11^3*79*601*60311678905503443588357528599*1432038405658412730268816787652810690239 42 Pedersen 2016 2481544948282728823075561044281385907660228428026214314905244438586132597095655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1607633360643948772839966501078380719999 2481550227703928974995942209933419633544952087257903624786464492166707082904345=3^4*5*11^3*79*601*60311678904948558915884830399*1607633360523325543345822317009916079999 42 Pedersen 2016 2521240002853527694967611487541422958823994436638770980338197943986086464687655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1633349233340415325643617392341966033599 2521245366724905864935503587981551871649101082078555112148110846041916453712345=3^4*5*11^3*79*601*60311678904877311753120619199*1633349233219792096149544455436265604799 42 Pedersen 2016 2722987199654144281041865910274217216090991203377669475766847333953919439719424=2^10*2687*8623*1448663*3962626379*220136910613*90818898234899986554772404078404104250051 2722989080009060111427966573265680084192193101935345983270794492911882811094016=2^10*2687*8623*1263699057395780297070133571*90818898234897459157530257526895716223679 42 Pedersen 2016 2837846850640550627980750993194875326812489694266308326647033229462134156020535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1838458446076201946174098326236938023503 2837852888084618052192437972709558923151888993761834207308533882762607039755465=3^4*5*11^3*79*601*60311678904380393824101675599*1838458445955578716680522307260256538303 42 Pedersen 2016 3189871575215856395470350465463017638445331924652556576482060712187829406598695=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2066512623128441172566234461579519511231 3189878361583208560752057682769641593930158670262350135788069432711211660409305=3^4*5*11^3*79*601*60311678903943698521255396031*2066512623007817943073095137905684305599 42 Pedersen 2016 3245297926527007236725141842502527934981745938294683939258686152782480112996055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2102419791156261868702421139385050478319 3245304830812454885892920415676783683693542476908325611408476629042128061083945=3^4*5*11^3*79*601*60311678903883573391671867119*2102419791035638639209341940840798801599 42 Pedersen 2016 3408927939017563188662282155588352665152673129884442008723552447665960493566355=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2208425151673484709755328928749912738059 3408935191421531730058318932434080048287671031622744614786881294540140355073645=3^4*5*11^3*79*601*60311678903717477811258183359*2208425151552861480262415825786074745099 42 Pedersen 2016 3845156249517081189410873652708021508728675938191900278596013935038354081653855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2491029416126433766740630915509104645559 3845164429985234968051059395643517590647078476423629636067892516603722446986145=3^4*5*11^3*79*601*60311678903343755057496903359*2491029416005810537248091535299027932599 42 Pedersen 2016 4322023566180592011033830544765484441216000223886855344688807662924045142287655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2799961078798730496598983517704280113599 4322032761171341076577271392306639625644640835530074701189223977756609296112345=3^4*5*11^3*79*601*60311678903021526563676139199*2799961078678107267106766365988024164799 42 Pedersen 2016 4988735366684784168751686540314898583896234180451766694995159305988086031855655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3231880771878340284864906251835780727999 4988745980087243410686421080781211663080236848792727777571562862950377200144345=3^4*5*11^3*79*601*60311678902674287920392311999*3231880771757717055373036338762808606399 42 Pedersen 2016 5526440746500669696629352061833041240831624059884380797869245276548468995455655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3580225502602619656772129885817193607999 5526452503857093423553862767951975423650363898150466266427708857669512956544345=3^4*5*11^3*79*601*60311678902455271890127031999*3580225502481996427280478988774486766399 42 Pedersen 2016 5604413340933366857926343978437806471201625207728874522419341954810709666410445=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3630738931389275261411238969220166039381 5604425264174421594133152119803788703238140928386217679962624232459210274197555=3^4*5*11^3*79*601*60311678902427001368945899349*3630738931268652031919616342698640330431 42 Pedersen 2016 6542147383679351683934686691830441313628016345932761284717269949196559202865415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4238236503243938610797250153841338063007 6542161301924764009264714075786266906863118892037042765639191417861098292686585=3^4*5*11^3*79*601*60311678902139793253921967807*4238236503123315381305914735434836285599 42 Pedersen 2016 6762711542324923419905293395462876305311634169348940332245568966122013489386055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4381125835087943809807429858538471140319 6762725929814745745917678068181888081779789424928633174516036448473023612693945=3^4*5*11^3*79*601*60311678902083809597406129119*4381125834967320580316150423788485201599 42 Pedersen 2016 7508895166743256603519013272102320963111927051824015571631829183131290213148455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4864530211305776758151931053060836578239 7508911141718991157915646925832239632469890312618684592736986195123596125411545=3^4*5*11^3*79*601*60311678901918797298215793599*4864530211185153528660816630610040975039 42 Pedersen 2016 7563077190242589686058631043822809749813139156235802210469193935168416338008155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4899631259378671938599952691341057012499 7563093280489145237455489868536557660795185717352889132442822048528428461991845=3^4*5*11^3*79*601*60311678901908083384303799999*4899631259258048709108848982804173402899 42 Pedersen 2016 9529477259633047250799217122769003936022596162485365328195716804492251244611965=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6173535386770083566453836986074689444997 9529497533343707091071165254684671930368818074785420328806631712391374829500035=3^4*5*11^3*79*601*60311678901601695367125585599*6173535386649460336963039665554984049797 42 Pedersen 2016 10769443552776749816983586461596900713510932554579948556548917717480374078558635=3^4*5*11^3*79*601*473861*58309019*2182799234136439*6976829794276707464096363826904190048483 10769466464482880997320405908701839025105303986608851764096058317863328658337365=3^4*5*11^3*79*601*60311678901466015614402350783*6976829794156084234605702186137207888099 42 Pedersen 2016 12618809884391680263636823803914185588541003170850916599463116215362946357684455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*8174915290496842315993558413388293127039 12618836730575736065736392621677383417781156748595321322137703543164019648075545=3^4*5*11^3*79*601*60311678901313196108419283839*8174915290376219086503049592127294033599 42 Pedersen 2016 13516011299914428798227999893255119432474136109015887924715939093603309922521895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*8756154380205650237959581059223816953791 13516040054870750520793958971704254209420272691973002096881424270795402041126105=3^4*5*11^3*79*601*60311678901254122906315505599*8756154380085027008469131311164921638591 42 Pedersen 2016 14075166086272199850967465481306808238317619671014847336341851393243121603132416=2^10*2687*8623*1448663*3962626379*220136910613*469444394226616442191968392357824354395359 14075175805858007971050306059896281962323456276502361540911370927659132969206784=2^10*2687*8623*1263699057395751933124929119*469444394226613914794726245834679911573439 42 Pedersen 2016 14337846004027683003568813379012395879823442734236889623779634894430834696608215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9288568225129843562743419508367314123247 14337876507415586801094186306166836902387787921366634827602022070352344145503785=3^4*5*11^3*79*601*60311678901206499602049978047*9288568225009220333253017383612684335599 42 Pedersen 2016 14792843635512949920463022379918505400763971640387816214576798198193918817767655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9583331925419006496122353601159441097599 14792875106896272597884040377688917675116250027821294527846069167680672516632345=3^4*5*11^3*79*601*60311678901182409365536132799*9583331925298383266631975566641325155199 42 Pedersen 2016 15643531597079218950520954941820659450834948793891833893791400529858081298300455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*10134437940024355428724912847273714139839 15643564878278665295146883441926510326839177445031606812420076850788346390659545=3^4*5*11^3*79*601*60311678901141128259692456639*10134437939903732199234576093861441873599 42 Pedersen 2016 17274969746451964741506678102843408487951935132877603214148944283477676583181255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11191341783967960927640465609034348720479 17275006498492895740869800830640692315913715606154892212568831890148956509938745=3^4*5*11^3*79*601*60311678901073335077426229599*11191341783847337698150196648804342681279 42 Pedersen 2016 20400457570875352904732296428110399834064107389558240647290738211593544666714255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13216144316078713405386936702449149931879 20400500972308910258233734349131442014978462052169466352450544972177854788005745=3^4*5*11^3*79*601*60311678900973742238205112679*13216144315958090175896767335058365009599 42 Pedersen 2016 22687627750873937175899826172467493974995300299509510845833364564202431906912655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*14697854766409362425742991383567424938599 22687676018201519538244684737968548579777226230963775989921941868826587331487345=3^4*5*11^3*79*601*60311678900918249393320939199*14697854766288739196252877509021524189799 42 Pedersen 2016 23243155014934691835519489778166029466230094691214045226707746552457898834234368=2^10*2687*8623*1448663*3962626379*220136910613*775221319522718939620917262390065899430707 23243171065462140988165439590369479916481519306547771374932028858783416577979392=2^10*2687*8623*1263699057395749249560584627*775221319522716412223675115869605020953279 42 Pedersen 2016 24306353678874440017132750977200713308931344471172588981667021915384040633510855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*15746523179767658063165266411055586296159 24306405389998592510265834727477255552278243318693126330992879183230015261529145=3^4*5*11^3*79*601*60311678900885285998794948959*15746523179647034833675185499904211537599 42 Pedersen 2016 25841100966034870419950196281053905039579872093308215445248503421303159663065895=3^4*5*11^3*79*601*473861*58309019*2182799234136439*16740787233176937319173023237983201068991 25841155942293257260740118587408589316775386828939039411433472331682387449382105=3^4*5*11^3*79*601*60311678900857846665521753791*16740787233056314089682969766165099505599 42 Pedersen 2016 27114532214362664299158145527422815993301382937480659385929468931347211298091135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*17565761432703298733512179453615943136983 27114589899812328940535887086028840093666586677468984215826347198822583982804865=3^4*5*11^3*79*601*60311678900837437282339501783*17565761432582675504022146391181023825599 42 Pedersen 2016 30270156878754952384681604178107100277265816053875300451093193273745533464381905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*19610087685048060666024668152876227680249 30270221277712572803305389802667066688624872407232715887980399014381257191618095=3^4*5*11^3*79*601*60311678900794261913146054649*19610087684927437436534678265810501815999 42 Pedersen 2016 33327921285358357755686350830064744954415484648635356432028519090072936202268455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21591016570679197220745467342661794274239 33327992189628825504906058821198592300551556966751473705382442454201407160291545=3^4*5*11^3*79*601*60311678900760225120532593599*21591016570558573991255511492388681871039 42 Pedersen 2016 33402681950355245203103610383067093463600404373595311203676429273642304946026835=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21639449196973592794064740089200209252043 33402753013677049094816916098439071686186660469559772794060925189919933071509165=3^4*5*11^3*79*601*60311678900759470982060625599*21639449196852969564574784993065568816843 42 Pedersen 2016 33558033515174783990868556527341975919053026700580636849341630738357086639723815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*21740091483709104670543083592910928097727 33558104909002930454622451384692650880826241009796523157255682566029633071508185=3^4*5*11^3*79*601*60311678900757914639133102527*21740091483588481441053130053119215185599 42 Pedersen 2016 37267719525704284677582900789617260125356810790127869911909929786006356434075655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*24143358445352674901214192728009638403999 37267798811791236870241537624395949286584330012499391199736240298569104941924345=3^4*5*11^3*79*601*60311678900724604585144835999*24143358445232051671724272498271913758399 42 Pedersen 2016 38765201489729141081182520995047557369536897406166786125150037767006013026387655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*25113480692783632648051099815247951893599 38765283961669338925883933662826518216807404731654364327374011711244361732012345=3^4*5*11^3*79*601*60311678900712964551316459199*25113480692663009418561191225544055624799 42 Pedersen 2016 53953843374899395693397860536935134677550216580275892060580906541406319096613888=2^10*2687*8623*1448663*3962626379*220136910613*1799504827444319274415572660476376940549187 53953880632648764041730027881336684527694291812239506138446992211805070135145472=2^10*2687*8623*1263699057395746904475388607*1799504827444316747018330513958261147267779 42 Pedersen 2016 59228744856306531425346275507209959626637526473824180074263054631084509547487655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*38370494238260567342153209556973798273599 59228870863893647331873226757541689829994099415444281799332520687057607930912345=3^4*5*11^3*79*601*60311678900612878451183284799*38370494238139944112663401053370035179199 42 Pedersen 2016 75333801884471756774530575776719396359562406698810577400171548555515290761615655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*48803924820071602918058081046273491735999 75333962155141458789432622702831899988990573013008096520216856996444380022384345=3^4*5*11^3*79*601*60311678900572345580969342399*48803924819950979688568313075539942583999 42 Pedersen 2016 107549279728278793544065122897834158217457488109284863591364375339636667072048935=3^4*5*11^3*79*601*473861*58309019*2182799234136439*69674260836604450985687447195161820044223 107549508536524983672531642237199406532377945836803609809072321039196743123407065=3^4*5*11^3*79*601*60311678900527694220913209023*69674260836483827756197723875788327025599 42 Pedersen 2016 110229494336125004486599093915516137340343265836909006716283370146028469513996455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*71410599491376983594337392668458437816639 110229728846456837436961278408267421180882398100035406929143633863084462674163545=3^4*5*11^3*79*601*60311678900525155401826693439*71410599491256360364847671887904031313599 42 Pedersen 2016 129533921977063614541102561673016688964187984202584408888079417807799171886391455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*83916696511778098502357488083199444507639 129534197557054336764360359981595688991352484163128562987929650099387458605768545=3^4*5*11^3*79*601*60311678900509972908268113599*83916696511657475272867782485138596584439 42 Pedersen 2016 138656825056468903615849824239350865563588097777189757870268346613995958918230055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*89826838637764037481303164422660919395519 138657120045194477760118518716627382841510730562098685441275918545046741492649945=3^4*5*11^3*79*601*60311678900504268957079344319*89826838637643414251813464528551260241599 42 Pedersen 2016 140743423888421194597577010139659005971045208057060079697632724563195763313435505=3^4*5*11^3*79*601*473861*58309019*2182799234136439*91178611812313449039731760596772398015129 140743723316330559164195966598607713718819318937073237849581669026880493229284495=3^4*5*11^3*79*601*60311678900503068249913565849*91178611812192825810242061903369904639679 42 Pedersen 2016 156303540906353456222966651590770514160602758775907741997427594829651972041090095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*101259010811679678098640224233870316537351 156303873437999957674555082824156848204994745120673352940564498821779513923197905=3^4*5*11^3*79*601*60311678900495125270513897151*101259010811559054869150533483447222830599 42 Pedersen 2016 175251125915574534280120447185100379180779184807351578899814213345667317829352615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*113533932442875742441973036504421442536767 175251498757706670330636625701650368709852129863877965052492342566665910415639385=3^4*5*11^3*79*601*60311678900487357583163985599*113533932442755119212483353521685698741567 42 Pedersen 2016 176941799591563237656830762884009780036937656764870009377844976819580490604389945=3^4*5*11^3*79*601*473861*58309019*2182799234136439*114629211174523488080038928539794172600481 176942176030558873492160177328842096751607435945532895576118773114219745214618055=3^4*5*11^3*79*601*60311678900486745322948485281*114629211174402864850549246169318644305599 42 Pedersen 2016 199633125828068761549474122965295857619712563594801045921299705270034519733188135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*129329461951889378096148091681262989179583 199633550542260410043109146521770515668885600404247854467828630422768824962107865=3^4*5*11^3*79*601*60311678900479531518937544383*129329461951768754866658416524591471825599 42 Pedersen 2016 259768226564204205020680148551534014660156142698972624400257052139393475417194535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*168287125868473558483695153714992860992703 259768779214231115867848663551816997944451237873044072100202023137928487103381465=3^4*5*11^3*79*601*60311678900466509542279757503*168287125868352935254205491580298001425599 42 Pedersen 2016 580113950583436808561838061630198366829788980240140115475739035451432212258012455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*375818516033034359832788295438904174549439 580115184760513203449026781571963727633059140977773275143284665519369661293347545=3^4*5*11^3*79*601*60311678900442637636122786239*375818516032913736603298657176115471953599 42 Pedersen 2016 621397739552352415080736124722052202706317671250957186311399166104847770363067855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*402563627559683105992907143197189866606759 621399061559597212083413296412865884181724091492393011576402680224217519938372145=3^4*5*11^3*79*601*60311678900441351567694417599*402563627559562482763417506220469592379559 42 Pedersen 2016 649675037611575387809380581372335571259112108490272349623803417989722773275360256=2^10*2687*8623*1448663*3962626379*220136910613*21668398270140464056199570894821339517783519 649675486243743332035766784309697382119907799512107060606780928789735672390534144=2^10*2687*8623*1263699057395745277012762559*21668398270140461528802328748304851187128159 42 Pedersen 2016 722895401889089210582068425836048717251538762353723530775821948439485179645872755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*468317434724381065186549857130891172691179 722896939829924361144882150119218807668306790328838574807128129737366223188047245=3^4*5*11^3*79*601*60311678900438814229163724479*468317434724260441957060222691509429157099 42 Pedersen 2016 729177261491815053864111341124670232271611646543683906578052695283585613878946855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*472387047515885098641501067574864684064959 729178812797140251628846944245281075295842112938255791767100453426252273363293145=3^4*5*11^3*79*601*60311678900438680401112977599*472387047515764475412011433269310991277759 42 Pedersen 2016 742419062014775271599895267813293705991459978545868902323338803990014384777483815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*480965558370759987211974812170977125505727 742420641491680620462519408305892418009360202633015694890406042419657504085748185=3^4*5*11^3*79*601*60311678900438405717775185599*480965558370639363982485178140106770510527 42 Pedersen 2016 856733933563609734886640263042744791283463853180554248570950440125206047387026455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*555022810989460470115983107739969036590639 856735756242378811909340802691105393410242386790701813862163432873809675457133545=3^4*5*11^3*79*601*60311678900436387466870267439*555022810989339846886493475727349586513599 42 Pedersen 2016 903549385922821237855384941539477488001081319513943426784024276788947725752655655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*585351531433709729440043855890314033367999 903551308200226177170772160595125620507354882400839451927777206331966509639344345=3^4*5*11^3*79*601*60311678900435708327564471999*585351531433589106210554224556833889086399 42 Pedersen 2016 989527693265925953633249473664524464621289140881558836657818244937550003899980455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*641051346692798798073160029110299255083839 989529798459904237502369925544263875750903391518849369634564634781488962924979545=3^4*5*11^3*79*601*60311678900434628444951073599*641051346692678174843670398856701724200639 42 Pedersen 2016 1088250578075928163175021342244786720861369623673488520046170330136352602947922335=3^4*5*11^3*79*601*473861*58309019*2182799234136439*705007553969801556213763911951644423965943 1088252893300231050578193479754420571219287605121627015376926828600072752791213665=3^4*5*11^3*79*601*60311678900433598939894500599*705007553969680932984274282727551949655743 42 Pedersen 2016 1138162658821777356451251172147173985879242555147346025503013477469266478058015155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*737342380772640382028904839211591709933099 1138165080232711042414790214229731176220046525960533731857190253473982564988384845=3^4*5*11^3*79*601*60311678900433146417640427199*737342380772519758799415210440021489696299 42 Pedersen 2016 1176948204667962326121469111859818161067363314328665622727133543111928607754185655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*762469041265436041628241790721517017441999 1176950708594118289849590166488374324264495038378981419466476798598270741493814345=3^4*5*11^3*79*601*60311678900432821273650974399*762469041265315418398752162275090786657999 42 Pedersen 2016 1318927855209871614904929688583603273545715725385292670712253750903567697849970715=3^4*5*11^3*79*601*473861*58309019*2182799234136439*854448524813254423254550414666381890625747 1318930661193976430146862585322059337729949094922893142137200180646253704352141285=3^4*5*11^3*79*601*60311678900431794167765585599*854448524813133800025060787247061545230547 42 Pedersen 2016 1324620988015088536959201595125059038988410185324312347023426469224878874179024615=3^4*5*11^3*79*601*473861*58309019*2182799234136439*858136739379175083439597665702614611114367 1324623806111182719124414294995236567376960609328907222849322120574622646520367385=3^4*5*11^3*79*601*60311678900431757574080319167*858136739379054460210108038319887950985599 42 Pedersen 2016 1376943622645631518449537226058292484751395668487227099058232761314556230370844295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*892033208998657373533456334934010095239711 1376946552056746090412538864671944518245551711717606969724498213200861755341283705=3^4*5*11^3*79*601*60311678900431435430620024511*892033208998536750303966707873426895405599 42 Pedersen 2016 1390919358881373202013813268371691986265888863032308556858474319576240931198834405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*901087189595578236463849799863862260104749 1390922318025496729452588332491803927122587621538326473225453947212990317185165595=3^4*5*11^3*79*601*60311678900431353485312183999*901087189595457613234360172885224368111149 42 Pedersen 2016 1778485415461687426631862677916038680488359592816197753887554859630500287978017792=2^10*2687*8623*1448663*3962626379*220136910613*59317240264509513766816504869893762195326133 1778486643592247173951458527658088241675114979668517310111932844388845529109490688=2^10*2687*8623*1263699057395745183459046079*59317240264509511239419262723377367418387253 42 Pedersen 2016 1990955088317768618050138471013995939351975869147782496512192583424053414669502215=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1289811744791655186431156439359046769868447 1990959324022025794217537556131101154073726648343696226190976516023507478041409785=3^4*5*11^3*79*601*60311678900428920266292973247*1289811744791534563201666814813627897085599 42 Pedersen 2016 3299936698979430077565031135778931724621679484333134945925241069147727823190764544=2^10*2687*8623*1448663*3962626379*220136910613*110061705499126151169398630221929926599267931 3299938977745997413317783712851771455628654518711243670581823128395260642224362496=2^10*2687*8623*1263699057395745158634079451*110061705499126148642001388075413556647295679 42 Pedersen 2016 3402803666609650962624493410407704215817444247628110670806479942433587928518626855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2204457629489595092232170826820489965408959 3402810905984392043034190827166303641633649072059051284386666626808278235459613145=3^4*5*11^3*79*601*60311678900426580043141421759*2204457629489474469002681204615294244177599 42 Pedersen 2016 3979037337279671693637988239981226381592517822436297629008717129027137208098838055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2577762361743793953742030155384990101641919 3979045802576296349804637577509834540336454114469168764006730124187738025713641945=3^4*5*11^3*79*601*60311678900426102127514710719*2577762361743673330512540533657710007121599 42 Pedersen 2016 5233840695276439305426797789232441362075888702709426839186536013846911836473100255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3390668749258409063266169266422422449210679 5233851830133998094305696733848579705665278266433163152983050581630992639768819745=3^4*5*11^3*79*601*60311678900425425507774156479*3390668749258288440036679645371762095244599 42 Pedersen 2016 5995004603481934495619456910294797446544945807406066843818637828968828696805278205=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3883777887819886451947736242226261211670789 5995017357695562797345615791642546518229663873731940709160869715202257962000481795=3^4*5*11^3*79*601*60311678900425153089854033599*3883777887819765828718246621448018777827589 42 Pedersen 2016 13233798702995296009115341142160670742163995524616571997915460382839844659110607872=2^10*2687*8623*1448663*3962626379*220136910613*441382544075541705539647609977578379974684303 13233807841576061077575080989215947580236232722531930947232858675414306783523243008=2^10*2687*8623*1263699057395745136851238079*441382544075541703012250367831062031805553423 42 Pedersen 2016 15114172831526653532570601537727987298542029182934075473900576887476519660595885095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9791500443832509456059426121107191597148351 15114204986529336333401279047345659767125434578372079926950212131749311944152402905=3^4*5*11^3*79*601*60311678900424022906702633151*9791500443832388832829936501459132314705599 42 Pedersen 2016 15368127587973184828370970168468671835741750905390858114249923365156883467137489535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*9956021396330339370809910493168853021503703 15368160283257890725759152543862278192157705672766115075646020954196301039767086465=3^4*5*11^3*79*601*60311678900424010628960268503*9956021396330218747580420873533071481425599 42 Pedersen 2016 19639039671108370144166078700153138689006666338914786952274197607465706354429961635=3^4*5*11^3*79*601*473861*58309019*2182799234136439*12722870632721119373745549020795847265705883 19639081452645497659972981896006829233402353947840962632661447054053322083692534365=3^4*5*11^3*79*601*60311678900423851720531763099*12722870632720998750516059401318974154133183 42 Pedersen 2016 20154097551247657770335321879904462638895424954588569895870690151795350560156425655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13056543505077301328273913232202177552033999 20154140428556793604750164188391392029523688281173288780540623878301062627939574345=3^4*5*11^3*79*601*60311678900423837107513118399*13056543505077180705044423612739917459105999 42 Pedersen 2016 20346127373548594459962443225599447564040469269363876721713898103117915752488762368=2^10*2687*8623*1448663*3962626379*220136910613*678597707564442331136917445422642668658040207 20346141423537749687189019274440062882652889302945195263288688998744220005583291392=2^10*2687*8623*1263699057395745134321753279*678597707564442328609520203276126323018394127 42 Pedersen 2016 23298461281992434490274609947754821166743735883407966669576138456506905203699006272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2312517739186859377433742098263028843 23298532212437668855709992267508459268530620819731737227179820045527609095899841728=2^6*151*1451*1811*947904766574645330369514576912739499*967879007654926351817201472391093343 42 Pedersen 2016 23299233559634989096551170670307734595657535822946902546000567568572298593456304704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2312594392564366555400348990903858351 23299304492431365727046035449975139487282431024704069241584109169947682044153679296=2^6*151*1451*1811*945982050635813176197085437341360351*969878376971265683956237504603301999 42 Pedersen 2016 23301354089948171667211687159499310710545229985319249060628683594135787553538911296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2312804868436844379471678414949739399 23301425029200346276230623754185826429017560447487308339409879289996796738505888704=2^6*151*1451*1811*941883433475965811680578103661516999*974187470003590872544074262329026399 42 Pedersen 2016 23309652560536829636366237707232662687968654908998575515965649185562942832044342336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2313628543451778707118097527001625159 23309723525053085271746386043054810966543053557670877551089728591365650966898377664=2^6*151*1451*1811*931551447193534343214881112887777159*985343131300956668656190365154651999 42 Pedersen 2016 23310116591991518111573856123697250519165786724098519445875284228167401457862951616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2313674601470697629247008362835467229 23310187557920483251046589135836895806285700334314795189059589927933144476181208384=2^6*151*1451*1811*931097737132512804605632343413470749*985842899380897129394349970462800479 42 Pedersen 2016 23315007277966161046417516617349901484667437377048254279445255828505041297387976896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2314160032587210701043062983626644549 23315078258784458553560833108714553544167760163060327926011469637095519962925623104=2^6*151*1451*1811*926744286152691708800521973508015749*990681781477231296995514961159432799 42 Pedersen 2016 23318627362194932011075453867014423539391172209082506964810965577710631024151621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2314519348547825398045578204331946999 23318698354034308679832406519577634716178577427957375968571923329065666820072378304=2^6*151*1451*1811*923907541816111944847075515238427999*993877841774425757951476640134322999 42 Pedersen 2016 23318651581783683143413833096206670107844005916802612137460728568134708706026245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2314521752493216679883157305145527999 23318722573696794561977582166482593833326903743639235837077972550434790044949754304=2^6*151*1451*1811*923889435245001433882576380854375999*993898352290927550753554875331955999 42 Pedersen 2016 23356001507373790636655475605977084535645450631134976143401861108618745377548760256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2318228965791083294413660362990642389 23356072612995992948031428080888100738549418820608984423160480219665373197038119744=2^6*151*1451*1811*903190656687970115217297316795451999*1018304344145825483949336997235994389 42 Pedersen 2016 23369770405728158529074272562320547105124719644965956081059668628780101087527333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2319595614914737933818880524603337499 23369841553268755314718978360080267409029870198498297300529989279949561933272666304=2^6*151*1451*1811*897524141871383707956621060737137499*1025337508086066530615233414907003999 42 Pedersen 2016 23373048287604251083486424999588262007666860893587256110706409105099703005355474496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2319920965155411634481813566298995199 23373119445124117233009864946721800224319441821302260460238291629480464594362925504=2^6*151*1451*1811*896264988135864009428284142977267199*1026922012062259929806503374362531999 42 Pedersen 2016 23374391488602622516841790779861937638911041713738712065872918198173746753227013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2320054286240372220596516306068319999 23374462650211764936612650040350362022333199782211231413212964488701729788212986304=2^6*151*1451*1811*895757759744456464683726053932259999*1027562561538628060665764203176863999 42 Pedersen 2016 23383691303227875350609632949274299254349820888800649348751615181625691669002638656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2320977350902529490200959529372460739 23383762493149616786354470792505224663846244443510326556868244624518581067427441344=2^6*151*1451*1811*892373562179364097984982326653514499*1031869823765877696968951153759750239 42 Pedersen 2016 23389473382752342246171271665269605543851030108833580011561874966739755924225960896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2321551258394010633336971392162753049 23389544590277197899932477292348452718587078965407216562223664260263797156119639104=2^6*151*1451*1811*890371408770728866111331362511785049*1034445884665994071978613980691771999 42 Pedersen 2016 23389949250971705804286645611616009417666297378218279593544948010872129533064711744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2321598491285722844446075487565938111 23390020459945307118278651060059943330472738208780960000259750860930118149491192256=2^6*151*1451*1811*890209810957170911358200568032051999*1034654715371264237840848870574690111 42 Pedersen 2016 23392510436872973032306256029180248075988793181106191911517644234792349845906086208=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2321852704976418955723878588412799027 23392581653643915728893134038661441013473481428693427965393577513997245953516889792=2^6*151*1451*1811*889347986303814378047916112272551027*1035770753715316882428936427181051999 42 Pedersen 2016 23394235208194073744448856214113079973590813215868992735621495595554184719872812096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2322023899298130190126026859652274599 23394306430215955387278283329542008281421318920821133909628565051427573579570387904=2^6*151*1451*1811*888774946724800506667040518497141599*1036514987616041988211960292195936999 42 Pedersen 2016 23404945675960358670210021039243935587970748381887960439882068391395302527680280896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2323086980091524320635366527797989299 23405016930589468667561127357139230044637554163530264045503616103486187224025319104=2^6*151*1451*1811*885339046861909118987460220971208799*1041013968272327506400880257867584499 42 Pedersen 2016 23452622028068738484190402458204108653749860500784795956097333434069406905889192896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2327819155691273566993040995755961049 23452693427844982503284995261720902422092063513505270756385981800563326655992407104=2^6*151*1451*1811*872029128295885199584807958678228249*1059056062438100672161206988118536799 42 Pedersen 2016 23483898591231894523753370264090517189386639318000027118853330852233007905607057856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2330923549851050083781103211827724289 23483970086227325926612082641913742000088594599842499073229146975592299526784622144=2^6*151*1451*1811*864561967068193688998097880091451999*1069627617825568699535979282777076289 42 Pedersen 2016 23520046779652831793701738145436536395664960688123064660191287468857262518317779648=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2334511483232191284258190381819336637 23520118384698754002773271738550182630174555832927389278361052687635041141078316352=2^6*151*1451*1811*856805705488540318980811596582369887*1080971812786363270030352736277770749 42 Pedersen 2016 23553546686516136160174678407338405857353062863791532005293244210362039771576376896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2337836558134986494665592914963900799 23553618393550051497380755765989412420063947093904916414402443235348720211937223104=2^6*151*1451*1811*850269009960400387901507356103171999*1090833583217298411517059509901532799 42 Pedersen 2016 23645449892748825838576792479159508373687142510273069643316632973838376383608815808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2346958525123660877081310881393232677 23645521879575267285168884130977557108018682763158995969382266210182328092754960192=2^6*151*1451*1811*834673813892773270576184583358395749*1115550746273599911258100249075640927 42 Pedersen 2016 23649893285784990463483279671147519190795517625258611540338342767127805073314469056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2347399559623490786918519747514229589 23649965286139013950441037065483048032286168902958456323900614359323218597054810944=2^6*151*1451*1811*833988905806074816959004784879545749*1116676688860128274712488913675487839 42 Pedersen 2016 23653737496687169090271405946271511314242258279188317023618799130507642552646776896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2347781121555708799811093943995875799 23653809508744608848632531277018948349496198387298049110602483667634422890066823104=2^6*151*1451*1811*833400733911053078316542305526632799*1117646422687368026247525589510046999 42 Pedersen 2016 23672408722938286488619333784237984619825308538845808962118312613154123749980504896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2349634357329328434106975231919220299 23672480791838896061243514578502237631139063976151346095482955908860992457277095104=2^6*151*1451*1811*830599612038597046742461117812559499*1122300780333443692117488065147464799 42 Pedersen 2016 23702856493521318044316048645656430195312713044273688945991053664087726562684300736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2352656488651209914930714611621901009 23702928655117917180743389620393844629013300075429165408005171717412259545941619264=2^6*151*1451*1811*826215912179951161797091119384053009*1129706611513971057886597443278651999 42 Pedersen 2016 23821750885784439140394341103357943610132808484462960827273349449805404025416370496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2364457499364772183345851034881731699 23821823409346237481225128150210835263546333067201364804886633442699722676510029504=2^6*151*1451*1811*810886270635425102143950816410603699*1156837263772059385954874169511931999 42 Pedersen 2016 23829588733141394775017199133338683242834741308991397818892680279123518942395456192=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2365235454648197180433912632239016573 23829661280564940721366875125562102432821617368491822016476555827013359756783551808=2^6*151*1451*1811*809959517433317383171824213064770749*1158541972257592102015062370215049823 42 Pedersen 2016 23832530884089827578252692292283204235509836636771897495156172503635178847624760896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2365527481498265386133802209949796799 23832603440470534866426514573729876735883559131858404569180007922993577135120839104=2^6*151*1451*1811*809613968515248250783087159491328799*1159179548025729440103689001499271999 42 Pedersen 2016 23900923615942528618546156285882844483252137523354080093031424890814472508561727808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2372315887124136652278397048165329427 23900996380539858557938842116419537543479083289835907844609898878986668289978048192=2^6*151*1451*1811*801915116982096636769789529581051999*1173666805184752320261581469625081427 42 Pedersen 2016 23942764060876338880342004367115293095697462538230330329942460173221061138350976576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2376468812502075291795129698821926719 23942836952853814316850322590340587352092633166691045014830133417344529665883263424=2^6*151*1451*1811*797490835538056599281675606221878719*1182244012006730997266428043640851999 42 Pedersen 2016 23970829428181044795469049621041824756365369358116054966729678008939411536987200576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2379254475424763251945521423320907719 23970902405601458909108483674545699766690420343053470568026210956739537050799039424=2^6*151*1451*1811*794631269069462617053350839125851999*1187889241398012939645144535235859719 42 Pedersen 2016 24132055706676404449731776550408902205365725357055317249300101261631964457631316672=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2395257190133299390559124871245917693 24132129174938320014564391280260757765797211748264002964174414771553926654946731328=2^6*151*1451*1811*779623284418706936277327412391950943*1218899940757304759034771409894770749 42 Pedersen 2016 24134157866376252018792170052861556126028484984702518551278726549277084409375014976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2395465842607712305990699926849691319 24134231341038037586163285350745498271920445820398328666614935387159233956382425024=2^6*151*1451*1811*779441577469921316919586165621226999*1219290300180503293824087712269268319 42 Pedersen 2016 24156837525299757006418884051354630271707225666532534189141329266206753719259013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2397716940349512517704375181070069999 24156911069008089714270821182079021251371892376467035419039388748324298758180986304=2^6*151*1451*1811*777501415418517835558456620522509999*1223481559973706986898892511588363999 42 Pedersen 2016 24243425041467110934779435792320534291856870043669745114126730022504180567846994496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2406311291912287107036158697729625199 24243498848784743808526503433566244332363686269741345705057391260485564928831405504=2^6*151*1451*1811*770413041701987005968093488206781999*1239164285253012405821039160563647199 42 Pedersen 2016 24534196448053301238345374735006320971902094173726611689459643310780942817149232448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2435172169359957611128346987150003587 24534271140603013645261057739838921211922185356804001979423986138053402242541263552=2^6*151*1451*1811*749609890710076852408500591130114499*1288828313692593063472820347060693087 42 Pedersen 2016 24820002050740333279830437664092281571379281687664783253066191213619059580749233216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2463540159768130684937096937335063879 24820077613404101877056371244417872470680798486957077509005816645640728551131726784=2^6*151*1451*1811*732489603557397708146151888827615879*1334316591253445281543918999548251999 42 Pedersen 2016 24843080996793521579744976593650482994264931751049367996111814940180819145555157568=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2465830889250381298618938510052656367 24843156629719437504176472993735555269976505925895736418920710671745119063565098432=2^6*151*1451*1811*731219141728049840667562484041158367*1337877782565043762704349977052301999 42 Pedersen 2016 24862518169529081070097970970208110829920692802861873301565928599285112221529882176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2467760149994538758698213987257573119 24862593861630034330411463442205197842468340246226833474559929052418969351293157824=2^6*151*1451*1811*730160648155443837732574657503525119*1340865536881807225718613280794851999 42 Pedersen 2016 24931044591634135088063825762549082762660791290833920662276230494733643873764785216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2474561825212611016317084638915351879 24931120492358721102457379688890751905594245926011531693325999344353820115012174784=2^6*151*1451*1811*726509639309625683435112648312278879*1351318220945697637634945941643876999 42 Pedersen 2016 25102739973202287217681994801820656279516659553368868920470944557369989312672432704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2491603663761824150550195386032490351 25102816396640786048545375589877377853296428565732990362353366744724068924681551296=2^6*151*1451*1811*717870055030691066372071533478301999*1376999643773845388931097803594992351 42 Pedersen 2016 25169628255237080966288822200745149192855315132843796658978702379526824690805182016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2498242743350687296727963049446086079 25169704882312016052138873674600418573471282657644468403480052679399572516378177984=2^6*151*1451*1811*714682938497389021372015159807751999*1386825839896010580108921840679138079 42 Pedersen 2016 25219832159737456872551051604904952597439660376260352741561587572821742852558213696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2503225794305356775361893275959869999 25219908939654472626944626803339827929513846458214443294673220855891167826481786304=2^6*151*1451*1811*712351152679869811981862157077909999*1394140676668199268133005069922763999 42 Pedersen 2016 25285041980258850728785532636202524735326027706897424897963077824181940310996441664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2509698276110044376260303869033464591 25285118958702350582388907947451751484642729361232646368394537153366522120579622336=2^6*151*1451*1811*709395760219692186897116464093466591*1403568550933064494116161355980801999 42 Pedersen 2016 25469846668701747101581035975192038329651968681303816811599797867145292623065829056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2528041295210598100714072842838444589 25469924209769476684223244983530265420195816343813790072852406133467509384583450944=2^6*151*1451*1811*701435551991116856538787039483451999*1429871778262193548928259754395796589 42 Pedersen 2016 25544988217304614111649327970480403451648762803663468651263233726385714951550538816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2535499563033134809455244628543810279 25545065987135240672407851771851294687538683641977101957542282657325494304119221184=2^6*151*1451*1811*698360274596246497166230549332362279*1440405323479600617041988030252251999 42 Pedersen 2016 25565219897619074304515869038404817484162905169475310434717994281817363184760518976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2537507683614767731983326717452304819 25565297729043557866172705174431417759313461275428072358228523933028866785988921024=2^6*151*1451*1811*697547109137577636830044098763444319*1443226609519902399906256569729664499 42 Pedersen 2016 25625408385872489089910576849850154648837505215768820777477336877378973731608645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2543481766842677735511370529643002999 25625486400536381388734979023347739282830008663652277858293700934706469454567354304=2^6*151*1451*1811*695163836319543058177964989081115999*1451583965565846982086379491602690999 42 Pedersen 2016 25680395622799307307998350925713278195718280773543160632537053304934918621884575296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2548939593403971722095734187002830399 25680473804867782691513644785831563825679568961161792386607968456330871394832224704=2^6*151*1451*1811*693031963370808776648393850678842399*1459173665075875250200314287364791999 42 Pedersen 2016 25749563204134781777974481398983701944685021146923884397568454925457919890651647296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2555804907678548396802259180524060899 25749641596778851855433901594051956678467609287843426132606902966809612359921152704=2^6*151*1451*1811*690409357774866040841337919955810399*1468661584946394660713895211609054499 42 Pedersen 2016 26275026863362985258569710839260538201172922940542356451690541751267014290995538496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2607960456431566428558334722615061199 26275106855742370575181305824666972439547176433274614084771822826577848044594861504=2^6*151*1451*1811*672356962630069893406194966534733199*1538869528844208839905113707121131999 42 Pedersen 2016 26921554214609472971709731712319403955782851519528877964075370587853931997276201536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2672132332442218494992157069750654959 26921636175293645675835185542208932481314810857794450218107558577302756102748118464=2^6*151*1451*1811*653725475702846674701009002933556959*1621672891782084125044122017857901999 42 Pedersen 2016 26985599250593915161298578891923056145058297886396503207635198953200386982962773696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2678489202109631040127431833839728749 26985681406258471438589972104538981264322283398772771154841976090024104026957226304=2^6*151*1451*1811*652051612549985587452441356404283999*1629703624602357757427964428476248749 42 Pedersen 2016 27133325976449994939075944833843593433781585356051801840150289289413922928665221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2693152001938314142886845825339721999 27133408581857661336929743348224005307448051469342423658276894271749094288358778304=2^6*151*1451*1811*648293200258197139601616953331137999*1648124836722829308038202823049387999 42 Pedersen 2016 27191336809588871439377643408020740685131179578872638832512114912437987610276846656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2698909939300570218565731179873175239 27191419591606236355704069453827657795937340456663716837083749540189753129737233344=2^6*151*1451*1811*646854853479991028952365448085076999*1655321120863291494366339682828902239 42 Pedersen 2016 27307762080310419911822402587305250130151413548321369946113649239071842803356783296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2710465874285912258383447211875701149 27307845216775925795883535646318292121999773108596131418074568810847984320944016704=2^6*151*1451*1811*644029050668592640120415835896310749*1669702858660031923016005327020194399 42 Pedersen 2016 27410131546365361035035137773893290242354360423724212852915376384675550815951340096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2720626682904896457892082832629631599 27410214994487148327405569957246212239273521799275517474795801605283346958435859904=2^6*151*1451*1811*641608926140126800425512505921573599*1682283791807481962219544277748861999 42 Pedersen 2016 27460508875469368537410206072806294334080834702665241775747481887456432950063160896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2725626947334200825338066387314396799 27460592476961214900043337604441338472375303414419999857456189983303327755882439104=2^6*151*1451*1811*640439284230154716729044509258428799*1688453698146758413361995829096771999 42 Pedersen 2016 27522388359108836744011106488176317495094347533832737080149194939400489343047813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2731768872411398708284240073614769999 27522472148988202449499389477046239858003372422603866109358190998240462756792186304=2^6*151*1451*1811*639021276679664133917924663268713999*1696013630774446879119289361386859999 42 Pedersen 2016 27539580371514723685097114120662895055808820818152855116898884458797504360259128896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2733475286975851618317443557125988799 27539664213733901864244652255682801794111097671722009531434679798603056945750471104=2^6*151*1451*1811*638630902989745907720370685044820799*1698110419028818015350046823121971999 42 Pedersen 2016 27544381937700635487230408347513331491736190140625850953957939926820761229246193216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2733951872396940476884345784703178879 27544465794537827417021335365108508738121944141337694669842317626919694148714766784=2^6*151*1451*1811*638522151173210256983274414983230879*1698695756266442524654045320760751999 42 Pedersen 2016 27873484826578575764153583713669993065722219168600720699192907212887000300707802816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2766617388773170227436531738087770029 27873569685345215029185766429728050669939543793160335356713985945230455956433957184=2^6*151*1451*1811*631342188013953270893622696685853279*1738541235801929261295882992442720749 42 Pedersen 2016 27887353195533312064290509010050629303316289358466663074334889294538282058459658176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2767993910974926264889807015682123369 27887438096521176702442007390633614115268202126314946366418766004609862098811381824=2^6*151*1451*1811*631050952165381861654152528963758249*1740208993852256707988628437759169119 42 Pedersen 2016 28098533960415686836395120647891550484762009037256714752110546402366972292244961856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2788954920333213705286535139317969039 28098619504327798562837709110720889015869394584756869100198383798744437340338718144=2^6*151*1451*1811*626721539765737033174494767281451999*1765499415610188976865014323077321039 42 Pedersen 2016 28147753282279424833977328793039051821210841569951584888075528668825680973963928896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2793840245314250738909467432763751299 28147838976036128084015925197887735846114137851298410486935744092864279122445671104=2^6*151*1451*1811*625739961755959705967935235166971999*1771366318601003337694506148637583299 42 Pedersen 2016 28224661593901925146733133802716449631779775223573682410521309054807474627804095552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2801473875396740606074967946581834663 28224747521800304947042057002526485586702249177293530846015525828839886853936192448=2^6*151*1451*1811*624226126049034658738883212313051999*1780513784390418252089058685309586663 42 Pedersen 2016 28403656816722670704989352083183397856345131214633359649260557200423182469534891712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2819240268764641178505340479496889453 28403743289558791063853233092858456792200233237186954333564225413046776889653076288=2^6*151*1451*1811*620793650458334520934713390759172703*1801712653349018962323601039778520749 42 Pedersen 2016 28468095007323007601052887047926381556466758124574829691319231251501558656316987456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2825636161482224097545865684014020439 28468181676336441734345022352536968277093104493911138085064090950218483238615492544=2^6*151*1451*1811*619587904478398081217380038967372439*1809314292046538321081459596087451999 42 Pedersen 2016 28913783864777990643818062986896811335912767782001095002728032571361211370688645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2869873563109222517847126760647377999 28913871890658245836724378970364015005519561962810061524085921186478723655487354304=2^6*151*1451*1811*611649736942561024403176933367915999*1861489861209373798196923778320265999 42 Pedersen 2016 29037117942502664415161454478407833481039835636996173518646906608266743761162133056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2882115240322687330974936199924851839 29037206343864413415663145958404555749443153298359487221556327383290122129879146944=2^6*151*1451*1811*609568585365912710687595036448451999*1875812689999486925040315114517203839 42 Pedersen 2016 29125848492637052734118820245212363676446890395950353986583414567173418001056143936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2890922301386079345017852716995820559 29125937164132410591734004378029246148288717810070961063305388258776937124683376064=2^6*151*1451*1811*608100188863078110929886043700651999*1886088147565713538840940624335972559 42 Pedersen 2016 29285262305637445731877266127550319270502357481741779934106231936347568227675608256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2906745117578655804402986018625954389 29285351462456387656618996045898436489876774920213083782252166574609973805215271744=2^6*151*1451*1811*605520418583666682370900540171545749*1904490734037701426785059429495212639 42 Pedersen 2016 29412606038086265019320221510701577039967764087036660522471509553376643863933340224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2919384778056567682491661975284881231 29412695582593798524227324484905044898605171611233817650074008718939165158485603776=2^6*151*1451*1811*603511483877925348445179141698633231*1919139329221354638799456784627051999 42 Pedersen 2016 29582099943656001905795640785178768336118363270098816943963524152037710003764619456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2936208106368683563031921316738797189 29582190004175217086223651471543232991366826832815081316054710107424826903903860544=2^6*151*1451*1811*600905852600037167756829467707451999*1938568288811358700028065800072149189 42 Pedersen 2016 30069305142582907424563130511000484395647080524722673832651603271387367864672079424=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2984566264081585587580018696654756031 30069396686362380100746697423508656837462430147232563559011955337275261165068464576=2^6*151*1451*1811*593818592338598877298466268864551999*1994013706785699015034526378831008031 42 Pedersen 2016 30207691990842185258998098727776106950272335454551486102608590692053120347061413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2998302022748064035140995796255357499 30207783955930200280760826040727446692495004064154798237728155752821227125578586304=2^6*151*1451*1811*591906593245126862257085401976101499*2009661464545649477636884345320059999 42 Pedersen 2016 30447566405806993159872659465930870585474451358362184102629415266543483218342917184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3022111056017223781826070137961722471 30447659101174954477372926416925019235129240809792380858570424518368511219162106816=2^6*151*1451*1811*588690295820424864567085567057349471*2036686795239511222011958521945176999 42 Pedersen 2016 30466961946446536068156219150209664631330565631639642819484432692043523615287532096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3024036184515934102084921010100579599 30467054700862788878937348597974808968211450968255776692207013586431177534715667904=2^6*151*1451*1811*588435472845191582830039623562821599*2038866746713454824007855337578561999 42 Pedersen 2016 30491266328700825534365865968257269559531037212220298312940225902192347783668172096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3026448546191787067623837126514052099 30491359157109975711952676801287522291499842428806935849066428644004671765055027904=2^6*151*1451*1811*588117235444578617603272349616044099*2041597345789920754773538727938811999 42 Pedersen 2016 30495442999018501323999757415132590027695156833761883384588075930851195591325300205=3^4*5*11^3*79*601*473861*58309019*2182799234136439*19756036072110869641515376784681882412278389 30495507877266380112687223254358306868870695915042013432657672649456685656254859795=3^4*5*11^3*79*601*60311678900423648157794755189*19756036072110749018285887165408572037713599 42 Pedersen 2016 30631442396788902927415127485351327211565943470364398755317862408912652016742328896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3040361896096730771288866104893038799 30631535651953743120242771225466886953213478486284522286397250423319517122867271104=2^6*151*1451*1811*586304851146490477015002959656870799*2057323079992952599026837096276971999 42 Pedersen 2016 30868641977031556729509998386963247162084505687263732070157903240357130794618870336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3063905435320189087506902633802982159 30868735954333006391047378833294045890127426329284840668163775523755493487267849664=2^6*151*1451*1811*583324540128578248041882715878401999*2083846930234323144217993868965384159 42 Pedersen 2016 31203791788502341730089951299582209674181127766149988597492724262645545810442936896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3097171146515904675505805681816290799 31203886786142648113046736324510502514973756931091018559771258358853093079950663104=2^6*151*1451*1811*579288300201916250278991929843672799*2121148881356700729979787703013421999 42 Pedersen 2016 31238248532831268695522177867782777435627842952860810909196404586078926422643896896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3100591193510890414950311651113530799 31238343635372589226846683701254546624496430889814190178351347490199378305829703104=2^6*151*1451*1811*578884375433650736222172989701912799*2124972853119951983481112612452421999 42 Pedersen 2016 31272491520999888392049019944141016042950745796934631973800872014072614888873833536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3103990023872443237977550980329337959 31272586727791458223424775729467701148747311179699541441068003672624517423886486464=2^6*151*1451*1811*578484930610247037512417187695364959*2128771128304908505218107743674776999 42 Pedersen 2016 32262806993918925803920410604596114900201611391865074661751906442653180442790013504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3202285017297032671781113535481945551 32262905215652837382141967715665852578927291855784317809068005457399790154602370496=2^6*151*1451*1811*567718595668460900341792652375697551*2237832456671284076192294834147051999 42 Pedersen 2016 32408822396940658340341510165467005588701020180158942519995699569731835462453893696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3216777957650276412093320912197289999 32408921063207684017894431894442797209784011098745927388137947547403049345226106304=2^6*151*1451*1811*566248880311721830885198235349419999*2253795112381266885961096627888673999 42 Pedersen 2016 32500074311563857906895257636214590419444407707804996533399717037610385292917734976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3225835279880565246573278541117496319 32500173255640600473971864593588852513007055818685603441700145246603931667399705024=2^6*151*1451*1811*565344413144493014657912059124351999*2263756901778784536668340433033948319 42 Pedersen 2016 32635865893341016373289594040095275375428891141024878517624763292422605596430373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3239313442145926131969034531350847499 32635965250825204091134835322952652146695579138044894787227381312053425378289626304=2^6*151*1451*1811*564017936386630011228457247279483999*2278561540802008425493551235112167499 42 Pedersen 2016 32802076489149484787232998136498687982335054301199306165914442090700050067284972096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3255810881465877230259706523420439599 32802176352649560021046182961702994326167760571203419268521935304100506447838227904=2^6*151*1451*1811*562425137507880598625237524792431599*2296651779000708936387442949668811999 42 Pedersen 2016 33166557181233007400874682069317121100360993507885018267207981224944166739610245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3291987865680955372010668634372777999 33166658154367639865972888406616157254277329258874708895815533962153660843365754304=2^6*151*1451*1811*559045827043136540419576696803755999*2336208073680531136344065888609825999 42 Pedersen 2016 33219357903494318616690986015466223747067210595561901247429695098238498655286391616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3297228667010849838618048896629795979 33219459037376851698966577948150963653247067786610283657792875662961768291877768384=2^6*151*1451*1811*558568712590564542894842701056439499*2341925989462997600476180146614160479 42 Pedersen 2016 33219623586838026695907479435482109751622691676829375348814087302673881636079329856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3297255037741427067136928245231661039 33219724721529413102549795992569280223797342499755047823287180640799470919768350144=2^6*151*1451*1811*558566319576052045208942305729763039*2341954753208087326680959890542701999 42 Pedersen 2016 33697751414407587348016943098279034011823053765113079153360300616069842188985262144=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3344712209675269456339596585516230711 33697854004723844340473534009047582592617634763792728355508952170601435390069841856=2^6*151*1451*1811*554381077367807481910451516299982711*2393597167350174279182119020257051999 42 Pedersen 2016 33817102162349688202118512749320550657306875283177913594462565853799948349288645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3356558516539090155236660828031752999 33817205116020485570632835422761317034276412900717322346834950627710679476887354304=2^6*151*1451*1811*553372734801955652003221149865040999*2406451816779846807986413629207515999 42 Pedersen 2016 33948666406645260287321863983761573981504378364552654972368233202690345099695805504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3369617089167291019344086429862168551 33948769760853685950648020808589428690765333381180573489745940388077506134112578496=2^6*151*1451*1811*552277283476991785574760305005920551*2420605840733011538522300075897051999 42 Pedersen 2016 34189812209605168939025230619224367408663326350172524944094599199336316640330098496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3393552315632493808339328291207888699 34189916297964187781873668886384543191919048562622649649056744277103420666140301504=2^6*151*1451*1811*550311874191756220219663986795131999*2446506476483449892872638255453560699 42 Pedersen 2016 34228715203359625017757433274344330558783236201842171730372876056757550175589368896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3397413680641786892639263252817173799 34228819410155936115870590051052869890359464582085122583354309259722173029940231104=2^6*151*1451*1811*549999821107987549605758343411880799*2450679894576511647786478860446096999 42 Pedersen 2016 34355034188037426069921222733629707997527302570800628556170246034929489811638268096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3409951628505720118864545471869557349 34355138779402559817046070224920506118779032794605102091550046859004250320892931904=2^6*151*1451*1811*548995954115459960874071860580411999*2464221709432972462743447562329949349 42 Pedersen 2016 34712945357718103253830924350841985330777593299930257851660027764464940583380245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3445476546607474817215025862342621749 34713051038717368308356989261583141873645600065953123469623330123251141959595754304=2^6*151*1451*1811*546227078937950217959322420182075999*2502515502712236904008677393201349749 42 Pedersen 2016 34718394033623433874603374143552514937783990730463148345450613574438530266037420096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3446017361708251272557145863085276599 34718499731210790444064429587878198521117626392196227201749147522300308856189779904=2^6*151*1451*1811*546185764258169919385432483431093599*2503097632492793657924687330694986999 42 Pedersen 2016 34971146060658439414852861846288386203369840626412652413736340232077749809399045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3471104578372883398703267529823727999 34971252527730681466337654679897469666228656873039513145506607519296585395976954304=2^6*151*1451*1811*544295890657688086662530115310595999*2530074722757907616793711365553935999 42 Pedersen 2016 35054977645108179301322177077478839962613937805520820096468371152376367304434121536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3479425386506852411353987214757572459 35055084367399490876433844946344985075680959068311884159771108539186175959750198464=2^6*151*1451*1811*543680351940938145553019921206339499*2539011069608626570553941244592036959 42 Pedersen 2016 35540647665515216278933307696903288144302720751794357792296417474529104949894592576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3527631168167231235598615232868405719 35540755866393047689164874920482359239816268858638839147596649858142612671107647424=2^6*151*1451*1811*540219864569201344752606151005851999*2590677338640742195598983032903357719 42 Pedersen 2016 36287032571604958379810592388864660297652952717734305685095984139642736212657070656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3601714529926743986904506420170656239 36287143044796530357719870195697764660787127704647338285884906457428890822909009344=2^6*151*1451*1811*535228239166939081871357537902008239*2669752325802517209786122833309451999 42 Pedersen 2016 36397723511519174477613276397637206864807081896322289128456238520086641603680821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3612701296778885266654942358595653249 36397834321701140649241972438022730416086497385189125813368980770485179482143178304=2^6*151*1451*1811*534519275891557418194943880162107999*2681448055930040153212972429474349249 42 Pedersen 2016 36840996314037529920711670204379458183597429291856545815743322471428082753981606464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3656698889869509670037057165426115791 36841108473730816276103278811947077590970830321036048806166692527388819198464857536=2^6*151*1451*1811*531755818260558554027405482911117791*2728209106651663420762625633555801999 42 Pedersen 2016 37249263970409389158740596346499935568007239275119560552984508501078420670702926016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3697222003660972462247576077486165829 37249377373043412704756249235021334481449428000091871064785482002044567176992433984=2^6*151*1451*1811*529312570528482308945857577446717829*2771175468175202458054692451080251999 42 Pedersen 2016 37335788094341897933960246844728817845945702529645664050244681177999450783080996416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3705810063148668281422799252828119679 37335901760392228667169750052212457818540727530186832040906553189834848426073563584=2^6*151*1451*1811*528806748919955191117571416221251999*2780269349271425395058201787647671679 42 Pedersen 2016 37565278984626458009095022568870379190936424376287214333552564245735298311421669568=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3728588466766894093262476276776278117 37565393349344860770566162649456549397328425787277651307018128359559622792674586432=2^6*151*1451*1811*527484711422910790536316219796030117*2804369790386695607479134008021051999 42 Pedersen 2016 37769644969286574619581981285645405638971118109584309093657077670808226163841624896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3748873066642087804415967205506000299 37769759956182129221782780468768889739593040982249031086041090556898007601175975104=2^6*151*1451*1811*526330739016236116980420161318059499*2825808362668563992188520995228744799 42 Pedersen 2016 38006128469915810265328545941381909134178798670855464298080916842012583533051991872=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3772345530493286260297519302229445243 38006244176767922821753035849058745809755550687326997889478633599645792706975656128=2^6*151*1451*1811*525021966015371382883762580351259743*2850589599520627182166730672918989499 42 Pedersen 2016 38221613235022140256426456793496523356765996762605452573852546920249099781781314496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3793733738744534647927129004016111449 38221729597901710816186849574573872528783344729315134208563650903945981426257085504=2^6*151*1451*1811*523853448411706966386119074881188249*2873146325375539986293983880175727199 42 Pedersen 2016 38586469908421908363623429785119639046281582741426370471556834973243573945721503296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3829948041452576638048921818846662399 38586587382080683513063620315751049418150012195616103513572102193621439629139296704=2^6*151*1451*1811*521925228818957341275993532069091999*2911288847676331601525902237818374399 42 Pedersen 2016 38670308169490699956320468489448526229107013635154929636929607833770625124000133696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3838269512282669999355343454314349999 38670425898388871103151868002168296743647475644036174309412147674681283151199866304=2^6*151*1451*1811*521490819524528801079488487094853999*2920044727800853503028828918260299999 42 Pedersen 2016 39080705934040751498518383138792470874183948279315747700185139235381524141826104256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3879004052609509356722051495607340889 39080824912364616917380805956715277878881834893859058262309843499913111214072775744=2^6*151*1451*1811*519409257163924425214009945435451999*2962860830488297236261015501212692889 42 Pedersen 2016 39109881481086937372278097299145998579656705833724926307859257368716177205213752896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3881899907802613156757738312131444799 39110000548233601726005018446140557315904383026927020934822863056898028847547847104=2^6*151*1451*1811*519264050765491320102005385919571999*2965901892079834141408706877252676799 42 Pedersen 2016 39219438547117923494264050029497828300255793589735034286852098317949072704334933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3892774130592842646083274045519768749 39219557947802986718771054345504787674305603666882834883312251064886958601265066304=2^6*151*1451*1811*518721993409728143054307350115899999*2977318172225826807781940646444672749 42 Pedersen 2016 39445662269083602113900922446398039235894454141464547605157375900996868784369700416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3915228247357834837200168615248095679 39445782358490084636731991883814558488171293678438876899554737048418166023376859584=2^6*151*1451*1811*517618473435686871587842739357647679*3000875808964860270365299826931251999 42 Pedersen 2016 39644056335424327422890818031280534005843116822849182445626938739101693966912472896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3934920097055949629026993437833562299 39644177028826897373194131594824843448952216397506931578703460147602293368409127104=2^6*151*1451*1811*516667790136663750874626435361794299*3021518341961998182905340953512571999 42 Pedersen 2016 40226502545803549999107924064193097560137230037586178899623434571395126872859810135=3^4*5*11^3*79*601*473861*58309019*2182799234136439*26060163657085836728145963821138423452067183 40226588126623069406134243905792159830232455904994217780695882403360059212929885865=3^4*5*11^3*79*601*60311678900423559077752431983*26060163657085716104916474201954193119825599 42 Pedersen 2016 41140924498973820787571366763791246672190126723651693671982381176499816943842245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4083493607535275046383809889002652999 41141049749481000035608111682714033493451737900027159189070467374076660175133754304=2^6*151*1451*1811*509969298012190668660019830599780999*3176790344565796682476764009443675999 42 Pedersen 2016 41912526619343212595353577813645070958159243597533126991181986118036409514624367655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*27152430210366238066622732538432342463377599 41912615787134325634644387389498157391988463526042846110242133910726282669030032345=3^4*5*11^3*79*601*60311678900423547847871275199*27152430210366117443393242919259342012292799 42 Pedersen 2016 41928535743942065904803154809275907548111267310744858020942534560315246127753720256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4161668940812750383668507641581069889 41928663392273530672050014930922985376500855343033030470521149291408763276913159744=2^6*151*1451*1811*506748259015272797571425918226421889*3258186716840189890850055674395451999 42 Pedersen 2016 42007020976120129268351631102683655662292039710880525685423917168079338793750220864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4169459090105410000645552473281974391 42007148863394088792338149931907262662542614562337347872606429060463643375067443136=2^6*151*1451*1811*506437693260559662228788520385726391*3266287431887562643169737903937051999 42 Pedersen 2016 42257084779427843534597603752163326774496903986071871852464254931802899267279826496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4194279483781990597319984910391483199 42257213428002589875957798862141325772038059637230755652536682713528433571734573504=2^6*151*1451*1811*505460233027318893096198288551831999*3292085285797384008976760572880455199 42 Pedersen 2016 42546267971284857129903499799843046905613014237099137869737116123595331477632670272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4222982721002248413508418625930307343 42546397500256480520251466000623104328710245505829723489805852499585374370638177728=2^6*151*1451*1811*504352179865200603809218582894309343*3321896576179760114452173994076801999 42 Pedersen 2016 43493216523824465567539500382342724971066683765620705783449798403106698942854220096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4316973276830830334517740883447914099 43493348935711043413982655547993019431237165785547637680345976565701190745772979904=2^6*151*1451*1811*500882208946080318566423172498424499*3419357102927462320704291661990293599 42 Pedersen 2016 43847300320263190932949111644923688520614543023034440889315566950827326278031514176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4352118304243265407871336913971631119 43847433810131744828816593707694869397056975612722140739461982421862095699527525824=2^6*151*1451*1811*499643486258566201147471485718833119*3455740853027411511476839379293601999 42 Pedersen 2016 43884467015541050358340096800154468057804758450721435257323626700877220468132857536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4355807330788697950572767718643237709 43884600618560863989378808094851648769750738086543803533647552297954264082579462464=2^6*151*1451*1811*499515228675180749036351558904420959*3459558137156229506289390110779620749 42 Pedersen 2016 44852371927018829081192836039721494322777823829558349909308023375031288941664039616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4451877936076629468538244711032339229 44852508476753684735675068404288604409131647067883614219109580680964791662204120384=2^6*151*1451*1811*496287689799642579978433675888891229*3558856281319699193312784986184251999 42 Pedersen 2016 45085240843332729057691377840859980831363412912654633409359324665724528855071855296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4474991629867958739015421734694869149 45085378102019807585175681552442738547006315596044043149804391254265211607084944704=2^6*151*1451*1811*495542159195434920392775934976162399*3582715505715236123375619750759510749 42 Pedersen 2016 45202459332918649372167901681177145832312605678485226215258297780659921636928932416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4486626296777813549574014859546553679 45202596948468765136166640277694188671316501734357164977838898297032275860353627584=2^6*151*1451*1811*495171226637072862099104353705001999*3594721105183452992227884456882355679 42 Pedersen 2016 45516774869789442243927006940610062417740074186147360328650508142110173468948444096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4517824076146940639877726338673113849 45516913442250003916024023447129329765352261054949770079931141793751683587230755904=2^6*151*1451*1811*494190622308440014294781028272168249*3626899488881212930335919261441749599 42 Pedersen 2016 45767971304255523220146072662435373171857996411639771275460294330376146800975724096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4542756890537231768208588502590777599 45768110641465083648460971805764787667683294241459579276637093071118173020643475904=2^6*151*1451*1811*493421299180084066010402677852511999*3652601626399860006951159775779069599 42 Pedersen 2016 45779857756945376010016536489673626702853383858121692567468460116611336899417918016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4543936695176198863702937158090720079 45779997130342364069019068360930901201453215195662101719063297575408140266293441984=2^6*151*1451*1811*493385205370226071310620931329001999*3653817524848685097145290177802522079 42 Pedersen 2016 46190822954008500630853021877870522973274278865418098402769663601090628452852977216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4584727556722555283421363955458674879 46190963578558689354072078929341883639685974172967203600951998023742017407539982784=2^6*151*1451*1811*492154137635478543799968435503726879*3695839454129789044374369470995751999 42 Pedersen 2016 46208244076756755826874823892579675107489219876277932179910893125559137878904736576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4586456711918869889301555386409554219 46208384754344266545746276041465487464370414037532729629176684016207150257809503424=2^6*151*1451*1811*492102664869347846046320170665851999*3697620082092234348008209166784506219 42 Pedersen 2016 46250753672891689406311984638064623746914116242190308832489514154255648253506939456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4590676054731164671567040043514783439 46250894479896527050304875330560114745214801889702923099287493231565104749521540544=2^6*151*1451*1811*491977304923277355854589103929385439*3701964784850599620465424890626201999 42 Pedersen 2016 46449831638136492709529815873307775203584911450953483070661728424063041159437610176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4610435785665226714117168455112698869 46449973051219497501814964530174301813898780230592431241867206594324753529929429824=2^6*151*1451*1811*491394714593350816516640069863650869*3722307106114588202353502336289851999 42 Pedersen 2016 46574350718348672444308684973720849078548290295056206237090883824290809695558605376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4622795081773783802076812209981243919 46574492510520823627992826698411027037729994822713091647238296607215003800618034624=2^6*151*1451*1811*491034030899027687885104078294195919*3735027085917468418944682082727851999 42 Pedersen 2016 46768014465217523761696735177867313804682323873933751110506381779777482735841045056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4642017417731985459763195600004229839 46768156846984653982912387323971389177035036326387743982390036420165551525376234944=2^6*151*1451*1811*490478647431124763550188386482831839*3754804805343573000965981164562201999 42 Pedersen 2016 47190716336152574129041848813584035854979088006058388433037366365315172478992133696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4683973217434530627904558750118599999 47190860004804342092238173709717922144939693166573119115197643422648773812207866304=2^6*151*1451*1811*489289496470593439095123859187603999*3797949756006649493562408841971799999 42 Pedersen 2016 47682538186705230325711082268212749128564198493310054223850761853040005604949709376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4732789606643966972089469878794319919 47682683352672310809243060231384380984105377799787435541016232092337352885018930624=2^6*151*1451*1811*487944331963727577557385502587851999*3848111309722951699285058327247271919 42 Pedersen 2016 47709298327410502783181134148187641364018209703496905376218839617719215159103070016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4735445717677870700547450509988095579 47709443574846855927491982789240733082333170812688944140348130628800071924304289984=2^6*151*1451*1811*487872292353558730797632549040251999*3850839460367024274502791911988647579 42 Pedersen 2016 48856444975958931960294983634702834435706498406646505040804692472057914836395149376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4849307184412043570688147278154304919 48856593715798562120152353166720903496392824744376125394887482657066602122693490624=2^6*151*1451*1811*484890231828785746293166532710381919*3967682987625970129147954696484726999 42 Pedersen 2016 48969773788944687897894778235965518696515688853393053675939002926719275528294866496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4860555776635303845512239305598243199 48969922873805522062103965004366463202486570337350403579149685902800949040639533504=2^6*151*1451*1811*484606451620815016205040046435331999*3979215360057201134060173210203715199 42 Pedersen 2016 49509413793117981348831758431825140273029491594273285831605069381601715259961695296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4914118416129876161759354385109235399 49509564520872966289901482509418222270546964144205182141126420374286797882515104704=2^6*151*1451*1811*483280456160134558524569663224916999*4034103995012453907987758672925122399 42 Pedersen 2016 49672125749450034943131736249539154717069417942490883481762364698599707732118934592=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4930268593639087765594731416681672423 49672276972569557820768844856737013765535025868317480515513980886705295989703273408=2^6*151*1451*1811*482888648345760518324369070769424423*4050645980336039552023336296953051999 42 Pedersen 2016 50288143444999227320610458393059939761631431114970803243811890159442466653904613952=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4991412195843906537267240255170969263 50288296543539143360595405564147611953919918296288840976029502473824801356398874048=2^6*151*1451*1811*481437622688597672033516734592471263*4113240608198021169986697471619301999 42 Pedersen 2016 50331998359861419001188474328847649523305364893463418951312278523120343707603333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4995765069938975312013578551455149999 50332151591914385505784610079732390276108158266137647995503809315233098161196666304=2^6*151*1451*1811*481336227469794844484980832866949999*4117694877511892772281571669629003999 42 Pedersen 2016 50695875937237408367287130888421828557675769185422425712552162155460587466712776256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5031882191253965149881174680616752639 50696030277088793904385533324665686620443390989128093807028355130419107783842103744=2^6*151*1451*1811*480504403159996405161079089317951999*4154643823136681049473069542339604639 42 Pedersen 2016 50853822040306966399824867311406417368149034304224185951123455675312310445189120576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5047559328072699873787144015131012719 50853976861013601481482541605352039590112052346853921645024723414771552218757119424=2^6*151*1451*1811*480148522314862886571483066675851999*4170676840800549291968634899495964719 42 Pedersen 2016 51125403413109373215844895261326286452327387687134433946614762029060734540438386496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5074515474860114543499663873771560699 51125559060625446787061720723674570322989902692733531531028671050926581621456013504=2^6*151*1451*1811*479543775530768139264622531854032699*4198237734372058708988015292958331999 42 Pedersen 2016 52702432208355363346282639850996794815496392469913605287755015690478050901001102755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*34142516041815070931093337506466215616225179 52702544331385048102282373239882090198886113890217829626716249881354662265928817245=3^4*5*11^3*79*601*60311678900423492993574707099*34142516041814950307863847887348069461708479 42 Pedersen 2016 53278631147954180140716905306235290973504021182226198969425303979353859814008606272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5288236770574452359156273837568241343 53278793350813118417427511567646637180509592282732762039529669823252411266390241728=2^6*151*1451*1811*475048382198762774089107634920551999*4416454423418401889820140153688493343 42 Pedersen 2016 54428144057839026241022739567912377695993814518560391563940076229363868715217813056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5402333103519306941070627760764771839 54428309760305149469579581927874117871331356989952625817437976825276322984463466944=2^6*151*1451*1811*472846336635300351766364504119623839*4532752801926718894057237207685951999 42 Pedersen 2016 55889264092058570512196480466674409808071060534401723424550968640369092086051546816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5547358388979920576359665468537006029 55889434242796762598196990245121521354652976526753081476499853079463705419602213184=2^6*151*1451*1811*470222950154510568922119619415220749*4680401473868122312190519800162589279 42 Pedersen 2016 57226265177883828409629787407831016542158467946995214011847435647107902507942284736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5680064093913005930270429185755197009 57226439399023114739291394506481179606574324011188193698527108113132043580715635264=2^6*151*1451*1811*467978540814223718418975257677349009*4815351588141494516604427879118651999 42 Pedersen 2016 57448043445720279536205755495290201034182576245757268089447823287322181415321211456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5702076971601813906061881798236251439 57448218342047128278167534112246955193932754495153406849518039876728589527163268544=2^6*151*1451*1811*467619647649558603148117778677451999*4837723358994967607666737970599603439 42 Pedersen 2016 57460542218397256169706757578091178721269073996878149825153441110262043559695130176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5703317552822339071916479102282485119 57460717152775695535221460692904718662504774708500095912164624310534094994631909824=2^6*151*1451*1811*467599530830161091657765019902351999*4838984057034890285011688033420937119 42 Pedersen 2016 58386509091331823870288196789278710512904050693602725471103537840214547165925670464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5795225545957302520963523544555681791 58386686844748043223701916535987900269015083500584327900416003108658372914392793536=2^6*151*1451*1811*466140770750335070235575246196933791*4932350810249679755480922249399551999 42 Pedersen 2016 59215694388553386897893008196943972209613848082013910249913490373191884123274788416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5877527363476034898950937880020967679 59215874666363024419796772798893080371720193077507301346969737337842751146295771584=2^6*151*1451*1811*464885276476119963213162680260519679*5015908122042627240490749150801251999 42 Pedersen 2016 60013260463224568286068409121816127509491364331210519678409137651955496936075500096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5956690775751517597241478796335171599 60013443169165235387027399006814060643608808966489738012758258416001831629991699904=2^6*151*1451*1811*463720390768270728357422315922363599*5096236420025959173637030431453611999 42 Pedersen 2016 60618186636917100222428988484430343313468918249561319624791071849011871811206840896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6016733475165475642871943711370066799 60618371184510841086506312126305312038721833594669318250353806995232172527378759104=2^6*151*1451*1811*462863451261326170240580412725848799*5157136058946861777384337249685021999 42 Pedersen 2016 60993257934754254688558867311752449032301390296518435368904634684727703074812257216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6053961643120869602673029462579651129 60993443624224870090401243087153901628708558295334664698059161780135308687020702784=2^6*151*1451*1811*462343201109368766649867700008251999*5194884477054213140776135713612203129 42 Pedersen 2016 61165022912904521732196420774384823157895328057411588533332977326895013929322520896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6071010389565363010541939739014049299 61165209125300931606402199464910985366171512324454868686904248086679043097903079104=2^6*151*1451*1811*462107711482054430544921219481084499*5212168713126020884749992470573768799 42 Pedersen 2016 61552474792497509548193152418534785250397867943404931886262736602111395200760828096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6109467407554469128560862516892197349 61552662184462561050399176175417318546277866312347254855232849069073087326650371904=2^6*151*1451*1811*461582756306269295139774909816589349*5251150686290912138174061558116411999 42 Pedersen 2016 61987012445707239366864837273835891701510831342575304186134721776851573229320248896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6152597982540929911830126307950268799 61987201160590093903769536809407990722592289449408349164886889528720995234449351104=2^6*151*1451*1811*461004077811822029179547195507471999*5294859939771820187403553063483600799 42 Pedersen 2016 62093990023961652727516965207070834023090422086511893136445357735228656319023775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6163216175065076951218177817102630399 62094179064529846044477052451085646601390327389611048939392010361222824219293024704=2^6*151*1451*1811*460863216335990891562609978533642399*5305618993771798364408541789609791999 42 Pedersen 2016 63372126643248257579800935309983287649909678062726982974231340149319153167435382336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6290079214191574525836059503299260159 63372319575009022760569690367053902384157119484123306861208901771052777609427337664=2^6*151*1451*1811*459227370385954218254820040117151999*5434117878848332612334213414222912159 42 Pedersen 2016 66054566793819346493104331880084574793004560080629229477233915303687151911208584896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6556328146145600531542962806220521549 66054767892071104004092596315385396390211724485154662126800149022931268859889015104=2^6*151*1451*1811*456054698639693178939966411950340749*5703539482548619657355970345310984799 42 Pedersen 2016 69001195115141556067272813249229159158774918187355762613055307659339908685166444864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6848799403426213394753098278108767891 69001405184185686597215520262599895667178490902454553907480029816620640707203219136=2^6*151*1451*1811*452924807362611273933358845132364499*5999140631106314425572713384017207391 42 Pedersen 2016 69714994901512705213793706917918603284667770661980382923112431185999964325940293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6919648488618242473760882645689514999 69715207143667585106097782053464197744369406344453415678213758461098665108939706304=2^6*151*1451*1811*452216166444318423999508560476594999*6070698357216636354514348036253723999 42 Pedersen 2016 70402127869253846124900622941190711420949299340240829218036675040754154670018399296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6987850725574966161153392572321211399 70402342203334314886907173482654665090121032064614925965060886644296468535050400704=2^6*151*1451*1811*451550842868023623277697559573698399*6139565917749654842628668963788316999 42 Pedersen 2016 70470323682172891634160215176276567973898287129289476146175021263819384817210522176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6994619585767267866141772296081983119 70470538223870477892508345035407699907522210466459893475841524282266985554332517824=2^6*151*1451*1811*451485689322886868675184465259185119*6146399931487093302219561781863601999 42 Pedersen 2016 71009838872870502198314904767982745219213912412660983592155473523577665554166500416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7048169836745143187878905441535420679 71010055057082253821856990542116822118468560222613341363345548824843478859980059584=2^6*151*1451*1811*450975702035279886450414618019972679*6200460169752575606181464774556251999 42 Pedersen 2016 71321352016704762316774905191414661455782643834756045576741920269442426238950511936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7079089461109494721826576546432325059 71321569149295281150964623250624005113824473808346305221988348518385598690053008064=2^6*151*1451*1811*450685581726518113429912449830651999*6231669914425688913149638047642477059 42 Pedersen 2016 71422029421474886154580176630061177941267872519775834168658485333888545973020275136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7089082322082084109432268807299724609 71422246860570330741300936397593757904547757815817328502722802260966861057256844864=2^6*151*1451*1811*450592486856466527264817616757876609*6241755870268329886920425141582651999 42 Pedersen 2016 73070584512550522308725362811791828533524209881811648638844880105761405007388524096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7252711707130176707964675259153977599 73070806970550227914304909216230332997077300205191211591924421526539305188630675904=2^6*151*1451*1811*449112930734500969015397263499769599*6406864811438388043702251946695011999 42 Pedersen 2016 74073234583541485269998753224418524064018306821873048134147392577822553934257487936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7352230986420765124032816302432581559 74073460094035305782003557325118169129554228528099597722646674490762211124794032064=2^6*151*1451*1811*448252500972484980798849145350026999*6507244520490992447986941108123358559 42 Pedersen 2016 74960204561158245783682241140078401317449395372402398073233193435551358565899361856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7440268294230026668575366929905319039 74960432771966677651504776004629643267193377247485685932662398682733517357884318144=2^6*151*1451*1811*447514762077966537830841470289671039*6596019567194772435497499410656451999 42 Pedersen 2016 76792785869844992662055133182517151311987334474484627166497190350576675555318376512=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7622163430288469314800717661692026903 76793019659811918305348584447177665132308135381697905148289388849417417308099991488=2^6*151*1451*1811*446056018166755704066596618769926999*6779373447164425915487094993962903903 42 Pedersen 2016 77877501554515006352660525980738211325867311639480838590634112622470581824441621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7729828234088727460000751203791165749 77877738646818748797270358519872538230641232503911433370309239197389187939782378304=2^6*151*1451*1811*445231696744396496775392788181541749*6887862572387043267978332366650427999 42 Pedersen 2016 77959766856510721957372853851487945845888266062881966356289868708714728146436759616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7737993578910520239200277949127175479 77960004199265102633857918841550105768752698490658266941250300953158016091991400384=2^6*151*1451*1811*445170310977578771990025795074352479*6896089302975653771963226105093626999 42 Pedersen 2016 79268801716182581523500110811216217326962657595400465596170114354354971310236364352=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7867923461299142927922108398423436863 79269043044196945682023452997824505371013188012878114567185390074822228574166323648=2^6*151*1451*1811*444214164177629671073529107476188863*7026975332164225561601553241988051999 42 Pedersen 2016 79651078798215807111484826923001984258307209299826305034461091836911564610596053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7905866848323147489315821716737798749 79651321290044523785562219995568311083427134871768930075265631536809699452763946304=2^6*151*1451*1811*443942072333476635307736849957358749*7065190811032383158761058817821243999 42 Pedersen 2016 81624011238851623916157297526157361004696194644089454519843351319595153725035999552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8101692710467696012277801154844798163 81624259737127493380673684438618390724981167568607119891988571796687537268896288448=2^6*151*1451*1811*442586286429831247790211527133364499*7262372459080577069240563578752237663 42 Pedersen 2016 82505114664893037281933756212038010586034206637644452710193606354977245457572154944=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8189147726407050656411171407507038911 82505365845623234961966185237920464250474022079296829450181604641205332870897349056=2^6*151*1451*1811*442005798099033403487491461144551999*7350407963350729557676653897403290911 42 Pedersen 2016 89259294823874361801921646056267247149100126893332212829613052111961630170865352256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8859542274882250122514976590678096639 89259566567207388534226552709658356971261095976622840160811531038469398918537527744=2^6*151*1451*1811*438003426405545687566056022340948639*8024804883519416739701894519377951999 42 Pedersen 2016 91786332532411985625659716870219075039824490436556973498054377373370440475023424576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9110366544255957732830352923216763719 91786611969124743368067395703707215131248814931436499312722710941799637096314815424=2^6*151*1451*1811*436682958155647076155939150485851999*8276949621143022961427387723771715719 42 Pedersen 2016 93544029072366505945329395668707509060829225290909420674908990884698366091204535255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*60601159745203260070158136651796777851933679 93544228084812592822638518909074334376113751748371302630423864499615994001549384745=3^4*5*11^3*79*601*60311678900423399963474154479*60601159745203139446928647032771661797969599 42 Pedersen 2016 95105348502132468736614328763286951656277859961381961307274050962354362535554895296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9439799600530595949623736663188941649 95105638043344301454434417985763381171801824478888619452535808273086297720521904704=2^6*151*1451*1811*435072430513377151470448754623823249*8607993205059931102906261859605922399 42 Pedersen 2016 95292521610490647931307219503888778007542757150858841122330135839383745514986674496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9458377700094260265468795412242107699 95292811721537189948453979666566179536848586928085351373506328481493610622331725504=2^6*151*1451*1811*434985483564807930760043584775344499*8626658251572164639461725778507567199 42 Pedersen 2016 95419518354286531012881788627144845055196951886290160115966544807756521627641733696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9470982919782048732129695346969749999 95419808851965283274699433989669030527610852337398634871615315886234689764358266304=2^6*151*1451*1811*434926715429751959547682210975499999*8639322239395009077334987087035053999 42 Pedersen 2016 95506226830452286431968799881833153011013125793475223986980487458130295240825221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9479589277379842108771741716942221999 95506517592108592644269368371489164612182287450247712642155326826006137656198778304=2^6*151*1451*1811*434886694926126713320471242798437999*8647968617496427700204244425184587999 42 Pedersen 2016 96255387666334086760807422556611705211847579115688941644238336673855176077603692096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9553948167501900996849016197035369599 96255680708755246844230060247209128817300823950587122049702835106358819480079507904=2^6*151*1451*1811*434544395326284752298275324335811999*8722669807218328549303714823740361599 42 Pedersen 2016 97696468942677026921635545237782712484908442354484096676996460981230947851809254336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9696984481137292253674991481540784409 97696766372363736980082961370258596261073415610984228167395221912681995645309465664=2^6*151*1451*1811*433903003237504766512383212174651999*8866347512942499791915582220406936409 42 Pedersen 2016 98089758346869320110449545181619540242646040020327180153208569696652517774504157376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9736020909887711914540270176915125669 98090056973896584451717877325607750591899190824850331468880027007724882218568482624=2^6*151*1451*1811*433731738019055981740206947685195749*8905555206911368237553037180270733919 42 Pedersen 2016 98358742640681708041375365149587594570744220514900188873271041130091922928460440896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9762719280371284146041349977586279299 98359042086611795630910732820339448131848486690826302859727944208033600302925159104=2^6*151*1451*1811*433615513749019628784875832583311299*8932369801664976822009448096043771999 42 Pedersen 2016 100921319385507755901068160869057898538911197345825981219163323831112937579625677376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10017071020973922538791417300725911919 100921626633013546613531321807428799905682672641609534720999153652245212550406962624=2^6*151*1451*1811*432543959187862237534981402707851999*9187793096828772606009409849058863919 42 Pedersen 2016 101140156988815818151991321257431542299895750067087336229188481234551239102813385152=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10038792019349131686035296952696533313 101140464902556535231011006871174560827698402051575367626111733571885923082747702848=2^6*151*1451*1811*432455341507029592098881656324285313*9209602712884814398689389247413051999 42 Pedersen 2016 101192548407438447871744540758066302275394234902598137353752780369091969803006593856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10043992194737522613834169458276714539 101192856480680970859096462326161196750968910215240786162778907635591436714313086144=2^6*151*1451*1811*432434191046525872681867762711379039*9214824038733709045905275646606139499 42 Pedersen 2016 101986389730949985007656022241592268514904839480467342892007851939269574324180753984=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10122785902206044878110851624762316671 101986700220983807669024903277282430961713470861075961624179655792198735096850670016=2^6*151*1451*1811*432116766491894804099111491442051999*9293935170756862378764714084361068671 42 Pedersen 2016 102367026180472111047061422424080326845542293342068209985924406899458433959275679296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10160566446210526223420074086253406399 102367337829325501672774104130229798024725837448974793193425405568897045051233120704=2^6*151*1451*1811*431966567218202024915209248753191999*9331865914035036503257838788541018399 42 Pedersen 2016 102557882040642432903054127623358847802142297145547153157861247857127745105684946496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10179510081883701121923376093101763199 102558194270542398820498889148898343167632314974609258158650926684039992203089453504=2^6*151*1451*1811*431891736312214020827811517214831999*9350884380614199405848538526927735199 42 Pedersen 2016 103006745569583951085410228607593229163832487086556954612202381999142426075241256256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10224062589475846584720455406136435139 103007059166015791015422175423686240734652618486001497142041734105568104238353623744=2^6*151*1451*1811*431716997132218050010873215621787139*9395611627386340839462556141555451999 42 Pedersen 2016 103749592803723240920200759018939133236224548629347295859020003446334574574422444096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10297794815207884090414561109165832599 103749908661698640353072631529815212605803589574388546435596181010622440033756755904=2^6*151*1451*1811*431431611779888213042539854397749599*9469629238470708182124995205808886999 42 Pedersen 2016 104151302326170588499386552437990927661511122592307235756841251561245650033163871296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10337666993263598611784832288840479399 104151619407120970580467991634300284971990231901385580399424564914465721248960928704=2^6*151*1451*1811*431279222626596630680067694924391399*9509653805679714285857738544956891999 42 Pedersen 2016 106891573361184501244952177878904268914823734840999177862747197719493532765724028096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10609656001548341800389045952779247349 106891898784687733655308082569117934305411514942424373628796475365939860635287171904=2^6*151*1451*1811*430274492459240344445444220595005749*9782647544131813760696575683225045599 42 Pedersen 2016 106935197129059891806671457294950714500043809501601073699872378869438200145783532096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10613985932861873739402398531799579599 106935522685372464746036174363738518468719712801202710700991934829200064012219667904=2^6*151*1451*1811*430258971745387879933658692786821599*9786992996159198164221713790053561999 42 Pedersen 2016 108188261721615082925413420474604586190703143169286342539988607583853908229051653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10738360416805605909201535424322479999 108188591092790293426805066990606583127429789601740551298848277461022132823108346304=2^6*151*1451*1811*429819222341362632369631575940943999*9911807229506955581584877799422339999 42 Pedersen 2016 109212026608389812888468469950006219129092410284683865061026040064789001138374786496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10839975473386747145083933417106754449 109212359096341636031093788139257491473173457005236583019994932330245203250719613504=2^6*151*1451*1811*429468444611914523052823792829226449*10013773063817544926784083575318331999 42 Pedersen 2016 110878333018373357862305376494830696049690661230714252431859796812961421096684023104=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11005366787661480573725736408806980451 110878670579272021848936881983745353260515991480243138312688949744175593615089160896=2^6*151*1451*1811*428913197495941421789388222797051999*10179719625208251456689322137050732451 42 Pedersen 2016 111551302331174660371222325580781946145320250964534425162040049874009872693037219392=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11072163193438897433175109088625978623 111551641940878711473926030905675360720740341790815997634417540296028497963415388608=2^6*151*1451*1811*428694271501113573314428833315551999*10246734956980496164613654206351230623 42 Pedersen 2016 112926730132998786724855811611746486070156159163308377924768730613914224586782618944=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11208682989840536605406007880941017411 112927073930091231863456661404894050749524063511135922325495799502349853936758885056=2^6*151*1451*1811*428255994234031511335362543121114499*10383693030649217398823619288860706911 42 Pedersen 2016 112995892149434652106728331408507091317610843191665548597341360900692293141864878016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11215547751764084297921497419434616329 112996236157085750013273145105476047917728450436861474483031270668622150869926481984=2^6*151*1451*1811*428234274106745518085796014760251999*10390579512700051084588675355715168329 42 Pedersen 2016 113580476542571373436974652653741584205988209382898126134159910087928867224641850655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*73581485329949220754141884072392539349498999 113580718182029162492811337941224448058313058219961454290308554025555927700414149345=3^4*5*11^3*79*601*60311678900423378786277473399*73581485329949100130912394453388600492215999 42 Pedersen 2016 114945672693886361097290047683742257159129644878744494721812589421381820833341054016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11409075643670446201729766834983579079 114946022637500373179433528566603571928184017363052112982896010915620213270098305984=2^6*151*1451*1811*427634070229362648103502238365876999*10584707608483795858379238547658506079 42 Pedersen 2016 118975041864911876020491292629423445764542930002463660328321803830519405949394898496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11809015690051582113114247777060651199 118975404075642838669951939779418530486911788853248475374591941193998179427475501504=2^6*151*1451*1811*426463631596168861348340683590131999*10985818093498125556518881044511323199 42 Pedersen 2016 119234733992667991586363222932869779037248727040260048864528923364582651050475816896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11834791755041219930956478221350667049 119235096994012463971679761780236126419093592070951503652817942658274035994157783104=2^6*151*1451*1811*426391239721185394006234551917299049*11011666550362746841703217620474171999 42 Pedersen 2016 121968783892297669849145118465593405200471209355027347471775889316562046915062508096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12106163276799286581958691742122523599 121969155217255205196401421916088076192941384425629429728336403061101302428988691904=2^6*151*1451*1811*425650010618166740662487824620165599*11283779301223832146049177868543161999 42 Pedersen 2016 123747890786549276808267254946670340010952732613424848545805235530917570244392966976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12282750743373587409344528031305891819 123748267527866399229672336070367876185923221926163473633163832614648440573460473024=2^6*151*1451*1811*425187308767381154649821606171539499*11460829469648918559447680376175156319 42 Pedersen 2016 124163779676368961579503156820379374278567581720595093128029786356077074653367093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12324030312165630119183929373185121249 124164157683829103743432809274493045328758414282881148191324025580184956627912906304=2^6*151*1451*1811*425081279250247442931873331925819999*11502215067958094981005029992300105249 42 Pedersen 2016 127657813985829480816702253526407692161492237507738218297905089489469618588332027072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12670835031333932792952205842953250293 127658202630619111590921342465903987902914618234145436009973346266455687900425220928=2^6*151*1451*1811*424220820915582282909061673461002293*11849880245461062814796118120533051999 42 Pedersen 2016 129755829846396741387191419536839969574393753579971574046276231779760053255684962624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12879076203827460988522031100900529331 129756224878440761953025079523663804635693990893669070062166268248258359769089181376=2^6*151*1451*1811*423728861961472406370801273464281331*12058613376908700886904203778477051999 42 Pedersen 2016 130223144476639681581970549443481115181885434147996978841639567262595815314401516096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12925460098417684773868979323147875599 130223540931388591817237203411489351183066386112890954578297202837149802103633683904=2^6*151*1451*1811*423621676602760838622391838965467599*12105104456857636239999561435223211999 42 Pedersen 2016 132182080277475239809357147097755563885139276611483565793817775795933255492221133376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13119896706678238654640343440263975919 132182482696059566343060457438254378022712692535947972484944673184751442310899506624=2^6*151*1451*1811*423181497894731122509917010275677919*12299981243826219836883400381029101999 42 Pedersen 2016 134693572227730112706227560954374262569353186989381742938938968074001740521729613376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13369177962487108037434410544333345919 134693982292366256910382841081725514099756093255159422898612114820996195384431026624=2^6*151*1451*1811*422637853366488598337164482822851999*12549806144163331743850220012551297919 42 Pedersen 2016 134714091227044349574835428010617705763891624357791880560875757145094219718523059776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13371214601273258720600005798102187519 134714501354149072261783782244605482853307779662235887327403481677744866562344780224=2^6*151*1451*1811*422633503997727191198823496818851999*12551847132318243834154156252324139519 42 Pedersen 2016 136092716603028778422458108177741807600806387914217089362947443046925760379322053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13508051776873402313823776645810704999 136093130927256673597623878957897103849957920690797682831203356592025147732037946304=2^6*151*1451*1811*422344595115457370453298944833243999*12688973216800657248123451652018264999 42 Pedersen 2016 141532046784173216703669498100329545771583612668377039688025803529166399491699980096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14047939256177155555641512918094479099 141532477668040259529130501990719852933043435054016689714722069349764643945407219904=2^6*151*1451*1811*421265063338760291128705045147549499*13229940227881107569265781823987733599 42 Pedersen 2016 143009844061861434824868018190581343612803997575534440537551979543132330766719045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14194619862171398369320477853700602999 143010279444773182957770387227604809216022397281599082880472884214099419798656954304=2^6*151*1451*1811*420987341742695650786972506449435999*13376898555471415023286479298291970999 42 Pedersen 2016 145784099313960272979003241563100086580337221006055953498582246395857567584218140096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14469982016172078141638469118882112849 145784543142887311282140496862944669736534658934658593558230224111922060356569059904=2^6*151*1451*1811*420482637881478318887310607392143249*13652765413333312127504132462530773599 42 Pedersen 2016 147594650626995302101076216018406878785470450355451640339604978614448052703539448896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14649690537624423075552620424648193799 147595099968012138905150574837416178880570959805612939453139520834090922121830151104=2^6*151*1451*1811*420164450931949069563656180814025799*13832792121735186310741938194874971999 42 Pedersen 2016 148048013587230742703658092962078496144415661523258003390688332893176556083238645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14694689641863338949705811456695034249 148048464308477639899072437181167464825921817255627766521686494924727091342937354304=2^6*151*1451*1811*420086109452442069358926213529915999*13877869567453609185099859194205922249 42 Pedersen 2016 149955553485961847371448935482846896081958499943852107877699494720963077993932524096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14884024885965139426319344848621227599 149956010014573131497003723772112995613255491982119976991266930445014295114086675904=2^6*151*1451*1811*419762154598397182138689484220011999*14067528766409454548933629315442019599 42 Pedersen 2016 151772600685206686423088556522331624497804300191087958591275466284385359301071809856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15064378164678923563680699507636093539 151773062745684015020369725912473002586011701212641641369129938244860831389815870144=2^6*151*1451*1811*419461831668886489112015884865445539*14248182368052749379321657573811451999 42 Pedersen 2016 156827968611079233377785513175306636410056233388838592372723959556367251636704175655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*101598753790724455993310305417336627388983999 156828302258431796971125282363721605652710542230847959872361597732096981532191824345=3^4*5*11^3*79*601*60311678900423351521545655999*101598753790724335370080815798359953263518399 42 Pedersen 2016 156959475126498767239739235997022645377161435582473706380452312367570798738959493696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15579207835670702584056948989118689999 156959952978032382457812592935017949408734435087945817474350879212719059457520506304=2^6*151*1451*1811*418646155436761470505033065038873999*14763827715276653418304889875120619999 42 Pedersen 2016 162549691201847586272982641870514369897705414150243744865563808415203263552073580096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16134071681985027040501606250184441599 162550186072381314055118247409214149524870109512246990940175298292699152537833619904=2^6*151*1451*1811*417830255478955401984098900496611999*15319507461548783943270481300728633599 42 Pedersen 2016 163825214770610316066785036620702830745533199826112605885112062526799635021815574464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16260675359533233474521109317282364041 163825713524381376315799511832145064283240472397150086764189918548037761754694889536=2^6*151*1451*1811*417652544968554932757679358837051999*15446288849607390846516403909486116041 42 Pedersen 2016 169761179348369832480882596880145476096231420737547944282385388525609002249066529856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16849856903288805112869207412190336039 169761696173746794074555916655929211846106044859879796825351032491105171132381150144=2^6*151*1451*1811*416863477819268068746774600511451999*16036259460512249348875406762719688039 42 Pedersen 2016 172030410504932005268328111537242390348635950984675735134548746230880363997538618048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17075092262841132220443662128859426237 172030934238815684387348105663361662484637289935213256203641168081885500029780677952=2^6*151*1451*1811*416577354143873490154484894741051999*16261780943739971035042151185159178237 42 Pedersen 2016 174226728493157803848597321546271933921608074798206339424896744929634472012168038976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17293090535224595292195620949554122319 174227258913569442713601295960371115968188556736214563051145730093489035023541401024=2^6*151*1451*1811*416308074782109713256054961990601999*16480048495485197883692539938604324319 42 Pedersen 2016 174598145224668638076042151994555165638538333168464816734734345326791622010612457536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17329955964655914164588355052862043959 174598676775831094117041670722995758868336414897641375526824782586755797480899862464=2^6*151*1451*1811*416263258988491880592317675306820959*16516958740710134588749011328596026999 42 Pedersen 2016 175359404800086002951029418562247816161458505160333928521832132393509465067333828672=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17405515730211726235341598870730101943 175359938668847032122349404967114824480924382052159019078385603415857480268220219328=2^6*151*1451*1811*416172043235992045911453388137853943*16592609722018446494183119433633051999 42 Pedersen 2016 179124082250591711344072830554301595845700538320285864569580123434262114782683218496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17779183470807971395187085183075481199 179124627580635290300577019716161341450735869207542676251323817097927406097547181504=2^6*151*1451*1811*415733209844477714410574977423153199*16966716296006205985529484156693131999 42 Pedersen 2016 180126395455881823171989608627755084590678947368153220710955768883824737353366879296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17878669314074630455835009995819331399 180126943837393954279664255338031514570019005309861665749593791312117276274741920704=2^6*151*1451*1811*415619698155382049856872290801316999*17066315650961960710731111656058818399 42 Pedersen 2016 181277928335184942045199015812696381336853490011003023138234391303643915528345872448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17992966141595321304134770269529976087 181278480222453905863159212829739649567398921446698415704259629689415366298064623552=2^6*151*1451*1811*415490952214844852155532921637926999*17180741224423188756732211298932853087 42 Pedersen 2016 185584980917824218204809646196224932002859533318649735174327212471105694305403659712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18420468000212146375151695471788243953 185585545917596777723815290363378225099269461403552818854787177517791832508248308288=2^6*151*1451*1811*415024597961671381532524905655995953*17608709437293187298372144517173051999 42 Pedersen 2016 185830175990753055823699242557585677088708260446165005485220440903529608199383465755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*120387418549000541694213038801458590157850579 185830571339534238475718020694957070518916377810054258970266379516035425512724054245=3^4*5*11^3*79*601*60311678900423340346255591379*120387418549000421070983549182493091322449599 42 Pedersen 2016 190363196139265528254560415376042973322264177586746460965062417234928620533018066496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18894735692292571595904582973269043199 190363775685961551101542622791779157763878083792242772038708268644325575389516333504=2^6*151*1451*1811*414533661480255125460517918615331999*18083468065855028775197039005694515199 42 Pedersen 2016 199301708950252510130539065227993234272232533998001552146087513933005233650702418496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19781938893704536273382263650020281199 199302315709590850537754296002164863553479232908919167959489130516420355991127981504=2^6*151*1451*1811*413682721894205796111689264687953199*18971522206853042782023548336373131999 42 Pedersen 2016 200950854077154077886800382281190182695150730251239296980346488698571531827014193728=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19945626843492064141324640981502927407 200951465857192999822242219623991521676563785913142413832932685575761216863073742272=2^6*151*1451*1811*413534545543685214089905671632679407*19135358332991091231987709260911051999 42 Pedersen 2016 206658813122110874216610113782988785870891529463218212299489282612106310227760799296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20512177414632866139233547938733686399 206659442279609686657122495609176506416025517876913955935584637215952233092508000704=2^6*151*1451*1811*413041116155495491804428244624298399*19702402333520082952182093645150191999 42 Pedersen 2016 208557663680953105053443967624508902632781260566419889739431022006988036051674040896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20700650187501410722047091287214366799 208558298619362250671331351846595603080432769264433290132518137628736444152511559104=2^6*151*1451*1811*412883336729479603808880313102648799*19891032885814643422991184925152521999 42 Pedersen 2016 211597140451573995884523419236763922644280519358954276988458986544751585326913546816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21002337233046338964326422741390787279 211597784643445763357328921195035454010171414645605802116966366353527945954740213184=2^6*151*1451*1811*412637043935903014379953061622251999*20192966224153148254699443630809339279 42 Pedersen 2016 211735210776722604605181511932490914164344104986871186435044172633573413749564652096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21016041574817966477123223920303859599 211735855388939283182215518344849860068094209324739726170008279464011068126198547904=2^6*151*1451*1811*412626034327597919727342810260561999*20206681575533080862148855061084101599 42 Pedersen 2016 213811186926377756183239837626093461323984261550098457738800374709675019572077886016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21222095168405148818341658698318312079 213811837858750551884376689498663297974648908496431954424624457092034349265697473984=2^6*151*1451*1811*412462318104797762634896000785114079*20412898885343063360459736648574001999 42 Pedersen 2016 224869501404100039415298845560113946093294801699027414152061897128872612116553216576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22319701919585960725619748287584236719 224870186002694820888411167148468893451620801636280329555551022541840532843201023424=2^6*151*1451*1811*411644159224572152566541219115851999*21511323795404100877806181019509188719 42 Pedersen 2016 228119278913889629950276234385585101114711354896248500173952476999503337602701937216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22642262626442917787052348273549164879 228119973406192107054113468025837850026756650108443920959807839398378310799771022784=2^6*151*1451*1811*411419672768746921413211718631716879*21834108988716883170392110505958251999 42 Pedersen 2016 229469727093590282060478442253883875250281272299047441916475729010112463948432417856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22776303039396029979831774193763408039 229470425697232537905018048460227480636395389215286275523619167045081904173239262144=2^6*151*1451*1811*411328364479899712897113032191451999*21968240709958842571687635112612760039 42 Pedersen 2016 231858669961069691155012838129671603347681576959171993598389119838376823993298645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23013420533641023958743564462342846749 231859375837672130028654782445863054505517228771608224089912949228958518312877354304=2^6*151*1451*1811*411169592749071486705410056198715999*22205516975934664776791128357184934749 42 Pedersen 2016 236917146514686890456437984546268622964153532795611379219162057808459092933094454976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23515505912667402715091262329183645069 236917867791447726613840773736834238173613351151445968564002098220169867853782985024=2^6*151*1451*1811*410844553957172112913096331279820749*22707927393752942906931139948944628319 42 Pedersen 2016 237983993111067432975000830804597149414370740098834235734164238418545791582554646336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23621397097894642185807694315292313659 237984717635763965921386507086441917045720721228333449186220959793065744771780073664=2^6*151*1451*1811*410777863943338913135830840877528159*22813885268994015577424837425455589499 42 Pedersen 2016 238915490952092572206407966809946785705139280641856953047219579735622535077424082496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23713854074143533805996436163226747199 238916218312665509137914714690639710977162043103635757746650967663589137537078317504=2^6*151*1451*1811*410720148501758549657761185398231999*22906399960684487561091648928869319199 42 Pedersen 2016 242166449053992132176671382342566642298971457071804506686952907316659203482767834688=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24036531962138077773632366483862459647 242167186311866990253917384295968935961321422813312348551842590748662319950278181312=2^6*151*1451*1811*410522386534066546377263393177211647*23229275610646723532008077041726051999 42 Pedersen 2016 246499607401306504565216085804369753565957739121506384013548864239601661685628883776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24466624980882411273440637050165131019 246500357851162031493369729517719688565788440233348840937463109330528162839590956224=2^6*151*1451*1811*410267332185694186541502219753851999*23659623683739429391652108781452083019 42 Pedersen 2016 247317745220848473632651899032727240111364244888078255664321967745308661535428770368=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24547830267269833371629015344828519567 247318498161464188575338316369209115917296027235351929595074106437765536529665885632=2^6*151*1451*1811*410220231705293936650169423314801999*23740876070607251739731819872554521567 42 Pedersen 2016 249259528646493059569483120537122180840482253168072728177906052810905792903780339264=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24740564395206977674160580381198508991 249260287498725050911316449569555706262570169624567277969761217929412310334400524736=2^6*151*1451*1811*410109745127141301688076915514760991*23933720685122548677225477416724551999 42 Pedersen 2016 252653462019459086562639836344230146804356605291477449407555097780087813897295020096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25077433471478054026413244185719676599 252654231204270655866410967466025365208535476959364309816210234199061977109732179904=2^6*151*1451*1811*409920920586612786794941725795611999*24270778585934153544371276410964868599 42 Pedersen 2016 253612185011838465789249640400060117419301083167242733294577709842192761663904554176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25172592713970913799684053025895234869 253612957115411402327701433242508854866961121604392865064632817849605516827574485824=2^6*151*1451*1811*409868543639559010532019339233445749*24365990205374067093905007637702593119 42 Pedersen 2016 255754760965504048204710701719134358056223173346970902831316559112465053795927972416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25385256753902015320493446391799313679 255755539591991288075575900117010318901798656741138079953411235226414735463274587584=2^6*151*1451*1811*409752982089055687295479639086251999*24578769806855671937950940703753865679 42 Pedersen 2016 256388498472406092168434628172535597155081932069025229253293698363512557730026130496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25448159158011927530026100976198984199 256389279028260382601644046058092335913009795384651319704305651447404352192380269504=2^6*151*1451*1811*409719189868478803102069455886556999*24641706003186161031677005471353231199 42 Pedersen 2016 257602832754446698011399633641046012195903063391459028773441497260197849833210552896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25568689416836019763523992055859394799 257603617007252055125856011845949260335509533525723051468239701631935299425951047104=2^6*151*1451*1811*409654926991448530600424505495821999*24762300524887283537676541501404376799 42 Pedersen 2016 264831372662339534245119605149434432666067412848412254636823886003329268249071606336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26286167131913382289798072344251366159 264832178921900953722625276708687220892435337635777198791004609269297404311343113664=2^6*151*1451*1811*409285184134493870408627845844651999*25480147982821600724142418449447518159 42 Pedersen 2016 267966989724064129650996520913649715311062668756006126419561192444215272290085733696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26597396701573400615769202970763562499 267967805529780189156222928407872842713420043619850373421846547446066225213914266304=2^6*151*1451*1811*409131299620382745598010778710866499*25791531436995730174924166143093499999 42 Pedersen 2016 270724491653053965052283439170383095394724808642365818360426049009857932430590450752=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26871095983661168169845825563283563463 270725315853781059429768849050045818463232002781147276694764508917476020867239437248=2^6*151*1451*1811*408999058414405614458298398545690463*26065362960289474860140501115778676999 42 Pedersen 2016 273168924989136876107182713834740017446354769572322488692344479150500497488899404352=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27113721253353142906343361510860946863 273169756631760788284243821732518337689708736981548969675454865506837170829423283648=2^6*151*1451*1811*408884169167602802745421210382448863*26308103119228252408350914251519301999 42 Pedersen 2016 276030676685851666477707381414339143277814865321879932374757839853901432188807836992=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27397767975739742568061031779274515523 276031517040867334545951170560066048017161103402764838369754229826003399980809571008=2^6*151*1451*1811*408752372573712638271918327517114499*26592281638208742234542087402798205023 42 Pedersen 2016 278055338396979691594709055753090707132064348180941170019512504699836152613402373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27598728290936814610356184456189159999 278056184915928457265429537347991757990048923514266841131007722829738087417317626304=2^6*151*1451*1811*408660842590830862264044194631479999*26793333483388696052845114212598483999 42 Pedersen 2016 280325978149751414908247268941114060864865143843934162365671153232044695060905804096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27824103462457087199179597949862110099 280326831581495265266830920440380363767753032707895058181277589645520407420553395904=2^6*151*1451*1811*408559837899103398021169610909589599*27018809659600696105911402289993324499 42 Pedersen 2016 287820107694570097963468872147856350683704898096205168315278935162887599960329358528=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28567942607128511513854837095442922357 287820983941638051671744995417804926174253883790387972837942205483229790090628977472=2^6*151*1451*1811*408238293818251358364986241669645749*27762970348352972460242824804814080607 42 Pedersen 2016 301376431568911220046972301134449029272179662772963154033245802234521643203699195456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*29913492386495540090684680686680797439 301377349087206338077380933824967914286435327641833042695607301666638181478817284544=2^6*151*1451*1811*407699005346227146826437166229149439*29109059416192025248611217471492451999 42 Pedersen 2016 302057860867942000733867057715869315276872206887584967453148619783172392283275013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*29981128498723617102011388672805319999 302058780460798309350394513278268720017776905893285109369609881567186536162164986304=2^6*151*1451*1811*407673229322214871080383054458259999*29176721304444114535683979569387863999 42 Pedersen 2016 306657539727804951844448408961245140873930729561639466160784295459664475547624735296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*30437675342279211044768628525968620399 306658473324043952404856771386203531541470493642198130466844792846943538028772064704=2^6*151*1451*1811*407502361765709153843628825424882399*29633439015556214195677973651584541999 42 Pedersen 2016 307663655037033215213586358920527218063628391341690697484425186833969193739121723456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*30537538568099026240142375666075404439 307664591696315992653369210920266676146290338106211832723125896753884727730338756544=2^6*151*1451*1811*407465696273728519855380232721881439*29733338906868010025039969384394326999 42 Pedersen 2016 317802517213813231028319634035605904013686442787186201741849262455772391179901994816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31543883938086885143166845779228686779 317803484740113347708178139213631494961643805686021761889234112586301673236855765184=2^6*151*1451*1811*407109689150111170395220388592251999*30740040283979486277524599341677238779 42 Pedersen 2016 318762119894795175305836629827027110311632690712353821494065983622960658558543503552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31639130495165621216445245756374005413 318763090342534806222974749997773223834177001945705369660959800339707358296380784448=2^6*151*1451*1811*407077214779212823758412594074413663*30835319315429120697439807113340395749 42 Pedersen 2016 327670366686093523442230842735615855979945808634829910687804008047400481663125249472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32523329605166680546197735077871173393 327671364254332809535020970973217289843465192130144194823744618706047223144787198528=2^6*151*1451*1811*406785179451110441414516741452583249*31719810460758282409536192287459394143 42 Pedersen 2016 329531967566663073421817545705496311658338738653945021940923250394702311499537362496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32708105114909477141477655234651067199 329532970802408797355759348660479386421510752376394239930650812692427165208405037504=2^6*151*1451*1811*406726223219809933531105785864139199*31904644926732379512699523399827731999 42 Pedersen 2016 334676414422270064824498015382108474388872109542291023619145070418192930836616407616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*33218723583138116038111641123595062479 334677433319904423213782927618579349881090432762762360613103827812384769954515752384=2^6*151*1451*1811*406566841070003965958748990823001999*32415422777110824376905866083812864479 42 Pedersen 2016 349602195756467848363016200881160222901155540762026510394293062539497157620155157056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34700200565192475043382946140351157839 349603260094541499784130325431529700056569399002186613060362125366558434540838122944=2^6*151*1451*1811*406131933446031722339358326278509839*33897334666789155625796561765113451999 42 Pedersen 2016 351133930044044191303810062868658321626724858127917865868731650324755338979214424896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34852234756157644272658488445684200299 351134999045369792436614565605598568547980102861921950527968347193540307240203175104=2^6*151*1451*1811*406089469425554667818477717791632299*34049411321774801909592984678933371999 42 Pedersen 2016 353347620386127665860031803326306967440917692380680161825057752930004000055511918656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35071957343120558034172504684603593239 353348696126870075447739202101772776376503003079470401055103072154719246982358161344=2^6*151*1451*1811*406028773566478098622274285604945239*34269194604596792240303204350039451999 42 Pedersen 2016 357374345337968734285707108606598697867946334387531719618857416536733732657602879296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35471634934239248913793982024461143899 357375433337777964357892084004540912417187723967595976095402479240137731498505920704=2^6*151*1451*1811*405920363643376794037115511342818399*34668980605638584424509840464159129499 42 Pedersen 2016 358400379855335440245905994950990627427556648222578651700012991016734597513287272896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35573475265826401053952071495814606049 358401470978831005728476832943739414406491639717038685753161054967093090772434327104=2^6*151*1451*1811*405893143365529417630525289632571999*34770848157503583941074520157222838049 42 Pedersen 2016 364210440934342991957713748604116113875672933476992673112894415789280927860417938496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36150160101290140378130922172635036199 364211549746140552361578062224912599754362205880597811004518264616278751230372461504=2^6*151*1451*1811*405741998773125733562769992141583199*35347684137559726949321126131534256999 42 Pedersen 2016 364797254118070755954409562430293132586278812034430265653049973347555438056584265255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*236328677422248223331738891904352846717567679 364798030214574057624744251043429925910538273663381529775653551267991362462665654745=3^4*5*11^3*79*601*60311678900423310699794769599*236328677422248102708509402285416994342988479 42 Pedersen 2016 368759013848504297736565191972623256403412062692219774038762759262431275356401413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36601634360670215393028613762566919999 368760136508096271576717555045383815007690656230451156600555565881995388436238586304=2^6*151*1451*1811*405627109132431504985343050775059999*35799273286580496192796244662832663999 42 Pedersen 2016 371268385954049262690188529623297834568096021374905144994455191503878255682002513856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36850705208657012316757826354268913289 371269516253239343490819913740540582085633888887819701772014676066579821823477166144=2^6*151*1451*1811*405564972503962084182001369817858249*36048406271195762537328798935491859039 42 Pedersen 2016 383513668362747676413619688629955127773657777368660174096249496290290863660063041856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*38066125937465169440845518858442551539 383514835941795974324957363425687083788391930630492172771529744333734084856360638144=2^6*151*1451*1811*405273807477648179809347308464264499*37264118165030233565789145501019091039 42 Pedersen 2016 388670033967018182324301985443413348233789664081922069895145124664264904824585887296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*38577927415909791575211866446361558399 388671217244240865029053381185662921238194298805607350552611537992749203117506912704=2^6*151*1451*1811*405156868846071958006027181998991999*37776036582106431921958813215403370399 42 Pedersen 2016 394722967900603000259723538925117840667559018511956672580525036722920020449374367296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39178718898494084761283627756969678399 394724169605536152205131679564025453280616586824095524936855043550914955035758432704=2^6*151*1451*1811*405023620417751943126091212631991999*38376961313119045122910510495378490399 42 Pedersen 2016 395894602867003178412830034478124046168532272808562010190855537434470999529865285184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39295010983660505140904021350444289471 395895808138892483086985977841246767292216000014816503977072832421782924454903738816=2^6*151*1451*1811*404998313906442300342367629804551999*38493278704796775145314627671680541471 42 Pedersen 2016 402952614430014355740657668413385141677644257450194920391124959407069304270633704896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39995562695865832207844195577912364049 402953841189498766990438726702100748432232778356535156859559418263232733930223895104=2^6*151*1451*1811*404849076740084305065622113944903249*39193979654168460207531547415008264799 42 Pedersen 2016 408165531967358503163002705297343620760884217953358388430392235412804692547900879936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*40512977306733031231349054386426579559 408166774597185484187484574035251016697628527874008127268317753716526624072366640064=2^6*151*1451*1811*404742269056280695047855251538776999*39711501072719462841054173085928606559 42 Pedersen 2016 416091313213411548913800490690808898278923144104444556205979382233561308323486488896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*41299660577639786310461098197105141299 416092579972694368605145647714290755596637330704318956809533254755025573367803111104=2^6*151*1451*1811*404585160470026498090374712754973299*40498341452212472117123697435390971999 42 Pedersen 2016 417025171682138141678839214099768475310416129196861261963313307393645548198333199296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*41392351860925917617261779896091942649 417026441284484122105893595053272397740127325351515416005563518529054297077135600704=2^6*151*1451*1811*404567054238985478925379087444898399*40591050841729644443089374759687848249 42 Pedersen 2016 423684196169426418657821965212870819345829247212130488438627180778270551584515945024=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42053301614909710430401491505147392431 423685486044680811065079901014189169056392386303903277884953761001268301123893398976=2^6*151*1451*1811*404440327450738118165429099983301999*41252127322501684616989036356204894431 42 Pedersen 2016 424406070312838285024942670955841464855437692816322813164084733037613667030289932864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42124952130447855057250574964652177391 424407362385785210670648412531007639592021712865226632947420581134715624987103731136=2^6*151*1451*1811*404426835587093941144324205687051999*41323791329903473420859224710005929391 42 Pedersen 2016 426613519909369992158260656728044690846991860499286387007661893856896268707445179712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42344055284452534442588424506407155203 426614818702734237184310390506392130183622370286165806583901600532502044403166788288=2^6*151*1451*1811*404385869892508623822206845274907203*41542935449602738123519191612173051999 42 Pedersen 2016 441040928045907773972338862533581730621241271823387641429744087352177461505538342336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*43776065615195684027003434557991531409 441042270762450906931255388824637344624668499582100654995987842356333158805404377664=2^6*151*1451*1811*404128513374608755552754656424183249*42975203136863787576203653852608152159 42 Pedersen 2016 463409975971622135537160863348001725740919863719888577346061860928686496945663327296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45996333276258652897424563248967043399 463411386789080158790139471796705533872044540298244765990235296926759398201549472704=2^6*151*1451*1811*403762034946509755761044474497355399*45195837276354855446416492725510491999 42 Pedersen 2016 466269850337453641605330969082999013984620109033579606700646436426244934192024822455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*302066245861748862205959452599598156872447439 466270842314219795572806590520573898932612274535204908173058400310608710293238537545=3^4*5*11^3*79*601*60311678900423304000526284239*302066245861748741582729962980669003766353599 42 Pedersen 2016 475234924468998310344596997984800176001551986998535289844049006404253307007223173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47170033240139481400932350263798109999 475236371286638991179699367490603755013333107800796845757724338164213800581896826304=2^6*151*1451*1811*403582610241158318380758245477579999*46369716664941035387304565969361333999 42 Pedersen 2016 476194035062067960401113401646197546445669000909511587907634512423732090272164823616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47265230954420719110944691137455866479 476195484799650030155646346297849799654095797799187107151671576387065690526135336384=2^6*151*1451*1811*403568458236228397915844761925501999*46464928531227203017781820326571168479 42 Pedersen 2016 482282690083850639114850258969480349092875228612431489009364127599284204425385330496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47869567978022541123014457881924096699 482284158357893393820149013761910135875334700685550479522173415717879954578621069504=2^6*151*1451*1811*403479964978500291555237946188968699*47069354048086753136212193886775931999 42 Pedersen 2016 484337949089632964814639760284752137545794084319609443137326006189151402235220186176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48073565265739076750802298164413574119 484339423620760021681749613120266842182816643269452986094838429884138890532994853824=2^6*151*1451*1811*403450608839647081258108696546401119*47273380691942141974297163418907976999 42 Pedersen 2016 489515109950668170255756632075276703977811759984756554776694197363348123216110466496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48587430803246538450486102036429174449 489516600243279235810762009693742593192665598390776332163416583986776079621623933504=2^6*151*1451*1811*403377781709421234768124455637615199*47787319056579829520470951531832363249 42 Pedersen 2016 495911567330021376404148188335361152688162376944705415603263350292669293527675372608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*49222319132508856421197671729633913127 495913077096174679310095297209561534677206235417070098919943495458943086654774803392=2^6*151*1451*1811*403289955596132053847664264281051999*48422295211955436672102981416393665127 42 Pedersen 2016 513295894426436558132887598750364585043635124452508385594904565704320846618481336896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50947822130655734209702817221205890799 513297457117890211308229825778852420913302304691893250581703754727291785795112263104=2^6*151*1451*1811*403062588875767874889122056954522799*50148025576822678639566669115292171999 42 Pedersen 2016 519519880885857735374285268624843669070432215382326106105100935229843220702917297216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51565591644344383307985467473789379879 519521462525778643793715479258091539749392123130925550077461504863752721108835662784=2^6*151*1451*1811*402984974367114344163093727518806879*50765872705019981268575347697311376999 42 Pedersen 2016 526177306886951300763687324162604553139796594815083839664589450591170513928543068864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*52226382738593682284547564417436130141 526178908794914147960667447293885649163331119082668624919322692574101488866578595136=2^6*151*1451*1811*402904035344868835487614820039882141*51426744738291525753812923548437051999 42 Pedersen 2016 536819355811089553459220815571123426475526197972526354193621315923772205394026861632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*53282672534752253021794045366576382183 536820990117984641664401315323773147331764565633049076762955274576568275653701266368=2^6*151*1451*1811*402778918705187896704637009646009183*52483159651089777429842382307971176999 42 Pedersen 2016 547610587129924397412357355519505459198321195631238176152209742563491099338010496576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54353769614959959058502227846050806719 547612254289926513058378613552069459255576899305452153663189714785394087027183743424=2^6*151*1451*1811*402657126724188845559130038150758719*53554378523278482517696071758940851999 42 Pedersen 2016 549485136267670623641095347815606728379147520531920801671695301579802022187415297216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54539830320066097550793836088181848629 549486809134599190125460175393686752501572740755650342327553917596879075128337662784=2^6*151*1451*1811*402636468900495146161688347291845749*53740459886208314709385121691930806879 42 Pedersen 2016 550568035992003330254164642756928532165092199398896522447069417690429714607471890496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54647314878465474730933110919636174199 550569712155740156366300004534516474482296446333194987411562587371679841863414509504=2^6*151*1451*1811*402624600729271568712746631897046199*53847956312778915466973338238779931999 42 Pedersen 2016 555790054683929701020426399677195700638682432972664026414128808058756887727840219712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*55165632835745286003756321315076102703 555791746745716890089417344949143790986607977279692683254496844357804643352691748288=2^6*151*1451*1811*402568033149416103922378928787604703*54366330837638582204586916337329301999 42 Pedersen 2016 565151815122050209446282659012338071133025577695547034152987115395187382471233788224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56094846006569759606558750108147655731 565153535685025868270257199336817613643673115218005501377552416818794029062289155776=2^6*151*1451*1811*402469296274081128011781266311407731*55295642745338390783299942792877051999 42 Pedersen 2016 588437465162755154374239308498993433319388213514945751053668498114905378784209530176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*58406092150075696439346384617155147619 588439256617173169325125101004783735606328921520699012912537535358594039341317509824=2^6*151*1451*1811*402237619819325165374833354129537119*57607120565299083578724525214066414499 42 Pedersen 2016 598679998397061290324897315759063538370980399311180166300659080908024774365179507136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59422727519762149687874081371341932609 598681821034115525060933236630822057771614103900449232513731024786041616154633612864=2^6*151*1451*1811*402141538968022655671844262740933249*58623852015836839336955211059641803359 42 Pedersen 2016 600470736595671945815431403119675522881969017655616621715672346815171112887727196096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59600469465910643277032783121652951849 600472564684496415000916691672756786418811214074000133807266723753922409298948003904=2^6*151*1451*1811*402125084399761845075215697703637599*58801610416553593736710541374990118249 42 Pedersen 2016 601887734639013818214191423738076842310848771128670464046718476349859454847178546496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59741115368314242798732440787284225699 601889567041784212581754019435385492208503620931541794167813704664488572874395853504=2^6*151*1451*1811*402112134841923167883862659643894499*58942269268515031935601552078681135199 42 Pedersen 2016 602621812420434477209684614403009789604262821494003490496168367184710085184264179008=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59813977171114510623820728791452032227 602623647058050479731922312343765719156380650690574388963148634545008914622173196992=2^6*151*1451*1811*402105450744916731494879506385221727*59015137755412306197078823236107614499 42 Pedersen 2016 604288551292923240566946449146743958306993863674299544668304734219511174305383173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59979411409992836808565472972994359999 604290391004802684101374736573908218418060886166568695322470968331685876963736826304=2^6*151*1451*1811*402090335896389320434745966212583999*59180587109139159792883700957822579999 42 Pedersen 2016 622789633056307274198854316537145442504848076341217233895231717508147544545346706496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*61815759280958900719763865426027328199 622791529093364200956503757270171830055895463908153803260666584557332268879907693504=2^6*151*1451*1811*401928099795376994364844892991956999*61017097216206236030151994484076175199 42 Pedersen 2016 636863707405915727324880980933592622891873938355599473401417015512147818134544952896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*63212699027415882079587570477804244799 636865646290452914543702003703939554417566040388847417604762972194221662055816647104=2^6*151*1451*1811*401811119537964182731773995082976799*62414153942920630201608770433762071999 42 Pedersen 2016 666129934130834096959336436885476352823875405607594887080310492772547351318505698496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*66117554744765235602721692809519444949 666131962114237806011433675359372139467286443724779811934499425849809973536764701504=2^6*151*1451*1811*401583986487098883420453922281225749*65319236793320849024054212838279023199 42 Pedersen 2016 679691559527110186182481009509018445038270993991633477414588229660157230877087166016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*67463630733282770419190632743135382079 679693628797881151673335538016102658507600440614198776838588642168304900262128193984=2^6*151*1451*1811*401485488226971654100898682120934079*66665411280098511069842708012055251999 42 Pedersen 2016 709600219441785593696394487243477989488266695235268230169408806602459018053176095296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*70432251955554279868963946133133460399 709602379767263496027682690950560785503275721588800512151887606368639812260500704704=2^6*151*1451*1811*401281800130054943056198999049291999*69634236190466937230660721085124972399 42 Pedersen 2016 725751862004454229134332699894421338144289743293169728278132911173410260609730821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*72035403317830962822320681844619871999 725754071502415428544563826892125896300881059660995039782774220647000060876093178304=2^6*151*1451*1811*401178901740071690691986364904607999*71237490451133603436381669430756067999 42 Pedersen 2016 750259304079259611502078670142278712638259979670060566450931012564965011341180280896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74467919948613166437157213088399551799 750261588188318809256544944799509102383416565894806869176324425215452226410525319104=2^6*151*1451*1811*401031370749197739707917887359771999*73670154612906681002202269152080583799 42 Pedersen 2016 751561670666683588715364343557964474322296761470306740528179399273305053656544101824=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74597187963349830753828378307373472881 751563958740701707415527457410274205797380433879389581253397805071374009234751642176=2^6*151*1451*1811*401023804358231331454358530680193631*73799430194034311727126993727734083249 42 Pedersen 2016 751862931390501356318866704349021457949711449663556896696726443244171008514578178624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74627089971019638679717584206043470831 751865220381685506431472626950435967709465802433111500058626451142980874027763965376=2^6*151*1451*1811*401022057910656029983421375075972831*73829333948151694954487136782008301999 42 Pedersen 2016 757467368112342859229586500531816371847320263138970472213141133041581049382657267008=2^6*151*1451*1811*328481*9085995379*132928044795118424699*75183365305280699529573802374259404227 757469674165820830234804204285557398705549815793541010054242554228226703909604108992=2^6*151*1451*1811*400989825691662773466338577505093727*74385641514631749060860437747795114499 42 Pedersen 2016 795931950229785267349171659571985743196841850017271030679631400829132294526452856896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*79001215222508726963553573966803395799 795934373385843632911741198403556505515532297117813059596711590565955594824100743104=2^6*151*1451*1811*400781045995316943075942396082046999*78203700211556122325230605521762152799 42 Pedersen 2016 854950879902371623569947692201965505875143972678070839189611458793032121189462688576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*84859212459483596210646649532867942219 854953482737203976143796360467794754077507947815660123309169662216647793319347551424=2^6*151*1451*1811*400497752017035707586116992813039499*84061980742509272807813506491095706719 42 Pedersen 2016 872665516064127463901879335029556454566949045289469942613867819330222068939137490496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*86617500694551029209625460152425699199 872668172829861729268415388849942246132758777870353042551994304308164140600548909504=2^6*151*1451*1811*400420302818744883115478457021571199*85820346426774996631262955646444931999 42 Pedersen 2016 882153903651442788003462461846737415596835314589122721285301664249809424804464773696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*87559282400491682394926081367041009999 882156589303872529894083090079183449248562584696189272253658970783477798701455226304=2^6*151*1451*1811*400380116183690320681245713477033999*86762168319350704378997809604604779999 42 Pedersen 2016 889304735786387915513866346081343719723007679241026348594800110733468441287893023296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*88269047133958831323542126841509792399 889307443208998142237353717584970064749398516129568247949857923779191510823927776704=2^6*151*1451*1811*400350404397117683614185404260754399*87471962764604425944680915388289841999 42 Pedersen 2016 904592727747042775258882807551379202236424738938801415954914498878333643440658243136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*89786475782042370370972094659133535359 904595481712815805046005901336244217747195531118346577019910486376317809805682876864=2^6*151*1451*1811*400288479670071842761123045199187359*88989453337415010832963945564975151999 42 Pedersen 2016 915884450479142899991900180047192566958577613172262947786493030202622208868455045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*90907249759684553044772835301443977999 915887238821732113340034473948270927619115875565295636179371428728222772224920954304=2^6*151*1451*1811*400244087131487277364554085187585999*90110271707595778072161255167297195999 42 Pedersen 2016 929767350795259260635465116506243281684376562917835241416786261329989196607935413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*92285214289779754148554606243019951249 929770181403313503965825726396492493723188108583761247223607628725518847616704586304=2^6*151*1451*1811*400191004869189749590573082208059999*91488289319953276703717007111852695249 42 Pedersen 2016 932173808497264642334516819876284506121056906813672447226548154338310037454638901568=2^6*151*1451*1811*328481*9085995379*132928044795118424699*92524070240700062539226121907600954867 932176646431601689278098913069426707073939628360739708830323626307419129522993354432=2^6*151*1451*1811*400181966508239918384949151021051999*91727154309234534925594146707620706867 42 Pedersen 2016 945206105143130235611557303272491072162226358648697313831118782323445320492382259264=2^6*151*1451*1811*328481*9085995379*132928044795118424699*93817607046034200251659042684827363991 945208982753332239012137529975086851697224743295021685273814770871790436021958604736=2^6*151*1451*1811*400133828657716943162352079537051999*93020739252419195613249664556331115991 42 Pedersen 2016 951884749024829062969978934642899805147977827099304053728678788884199525554187196096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*94480504147401039697779670440932014349 951887646967669276122624468614881620273609060886383799254686908774825278712488003904=2^6*151*1451*1811*400109676921530251771250776029180749*93683660505522221750761393615943637599 42 Pedersen 2016 974737387801869496754062795639013019932799310198725505300068219212521043578922925632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*96748771219612433623478295064484573183 974740355317881243275130046823719154506639935339826493660494790756679147692677202368=2^6*151*1451*1811*400029570960491107821546317069825183*95952007683694654820409722698455551999 42 Pedersen 2016 981149713960003076293450258745500277738394562909625224184354211369986682589088645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97385234624240660361507451890559877999 981152700997868385561334396867336672200861971799922406544061130488315415637087354304=2^6*151*1451*1811*400007772464008495403448373076765999*96588492886819364170856977468523915999 42 Pedersen 2016 984356159698340721215969268134715565794740675837042604243302702707852935306047621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97703494382252104411280376868490321999 984359156497993347138485474092484452268378401136083563957927033658869272746176378304=2^6*151*1451*1811*399996980092273711060290808947977999*96906763437202543004973060010583147999 42 Pedersen 2016 997086076845314783403166111376430965510899652451744223114916721227164433252804865728=2^6*151*1451*1811*328481*9085995379*132928044795118424699*98967018134505626840911722069772714157 997089112400260306257965335401250268654051287663606832202091373637318399523939070272=2^6*151*1451*1811*399954826497118901543124352661051999*98170329343051220244121571668152466157 42 Pedersen 2016 1014060843553068931686949509021162409751620935473689920248708701562053814777752534592=2^6*151*1451*1811*328481*9085995379*132928044795118424699*100651869707110555311618350194469447423 1014063930786438439609289811019132597938644685984358408140833778292272906076869673408=2^6*151*1451*1811*399900283001928370388153545432199423*99855235459151339245983170600078051999 42 Pedersen 2016 1035809631245399036912017151734257298001395848991098192970413385169502747674270943296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*102810572667601563895172875519501397399 1035812784691346948756203152525508934053192639334086693186434813249720706161709856704=2^6*151*1451*1811*399833042998474093998547901254109399*102014005659645802105927301569288091999 42 Pedersen 2016 1046725537969076091550236672661611518319853460015918962987532060442124178042005840448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*103894044560113323492576744444616943087 1046728724647696096021255220406921400595385930433122157292108712798925563456468655552=2^6*151*1451*1811*399800360123893038197339483872301999*103097510235032142759132378911785445087 42 Pedersen 2016 1051134996294655129747583719114489832827722632588945815344799851055295609396511231296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*104331710828056435079385439186677756899 1051138196397545453625451228225792494092796433591411305710991838354121312030893568704=2^6*151*1451*1811*399787352667243988824842799685668899*103535189510431903395313570338032891999 42 Pedersen 2016 1067079073364290174986055124726171118671634522672253033298105515013095843070621522624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*105914260019276686990110626763993075581 1067082322007745977080620286840341588760093322047450839256186001823741914221032621376=2^6*151*1451*1811*399741226643816504442170871556827581*105117784827675582790421429843477051999 42 Pedersen 2016 1109269705187833868792755915596602576949751962769904368916255716463612336969816430656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*110101943632308094002441101548103121239 1109273082277553299298952784955071488669813557666660002679692183859528505587029649344=2^6*151*1451*1811*399625636863119415449254888562598239*109305584030487686891744820610581326999 42 Pedersen 2016 1121616568952544839988371245715356721829651271065568238290080377580876962558998895168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*111327446944893200279733043763914410767 1121619983631379426176159788614923655270019448535823773589864826602317500097046160832=2^6*151*1451*1811*399593472827395311524540408784162767*110531119507108517272961477306171051999 42 Pedersen 2016 1131554899505354814010200898104527468059916069195518290220137603122809201169853874496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*112313888299243035339072174702936407699 1131558344440703015625235523355525115587307379806267167629896067831419362033064525504=2^6*151*1451*1811*399568098490662878059602250584367199*111517586235795084765765546403392844499 42 Pedersen 2016 1166262636755950288098488549410088365454668032166052993393407893214909891468885418816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*115758847908703335799462431111557592779 1166266187356442057150718644060687286019292136449984957539339720443219136837024341184=2^6*151*1451*1811*399482911220139480934763509028957279*114962631032525908623280641553569439499 42 Pedersen 2016 1166837339538791799739343365028103909070378030070737782145220625114658693262699333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*115815890747884661982693313559069774999 1166840891888923760518913558553492409978640165819267688630467735150668412414100666304=2^6*151*1451*1811*399481543757753402792476902319574999*115019675239169620884653810607791003999 42 Pedersen 2016 1171400052854481985269481755441746540425339391725489988048853066658675098465535396928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*116268768530397830488492008074513843207 1171403619095457767946119230826245585239596046746128947498599861823074096282946139072=2^6*151*1451*1811*399470735231801126157435839593595207*115472563830208741667087546185961051999 42 Pedersen 2016 1173192560269547207589555045123907005581777150374057422240277554445128144658629527744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*116446686082325011673132358377688185861 1173196131967679473589312524780617882048390781071286632615489723667355907098294376256=2^6*151*1451*1811*399466512235810090919531635157051999*115650485605131913886965800693571937861 42 Pedersen 2016 1186377135568787542897450769054303645000548398875423179461762819387758683929181087808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*117755337494712652748550773877048731927 1186380747406385882733935849503703728937750008559196033280333208455646210470638688192=2^6*151*1451*1811*399435846652467885441105696008483927*116959167683102897167862642132081051999 42 Pedersen 2016 1190371086997888627521735457243633110608871675016252964512679761258026423420280556096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*118151762109087749206460125164370635599 1190374710994777217548659667351530593115427863208839220613640365360461611999674643904=2^6*151*1451*1811*399426692679343811285058229705961999*117355601451451117699928040885705477599 42 Pedersen 2016 1209879631580600609194038383555398137254204698372288820870031923198403961568314750016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*120088106954663796818520117147996703079 1209883314969812854334610405471867617913473297904162236181857017675593530011732609984=2^6*151*1451*1811*399382857215423629921722152469130079*119291990132491085493351368946568376999 42 Pedersen 2016 1209916811967868666826694244708036075659136464115130263528156696075877021215576350272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*120091797340224738363932537960435977343 1209920495470273855955708506533237168879789148382688079095685184858205414665334497728=2^6*151*1451*1811*399382775034762170352665924858051999*119295680600232688498332845986618729343 42 Pedersen 2016 1215858110922951522496409300325747926421391666445044288081486270693795881129341471296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*120681508354233234928958997675220504399 1215861812513202730890874065954177459155233764930963948297530366764477742197583328704=2^6*151*1451*1811*399369708065230888490978882675666399*119885404681210716345220992743585641999 42 Pedersen 2016 1271921330050174004021638116598934546380250850599177375322825560158295562889469681216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*126246132866489216614376521597560650879 1271925202320756665859349717767283616738174493719201007145456995344705779913515278784=2^6*151*1451*1811*399252474090473878427341938093251999*125450146427441455040702153610508202879 42 Pedersen 2016 1277162324102584445070247658505330932168694173382623843648536880841582244292149054016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*126766334246764038881417784033488704079 1277166212328986553896899387941570953883788423692867748831549736806369574195290305984=2^6*151*1451*1811*399242045707240640363008417350251999*125970358236099510545807749567179256079 42 Pedersen 2016 1280736548044053193199044967050158332615120880708749751260811278972689941989490382016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*127121098287549053801154543865628479829 1280740447151916204838854946283266004589526418858882425970266027162772329147292977984=2^6*151*1451*1811*399234983232741546065158698120251999*126325129339359024559842359118549031829 42 Pedersen 2016 1311231681895811406043062396832705288294215353617483389310551054958320342690319042496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*130147930709550005786475953465001393449 1311235673843857956267245698877903084405736517178404874361518010443318167874263357504=2^6*151*1451*1811*399176306661415429050134760237465449*129352020437931302662178792655804731999 42 Pedersen 2016 1312417076310236864579348387256308881481667441644949023960850979525778076086159932096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*130265588505835918577421156518354148349 1312421071867129191177364500181343324649834584511277572256982839375284001419043267904=2^6*151*1451*1811*399174081378154348577371680520140349*129469680459500476533596758788874811999 42 Pedersen 2016 1328200800798204023145744372665774133270960898639994800318034393087497174111406463296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*131832221702212424912587771061135214899 1328204844407480231994972274205599721388036156123715972982065355404882769333534336704=2^6*151*1451*1811*399144833383880562170524157078114399*131036342903871256655170220855097904499 42 Pedersen 2016 1337898912038322973816352190758427999122712072015984673360434032342760598917685717755=3^4*5*11^3*79*601*473861*58309019*2182799234136439*866738652326437721516631192112558699558592179 1337901758382849097857364383801412477398618012001973741913491308072205190577692202245=3^4*5*11^3*79*601*60311678900423288309961612979*866738652326437600893401702493645237017169599 42 Pedersen 2016 1358340046617116297252530237667805004146417528341879831696915441803084384194852024896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*134823730015073317497951241222015162799 1358344181983101204102747141707835145677650812474073827787611542711765140149365575104=2^6*151*1451*1811*399090889010705331819302781479621999*134027905161105324470884912391576344799 42 Pedersen 2016 1358371907222511790694045527939132732543872266550301281112434444170552146961024630336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*134826892379070945857378737902730172159 1358376042685493958384207256368031299159733034266886750148877837693696785949342089664=2^6*151*1451*1811*399090833263328344404923918759651999*134031067580850329817726787935011324159 42 Pedersen 2016 1378499567102683570301136837408037199165237997973064879259438715841246065147341212096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*136824688283180387510562759300309530849 1378503763842840206586420275042662388857583852934157632852930516561690305315301987904=2^6*151*1451*1811*399056134925640490581815957867522849*136028898183297459324733917293482811999 42 Pedersen 2016 1379962246361675039177606895381121382220675815690514817782741509736992135393095393856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*136969868331434166466851980839310477039 1379966447554850689020005865472740735616417084211679916677825314364382813146624286144=2^6*151*1451*1811*399053653192371174745329787268579039*136174080713284507596859625003082701999 42 Pedersen 2016 1398069255966309817181911766427284998591425552811258109867589773352574422759145543616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*138767102080373139091773729650140202729 1398073512284939357507253400627353041445068062667963669953359661291666009257714616384=2^6*151*1451*1811*399023364744007453955535279232848479*137971344750671843942571168321948158249 42 Pedersen 2016 1414314040871753309785555040982516444261585187569500325787089905876097319941871937216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*140379498401676483578541480051853383629 1414318346646431133015698164952055377886305324852029617999374059082209442620601022784=2^6*151*1451*1811*398996857009135576546739209142966879*139583767579710060306747714793751220749 42 Pedersen 2016 1437583672329092130972938309991796079242335717309160020174118340709276568119957663296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*142689154600776115960128575853542702399 1437588048946444915932958442594243841790028546489597489023260336742752296022583136704=2^6*151*1451*1811*398959938865146408575950165748414399*141893460696953681856305599638835091999 42 Pedersen 2016 1509828000645883153627610091245887645560465772296836469511968386113709567242763464256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*149859855221994635779053049076096024639 1509832597205759659168743150890660174467673259670892825967334338915792540578415415744=2^6*151*1451*1811*398852629825418647500355076410451999*149064268627211929436305667950726376639 42 Pedersen 2016 1517718455254812924720884604413351606062859505966774704181544198627791968889991679552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*150643032103615651579602651987276905663 1517723075836595930392801929624981194825829533160509069879862240759596351112580608448=2^6*151*1451*1811*398841533412617732773897812629657663*149847456605245746151581728125688051999 42 Pedersen 2016 1528328768156033197433859209207933194845149701042858480485841648137496118671571855936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*151696171901365280468491809712638148559 1528333421040130465428826571389109904860442911009513673851189399982408172350743664064=2^6*151*1451*1811*398826794102830262372075949058300559*150900611142305162510872707714620651999 42 Pedersen 2016 1549722944026839259208319638554479382609851247579190859877854563520479720920821135296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*153819677424657570045016160169532876649 1549727662043925421687850122034893415191646938307726241017213142670701445362775664704=2^6*151*1451*1811*398797692971694906826461247230388649*153024145766728587442942672873343291999 42 Pedersen 2016 1582319628577075926507896223090567578117368757925045915807541304220029520139170956096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*157055101873883435603836361966896673099 1582324445832361570404948976210737055093579559838264740893094977782416400099984243904=2^6*151*1451*1811*398754878308971341981545040377211999*156259613030617176566607790877560265099 42 Pedersen 2016 1593092260610429611454960068674134708192845034269093313437043513921015908814926392896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*158124352858888080978206523826707604799 1593097110662198131341300847156948493212595740035632727094909535766744065972555207104=2^6*151*1451*1811*398741116947662792504981201612836799*157328877776983130490454516576135571999 42 Pedersen 2016 1598162034799171864683366512162792699402972606636404691689504235196461834757070121024=2^6*151*1451*1811*328481*9085995379*132928044795118424699*158627559598734014832682525090819761431 1598166900285493597880861659892467931901527693397893342665742076711010915386987222976=2^6*151*1451*1811*398734705316176579371364259283513431*157832090928460550558064134782577051999 42 Pedersen 2016 1630121956017926616180432154886442074585783844076034850165548365807268233993214943296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*161799781311869588451869608829099897399 1630126918803868880698036908246913576281493330213847022252851403135938317954765856704=2^6*151*1451*1811*398695211302116389314588880797466999*161004352135610184367307993899343234399 42 Pedersen 2016 1661438099047592436890201455938431187391839533807650616024709593492008495091891045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*164908104020502216196456053554573290499 1661443157173220066556876794758954838394603049088965926918584053994713898129484954304=2^6*151*1451*1811*398657997431543303749377772003858499*164112712058113385197459649733610235999 42 Pedersen 2016 1671720149128241232175409050669996736651901463829505991815345715405000673536320771105=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1082999960673306473296097179227540985789265609 1671723705668614251133181414369667621423203480172259322116828021191436630561635068895=3^4*5*11^3*79*601*60311678900423286633882203849*1082999960673306352672867689608629199327252159 42 Pedersen 2016 1712621697512260251811145957450196806027530993418254457264759900731574729711258338496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*169988395717552841064722895307230604949 1712626911462574492944926221108029021970348861025391383281085911257490557798732061504=2^6*151*1451*1811*398600125192423315194271135491131999*169193061627403130054281598122780276949 42 Pedersen 2016 1717059829034416385867538589430616012822867420982763154376831162188838330124751173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*170428907979268724913110566451295734999 1717065056496294376428708889800824104007712475878096721090019468344173924408368826304=2^6*151*1451*1811*398595270791696641151148568103579999*169633578743519740576712391834232958999 42 Pedersen 2016 1721361948490513190638168248834870760676901894363017747984155998713805765432775140416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*170855920194277714993143881097098080679 1721367189049876237357370968932989060310179081867138997002249914236075833924091419584=2^6*151*1451*1811*398590589221466210567837358156251999*170060595640098961087329017689982632679 42 Pedersen 2016 1789124980988015793379440524437597184623276332596455913274093268677162425921912888896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*177581824227806639823869345584246428799 1789130427846928295477753050586057666689125469579099857442149037732104465516576711104=2^6*151*1451*1811*398519839769555340877981116263471999*176786570423079796787744338419023760799 42 Pedersen 2016 1793971696774217822554409237344797592445347605851337848776125346480238278715875789376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*178062891028602279496829215265194339919 1793977158388598699959013260353770937607179655637109417755105408866606909441932850624=2^6*151*1451*1811*398514985649027709503041992228541919*177267642077995964092079147224006601999 42 Pedersen 2016 1797734379679776520853068090392292648004726624214133281422150256478342309924552050752=2^6*151*1451*1811*328481*9085995379*132928044795118424699*178436360798160191265355626112675213463 1797739852749367703210073038933773949550054539925245749262864029122096545850077837248=2^6*151*1451*1811*398511235386404300569566829059926999*177641115597816499269539033234656090463 42 Pedersen 2016 1799494245935126976147150512203393224947726078951669251471025221564157276834381082176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*178611038511200399607474513765935373119 1799499724362501040991071983210789126830796045809637595410875782660255591836041957824=2^6*151*1451*1811*398509486748690879064378249107351999*177815795059494421033163109467868825119 42 Pedersen 2016 1817677926591460891406351172050701971741784679790228709199385942690268999758552329792=2^6*151*1451*1811*328481*9085995379*132928044795118424699*180415882340693207206984796362195036223 1817683460377708202963842021003924128310548503604496863706844251788314220245279478208=2^6*151*1451*1811*398491618646681550619566859028051999*179620656757089237961118203454207788223 42 Pedersen 2016 1843338485250645441985106652427493139645644581140255743993504354108787578644846817216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*182962852991612286800946877194511541129 1843344097158569057775303022045649562863297839326886941485705405673379041687866142784=2^6*151*1451*1811*398467007122642469995969482408251999*182167652019532356635703881663144093129 42 Pedersen 2016 1870625487916225857016050567075400380399860282494678327901956980438102493752272453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*185671258364381071922271149674359554999 1870631182897414473224216299701159566470969151746661554644584856305686506058287546304=2^6*151*1451*1811*398441581222565624220112609777418999*184876082818201218602804011015622939999 42 Pedersen 2016 1921589349582792744524753313716074599322684601692265779936162258033355932317011594816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*190729739812359443013701454828202649279 1921595199719695513674652942039782993222168429844671299059983642934948535280546165184=2^6*151*1451*1811*398396039332027719169518974779751999*189934609808070127599284909804463701279 42 Pedersen 2016 1992209715458935684067450662896071910125212697431931379294009202647346418161586019904=2^6*151*1451*1811*328481*9085995379*132928044795118424699*197739252022621635414852331026462177151 1992215780594328421316907723588345172580828757939624855450829040241895399445393564096=2^6*151*1451*1811*398336807004396662523729892693429151*196944181250659951057081575084809551999 42 Pedersen 2016 2070626389469846403876146672085228181986847399062306985591683931884272625936524423488=2^6*151*1451*1811*328481*9085995379*132928044795118424699*205522596489169016179224193968107579347 2070632693339013619657550407205453201023615999542116498578342723909845304330543992512=2^6*151*1451*1811*398275797281866290085677465027018847*204727586726929862193891490454121364499 42 Pedersen 2016 2081830218553898073291149434148753643435251448550877134555917299419230878502659333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*206634646473504782635410422722700399999 2081836556532295750388116435687891135621237289656202614796737394829375737254140666304=2^6*151*1451*1811*398267457912564327178408190223503999*205839645050634930612984988483517699999 42 Pedersen 2016 2120454551443550063288322750536525960074746490380946537030363835880700945793504108096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*210468352652230602196769696865821673599 2120461007010877566444253428413025107510247261717650752415736280671290657067347091904=2^6*151*1451*1811*398239388014948979357134576596911999*209673379299258365522165536240265565599 42 Pedersen 2016 2134132609573845499030898378965251976488766572028494605799765030581253173900905464896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*211825985316512380368634096167033397799 2134139106783011121052447682566858251430900879465392289089843482212333211696432135104=2^6*151*1451*1811*398229692602350436237763538984829799*211031021658952742237149306579089371999 42 Pedersen 2016 2176642535534717155020680939711365530504556439440539282174584205812778701717477927655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1410106698548329183418384894503870254684425599 2176647166284103825073906116503378248826498034722783242046645623124297969231488472345=3^4*5*11^3*79*601*60311678900423285075616747199*1410106698548329062795155404884960026487868799 42 Pedersen 2016 2199470974591598439708147136730432337003734583262208424727008761667449896187560690496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*218311225964992595981377148302076186699 2199477670718592389591381088010135495700677744302811989460619310590316722305725709504=2^6*151*1451*1811*398185051820731276022335611549871199*217516306948214577010107786641567119499 42 Pedersen 2016 2214839585245896839512544307077509049258723432281882909974036308455865658187160614976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*219836656521738869429358528711028591319 2214846328161491253133122839517375578108839612867690215967125446214249951007396825024=2^6*151*1451*1811*398174936316943333751577969635668319*219041747620464638400359924692433726999 42 Pedersen 2016 2257571485647291018848556716360225578580539594455406996884746306034647999026778962496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*224078064420369820948011165844612717199 2257578358657001283979317023152275992737291267000665046235305405175594633597963437504=2^6*151*1451*1811*398147538222859923797737444210789199*223283182917189673328966402351442731999 42 Pedersen 2016 2284771985398930922850311728274062335982588852583404175128788793180629869831893011776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*226777883838875034244519934801515138019 2284778941218554453466538901259432788336893957498708851849298770071287940197070828224=2^6*151*1451*1811*398130634910117282869906850073851999*225983019239007629266403001902482090019 42 Pedersen 2016 2305376533580711567513948637585369614165890030071613551803746628485945247777379295936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*228823013884228111003484712564515977309 2305383552129360792038681407974786219330325348388682171898030645108108043490056224064=2^6*151*1451*1811*398118097454030038274434159286129309*228028161821816793269963252356270651999 42 Pedersen 2016 2351998265479393532802338625436625654152213523967751223191154880799005187822453944896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*233450511843960150299240691407659642799 2352005425964463413855946943535398050911492138585762933609644537920719661797923655104=2^6*151*1451*1811*398090544073929322311312989567621999*232655687334928933281682352369132824799 42 Pedersen 2016 2392559809115974610119260328030070403875045701259572425734635668324466122963876946496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*237476498283712454025577364434393513199 2392567093087669410885116538291318020725665147425312975703143215908978445960897453504=2^6*151*1451*1811*398067450188929254931963616481985199*236681696868566237075398374768952331999 42 Pedersen 2016 2393156416341468253249371477405245742173291052972349554813672119605855747084667471936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*237535715275580816520623513497691377559 2393163702129489704179510647628557906717245131950414075260203292841143855650416048064=2^6*151*1451*1811*398067116379544675614681174754654559*236740914194243984149761806273977526999 42 Pedersen 2016 2418896673741207007762719717957648801478162501461384067102033886165006746707633413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*240090596524075062949782022393399919999 2418904037893541694339449761366501775559198110134886257520978963334043022621006586304=2^6*151*1451*1811*398052871968198308909714901244163999*239295809687149576945625281443196559999 42 Pedersen 2016 2449191683717637876691715331601771916757660200370721864966018878356380660027061368256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*243097565402036435105488546533165331889 2449199140100893738678368389831618017888158155662491112090459745702640169674309511744=2^6*151*1451*1811*398036492461117183384951248857483249*242302794944618030226856569235348652639 42 Pedersen 2016 2456629111574551637031210355447347185553175452310175065599220417035095245893271704896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*243835776550183328536926997764878895299 2456636590600507499858917620811650278837664725608231169566103827071356206531585895104=2^6*151*1451*1811*398032533357424830004500621880264799*243041010051868616011675471094039434499 42 Pedersen 2016 2467576450277262563380954345092092548007430739676153275661009219826865109476418767808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*244922368262850325516492597822822433177 2467583962631582858363209925291129787849028239328742029254645930443573219868041008192=2^6*151*1451*1811*398026749483035616179335299053708249*244127607548410002205066236474809528927 42 Pedersen 2016 2471226411607353581856914589607597125343937699611207715474167961759859298641610792256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*245284649712299751223672309824511519139 2471233935073711667578310343058061011445007777541621356065597258588060235316912087744=2^6*151*1451*1811*398024832523287689166175761715451999*244489890914819175839259108013836871139 42 Pedersen 2016 2488577303193348433748663542977666716079470607779666481899987579699884056747797959232=2^6*151*1451*1811*328481*9085995379*132928044795118424699*247006834027292838884533676956137601583 2488584879483214926827529779381295134892283202824614372494985087992247589932134968768=2^6*151*1451*1811*398015797109370141574709337649301999*246212084265226181047711941569529103583 42 Pedersen 2016 2697654748802392242100016778166551434301807636772217309217139317558274643048861984295=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1747637000359579998616017048270252370321451711 2697660487991473372222982833634316925775436978324588854565560980581515880904978143705=3^4*5*11^3*79*601*60311678900423284079197905599*1747637000359579877992787558651343138543736511 42 Pedersen 2016 2720346439004945770283289529989454870769215393450746090829241765177874943392524803136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*270011367737619146437598305931970300359 2720354720898834594524442433750287749527465762446373699942213462599954812760696316864=2^6*151*1451*1811*397906205908457882222120105762651999*269216727566753400860129159777248452359 42 Pedersen 2016 2800040684127497607306651501975072428243487183942106896582403094727088864880073864405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1813966262460304169670054668401464072350478749 2800046641139946364442160091772554846514076849549712499092832597465361572429366135595=3^4*5*11^3*79*601*60311678900423283926983029149*1813966262460304049046825178782554992787639999 42 Pedersen 2016 2849223096541653253138697111549413848915132537667323156770310270337023423318245395136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*282803180600861549397196527742863442109 2849231770791010910888883338937182926762339461057637126056780777353012079541791724864=2^6*151*1451*1811*397853013195088024364885466419370749*282008593622709173677584616227484875359 42 Pedersen 2016 2850762917845026655190232658162380979727269562840492389922103832908929087019197993536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*282956017478633432252131741158850502959 2850771596782256585177275398428024387359904783773015345186939745392517005685242326464=2^6*151*1451*1811*397852406845469136964782038696651999*282161431106830675419919933071194654959 42 Pedersen 2016 2859809108000425984545938495882438326659752621696303322471778156876580675498193196736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*283853908328729498876413332481494762509 2859817814478113957276966247542494283850485979676229613193176072288819300816640723264=2^6*151*1451*1811*397848857885542925671095208238651999*283059325505886668255495211224296914509 42 Pedersen 2016 2883895835016486988194131037583189975820276375012917182630578970811267016347257613376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*286244666363323146980679946094768470919 2883904614824437024554437943539838347021808189423315320109805723032947650502903026624=2^6*151*1451*1811*397839517311458609042251418838476999*285450092881054400676390668626970797919 42 Pedersen 2016 2921317004957993635015087152601143516951650595489360526220065800278471086224184467008=2^6*151*1451*1811*328481*9085995379*132928044795118424699*289958951107858848809923985221079641727 2921325898691932732011296507398653317341014286748843078809982227357712165813676908992=2^6*151*1451*1811*397825312584504806013554226506051999*289164391830317056308663404945614393727 42 Pedersen 2016 2923469577399809203112642828721121242964782133647530648544357723616848283960393887296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*290172607361648909354609212977788558399 2923478477687096173567485769112638151249481912794324315613194853644623504365698912704=2^6*151*1451*1811*397824506594451639994726849405370399*289378048890097170019367460079423991999 42 Pedersen 2016 2952521689934466632369526456168977609392037854855857271966014070080047366054474983905=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1912748898644050773029996458778958033900851849 2952527971346219635386991034224885630479010711591473580330222265314105130553371416095=3^4*5*11^3*79*601*60311678900423283719861227199*1912748898644050652406766969160049161459815049 42 Pedersen 2016 2977580381715699539749177030540649487626081281364333440849011423171157526391715729472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*295543442514564391378979413587607137143 2977589446739335218443604548429980899598591256962118646473923496319161788855236718528=2^6*151*1451*1811*397804630219847765658401512214889143*294748903919387255918073986026433051999 42 Pedersen 2016 3021761429996632008285758152451188116629135840910638562302541823317770040849396399765=3^4*5*11^3*79*601*473861*58309019*2182799234136439*1957604872775521673564563653286175143724966237 3021767858714099473645719836038116795858397839599444973157622612638798385351208272235=3^4*5*11^3*79*601*60311678900423283632710771037*1957604872775521552941334163667266358434385599 42 Pedersen 2016 3025249945260446754163476098065091268751641779340828805726718712862031320015749361856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*300274944306990743030661810024770162789 3025259155410549173825458524803367081093125855430685278227431808791718118708034318144=2^6*151*1451*1811*397787711350386707757096243377171039*299480422630683068627657687732433795749 42 Pedersen 2016 3042451825886958288046262227338239752461120720599572455262375091740340858494538455616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*301982338353949917053374393216194174479 3042461088406916250482725764854063601075419352128528206887499459724163398964497704384=2^6*151*1451*1811*397781736757239522028226105068001999*301187822652235389836099141062166976479 42 Pedersen 2016 3123257957833290072944150096902690337394478953003521853991916668227081620484888428096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*310002851438451173230965159761841753599 3123267466361550783262274956126816493925177976945793815968682171313898725687322771904=2^6*151*1451*1811*397754555110792751891245381301411999*309208362918383092783826888331581145599 42 Pedersen 2016 3145883978691941119268063573738040846497947104841101127059540783880655514298899615296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*312248625267441474824486305026834590399 3145893556103451841748050903029869211913707669040967504534614730075214335447737184704=2^6*151*1451*1811*397747195345081776945626640929102399*311454144107139105352293652336946291999 42 Pedersen 2016 3219891852426849287314900134381956183006196241335148088729822513860778811380413481024=2^6*151*1451*1811*328481*9085995379*132928044795118424699*319594368781574545273391620757770101431 3219901655149867552271423262393255195146482911687536859446959111552813967916923862976=2^6*151*1451*1811*397723847331135994619734490936426999*318799910969286121583524860217874478431 42 Pedersen 2016 3278193002722037504804367425463688769043976580362350351334177514594795460719146558016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*325381121934102574771149546482933380079 3278202982938603436343609673475356405285682229540044422283371857405101869149284801984=2^6*151*1451*1811*397706199550699759823493447210251999*324586681769594587316079026986763932079 42 Pedersen 2016 3396350148075477524579162082540585274690894666750854672642904055085320068633087601216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*337108956289099227981747005687940380879 3396360488012748875356878493975244574763570607148148664746561239206145371414057358784=2^6*151*1451*1811*397672298181128892981789918487001999*336314550025960811393518189720494182879 42 Pedersen 2016 3403162115374956981166823575591982837271021371039494018852563745698870683023442230455=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2204689845389446661042807131718032092340133839 3403169355512288322951576370125333443560061104552928292334792928462159698330582729545=3^4*5*11^3*79*601*60311678900423283216219250639*2204689845389446540419577642099123723541073599 42 Pedersen 2016 3448727536356732539378862916450056366987431383043112412548971008276325432000569605056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*342307739078514491672318908798069776089 3448738035753095460041617380398278119495666472355368555611185410003948494943527674944=2^6*151*1451*1811*397658015895842217024047466069471839*341513347097661361760047835283041108249 42 Pedersen 2016 3492985324903303961498894443224637321548106216883991093279556411301970669248717804096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*346700600901978866599028892580801047599 3492995959039236534473482234069342189501878190615169387248506284339491010608741395904=2^6*151*1451*1811*397646282692353213473893790687589599*345906220654329225690307972741154261999 42 Pedersen 2016 3579903154578970624001575850803637990541812563836737166558995725988129640140699055424=2^6*151*1451*1811*328481*9085995379*132928044795118424699*355327738142666728000955130536991262531 3579914053329818451695043240092816380494781579403577432543339510099025747579089488576=2^6*151*1451*1811*397624087049650277597967919190952031*354533380090659790028110136568841114499 42 Pedersen 2016 3648316648746828189250048723236824333086939701474850186423261395903313404168784247655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*2363509699381798142825749837330035804529881599 3648324410443940945620053920637342070991483548313225433090296554396870811802646152345=3^4*5*11^3*79*601*60311678900423282994485260799*2363509699381798022202520347711127657464811199 42 Pedersen 2016 3679041637641733802611620643183622757308244176381017505782838952462909489600126508736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*365167851528004855138397870757123990509 3679052838212373864242383082790825344575364047223923864403666460587285814176083411264=2^6*151*1451*1811*397600055191176920375823318806142509*364373517507856390522775021389358651999 42 Pedersen 2016 3713132042905007315845610968336336568796115432581789350275574732682716226922847698496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*368551537083596503406304786031508851199 3713143347261369287483937236021216632317243231356042312464591134024333974748422701504=2^6*151*1451*1811*397592088909584843479319057460131999*367757211029729630867578440925089523199 42 Pedersen 2016 3841434157322261950527043158441072961352478221327911751031913377667813541408183784896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*381286322955245715469947205200268384049 3841445852284938647345809692565576854126785096970395069075997113239130929212513815104=2^6*151*1451*1811*397563378561840195618795982539784799*380492025611726587579081383168769403249 42 Pedersen 2016 3908007415920146100000688998049504821338387212310928370963147151653559329358808289856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*387894134501241321646330422115510901039 3908019313560193456494545157860561775444176699372297689901005912470649099979119390144=2^6*151*1451*1811*397549226518088665571538847861451999*387099851309765945285511857218690253039 42 Pedersen 2016 3920896343789831022016842221084825596348026634920212396997676170202036210835585592896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*389173441060459611148257677604812404799 3920908280669267680884009772501480292096756355125691371550557486610941687433496007104=2^6*151*1451*1811*397546542307676457254222348175136799*388379160553194646995756429207678071999 42 Pedersen 2016 3924878024773799985519920173528075172251398250486408705144455126864446832696396861632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*389568647756548503835167367406930600933 3924889973775170430306733911105917599854629557435120253070720468329069636111331266368=2^6*151*1451*1811*397545716669660070251582727893051999*388774368074921556069668758630078352933 42 Pedersen 2016 4081520480198179928455451850987602878245844935273521541775632961625045007038916245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*405116389407566568239425294087832871749 4081532906085940911104668746036265308393688911057875185286307943050696048432059754304=2^6*151*1451*1811*397514517462996375408181789218875999*404322140925146284168770086249654799749 42 Pedersen 2016 4140744503139841451032282867224224596324588021469966804746550725944111647793667754816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*410994743431935406808685273043245876779 4140757109330767736239305086688130731717638494243313837408690282903169670531570005184=2^6*151*1451*1811*397503338276849182504954099294428779*410200506128701269930933292894992251999 42 Pedersen 2016 4322652318755240538596744000921586863402606225291525924792575718591977232463059996096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*429050229818604131865277235249211776849 4322665478751081107297192168596405354899298609332301238947894369462722172258015203904=2^6*151*1451*1811*397470921950215763697276677985743249*428256024931696628406332932522266837599 42 Pedersen 2016 4602024334568809281649405336900448609394207981756788127629314628741391872824125893696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*456779646563417610373029601354812164999 4602038345092125799782674786214252129998712823842032028824028427532996706639554106304=2^6*151*1451*1811*397426140492981182220716154009548999*455985486457967341495561859151843419999 42 Pedersen 2016 4604632174127138453402483166104371779105693078853534783938268165265659947852387893696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*457038490920845222593914213283812821249 4604646192589829968589651526245271161212710439504152353240023334233558640587292106304=2^6*151*1451*1811*397425748139560542111017198880701249*456244331207748374356556170035972923999 42 Pedersen 2016 4684155612793801855659592879313364722527666944155432986206319901714546120652273282368=2^6*151*1451*1811*328481*9085995379*132928044795118424699*464931688689228948509654844123095860067 4684169873359731130753121562086454295603966638346420803108356763074161902851797373632=2^6*151*1451*1811*397413994039203583564087807939049567*464137540730232457230843730266197614499 42 Pedersen 2016 4690530911668939733826886776306108518684449761984187292228603620992036499924161095655=3^4*5*11^3*79*601*473861*58309019*2182799234136439*3038693285789130199582424187184288875211919999 4690540890649313298903927543195779340331951481595488739654417922856928123968318904345=3^4*5*11^3*79*601*60311678900423282310557879999*3038693285789130078959194697565381412074230399 42 Pedersen 2016 4721573229326005159826570934848083030829954091289326489725480744259175585295514245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*468645620735706649283672356411148777999 4721587603807105403282207218991790115236579435195361989543965362184940106479461754304=2^6*151*1451*1811*397408600790530215422618903742305999*467851478169958831373002711458447275999 42 Pedersen 2016 4988445108167214971493286550890423625664079528610801936109000108434236285791677621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*495134320845160700196615455601698603249 4988460295120047044264118492207741903812856782648123031246108583719801358500546378304=2^6*151*1451*1811*397372486826957009878911360569147999*494340214393376455491489518192170259249 42 Pedersen 2016 5006152356956433678314914747843441616375253001396842520895212060119549135944701402688=2^6*151*1451*1811*328481*9085995379*132928044795118424699*496891875837382979855051993845553451647 5006167597817677353603051235297925611358663759626587154774641263283944419013208613312=2^6*151*1451*1811*397370227166729295034517108180703647*496097771645258962864770450688413551999 42 Pedersen 2016 5045750679787691087638695134733141195961566199089933304076670203554737870316830847552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*500822256598626958217020495270958047663 5045766041203105055971602036394399997051973995243893674388831396689988177799405440448=2^6*151*1451*1811*397365231466724172444816440719301999*500028157402202946349328652781279549663 42 Pedersen 2016 5192827964134551640166085870477917001110410098271934389836388781483345922890827052096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*515420595302926944200106590820033834599 5192843773315899002879826975021214546427583548775552517891723387397015192060136147904=2^6*151*1451*1811*397347344868758905231025717806811999*514626513993100897599628539053267826599 42 Pedersen 2016 5212517798187844497917809552885768124731938212241096075403999072607415482596688386496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*517374934260284532524991456022111404449 5212533667313437924223852526664667061256032090386918346454966204440714783565206013504=2^6*151*1451*1811*397345027104370066587022167958331999*516580855268222874763157407805193876449 42 Pedersen 2016 5403906463039554739381936381290879622548393387799869454754222383639237230021070442048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*536371454124493315297584753579537463487 5403922914833807972634040005752939129474905963133467006232952673334714365898600853952=2^6*151*1451*1811*397323379978953593146812932928551999*535577396779557074009190914597649715487 42 Pedersen 2016 5470304729014752083882422217277514658189608960636109800145823880616177260893823401536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*542961896560173346910850789989833704959 5470321382953623856844596005825273198549138561215142459150432540218614570911800918464=2^6*151*1451*1811*397316224651207904967477005951651999*542167846370564851310636286934922856959 42 Pedersen 2016 5479121835958215688754419858290802646614384236532915485535515988590527871422216895296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*543837049471272527046804620975852097899 5479138516740118579066222388954402404237145063767219986827825742960939681009859904704=2^6*151*1451*1811*397315287558648981652658262213609899*543043000218756590369904936664679291999 42 Pedersen 2016 5698045245471006995267336944025991593900594390006780184281666973638543644225427387456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*565566564648006314344721377007977870439 5698062592749066907312328287845426728216488620663945332316682621223999137048705092544=2^6*151*1451*1811*397292952040917724240274673931222439*564772537731008108925234076285087451999 42 Pedersen 2016 5746983560392469456285041510766652899169809170928193299989649396199952394851270373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*570423997935640011601848965394388972499 5747001056659616003070698412435906461870014585271007154505260950735118836443449626304=2^6*151*1451*1811*397288192343154824057657332779796499*569629975778339569082544282012649979999 42 Pedersen 2016 5766983491477343561127549725402431492500007592882503094347354490861143950898704312896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*572409115959379768165013659767252334799 5767001048632803689514231814776053420858556316039879947990113407416732480812937287104=2^6*151*1451*1811*397286270468383438353826955758571999*571615095723954097031412806762534566799 42 Pedersen 2016 5920559429911002395869033469070937806476740449804323390607295312735286399596490290496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*587652486654190460690622576840075461699 5920577454617068486562933143913951015528755957017719448473976931367384033437596109504=2^6*151*1451*1811*397271946270358304960955450612271199*586858480742962814690414595340503994499 42 Pedersen 2016 6062787393924197034956094095239760589556191487771987464441214129463599527940078037056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*601769500040098306248908885488776002839 6062805851632798792265962887608282987903463537429782348256095089108238925095155242944=2^6*151*1451*1811*397259329032427861779135919356479839*600975506746108590691882723520460326999 42 Pedersen 2016 6075006636346126735703252047622195561517582239467846964504101080032853426284805027776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*602982336137646828094838804228639185769 6075025131255309892953528472391335163733676065158176688077172142062264169924126812224=2^6*151*1451*1811*397258272659818700387146133367758249*602188343900029721699204632046312231519 42 Pedersen 2016 6144826767619769955377896750339364087025263239924768580465843083226158829132048645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*609912420067586402914447465520956127999 6144845475091187915193618784782480557091303559424804994365228114255325923174127354304=2^6*151*1451*1811*397252317345324704033541825501215999*609118433785283790515166897646495715999 42 Pedersen 2016 6146953871221623746307135614331004647587547126030807565432223139126839540660892577856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*610123548380003200197959269028721698039 6146972585168851576696814726897868643808559723579218835191732491843484157580459102144=2^6*151*1451*1811*397252138041555458306789104971050039*609329562277004357044405453874791451999 42 Pedersen 2016 6241486952344542907394513941330020092562346777287832663466830969803001261933566754496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*619506546870367280685796834525953283949 6241505954090756785313503723136578988140827537559702552703396664698275222063591645504=2^6*151*1451*1811*397244293040636373104178615075000749*618712568612369356617445629861919087199 42 Pedersen 2016 6366346239334640039074456545855945327389998903211098570239865291888119015226316453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*631899610625611562436516629007772117499 6366365621205734726101856988611549359915473617338572249240310034390521547496243546304=2^6*151*1451*1811*397234289115190079425344124130939999*631105642371539084661844258834681981499 42 Pedersen 2016 6545695465161447552197928827429213293212743122954651234885341527280921185781491602496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*649701141001975285003185099604423252199 6545715393048018813492433137168606359094053338225671396066744098750843175577970797504=2^6*151*1451*1811*397220588424103396232533759197199199*648907186448593893911705539796266856999 42 Pedersen 2016 6590861034005844279335237169304562697454781817803427284339426671899274566496633986855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*4269794944060337235496707952758477516016896959 6590875055888258404066626265139877485888240402360411296567561713834314395248016253145=3^4*5*11^3*79*601*60311678900423281620266577599*4269794944060337114873478463139570743170509759 42 Pedersen 2016 6603239985384419934500428907677880226888212012820395332798589353760582569252401375296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*655412793896043167772076327355126405399 6603260088461034469945532006573119366800521399705748934644652182485326788930715424704=2^6*151*1451*1811*397216350524368771213205540704166999*654618843580561511305616095765463042399 42 Pedersen 2016 6643767436264225795209197521376986677979791191850874129856040138562603403040553741376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*659435396416837638539051850392542102919 6643787662723672369452043661626915391955851516916769397907949186070106913249350898624=2^6*151*1451*1811*397213409994557792956879952224429919*658641449041885793050847944391358476999 42 Pedersen 2016 6664923946534266193154837778616306848582764533465029719988780854234374447959785420096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*661535312145460101812268708879301964099 6664944237403146287337793801766971634130660431827419608137091642635394440666441779904=2^6*151*1451*1811*397211889184787736197610329043093599*660741366291318026380824072501299674499 42 Pedersen 2016 6708113108567291437048012418241613345396737757594069360409797443247776677406354994496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*665822106115806169409223984924714437699 6708133530922386660355338633490666754943864158342906938709707197150411018074323405504=2^6*151*1451*1811*397208814418279132018254677465647199*665028163336430602581958704198289594499 42 Pedersen 2016 6934915311142396272223502054680997209082877250447709303432134175893695290163424465472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*688333640692853944796966547008991396143 6934936423980052299700276998146550233345112956265895496555022368284388752850055982528=2^6*151*1451*1811*397193297404059913324018447442898143*687539713430492597188395502512589301999 42 Pedersen 2016 7144419503786515869410217978094522973073653868794800921837898777180452552556586913856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*709128239789319075351194446639350482039 7144441254444218588093045200342513808435647005392048818544627512208853021880092766144=2^6*151*1451*1811*397179840675546860016236835751451999*708334325983686240795931183754639834039 42 Pedersen 2016 7158455480504985548799553793947972430751962529284583675167841991314236552750570302016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*710521398108034409830491359427777616079 7158477273894183102711352352043178292568012641539150159815873192595757146206373057984=2^6*151*1451*1811*397178967326746245634826739148168079*709727485175750375889609506639670251999 42 Pedersen 2016 7208180638090922758231857824338941034183522419113294439433333779340730194002756190016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*715456930442533201284179290693235375579 7208202582864691345835816740897154312256017068266021779756455096942802799054411169984=2^6*151*1451*1811*397175900734190267382062487912490079*714663020576841723321550202156363689499 42 Pedersen 2016 7220621814189701123981087974911264221393533341868321616546127465944941147770189019328=2^6*151*1451*1811*328481*9085995379*132928044795118424699*716691794843085242848978022234227647557 7220643796839711805201503991448510756557044564357064175087355984373992050676647716672=2^6*151*1451*1811*397175140093078591591399268117555807*715897885738034876562139596917150895749 42 Pedersen 2016 7227864267976591438687868853474417073320348256256870684650917045860918369141858121536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*717410653597520231863688706123569822459 7227886272675717959609549659452310619495501368043866443924822300621395855274326198464=2^6*151*1451*1811*397174698504542425417896589526651999*716616744934058401743023783485083974459 42 Pedersen 2016 7243751455780058753093205543603277631220331554009269267648264934334376427467025260096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*718987556173902280610307636860948361599 7243773508846555581550836358084071195271596483505801496550437475216255616639521939904=2^6*151*1451*1811*397173732925488254048932531524611999*718193648476019504661011678280464553599 42 Pedersen 2016 7296098419625917689774070617227542919480868829216843056956909761287564136828428541376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*724183319148158654183479585085312209169 7296120632058881140806765924802089584919086262674446123828197153903919772411876098624=2^6*151*1451*1811*397170581225631119323195529217851999*723389414601975735368909363507135161169 42 Pedersen 2016 7387664552980435138825374253723641997067544744504262771799631386006365908780326424896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*733271829549261112989309892246002825299 7387687044179731207931226517233199284729254619334826531760266990359988413215091175104=2^6*151*1451*1811*397165175791746474308049591310257299*732477930408512078819754816605733371999 42 Pedersen 2016 7562784875216819721917777073584929855859643338879937229349113641211904453180730053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*750653614842385256400372942873012704999 7562807899557007606607767092516156869703022732976704186790543922471693204114629946304=2^6*151*1451*1811*397155203018801734283687259346139999*749859725674409166970842229564707368999 42 Pedersen 2016 7623381373541131486932042597185398120210320612924438322514211933528984784847930138176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*756668195617120183329989895299606837119 7623404582362884646019633956168064064175136905479695804437592226813154067988380901824=2^6*151*1451*1811*397151859031817652645511113534851999*755874309793131077982097358137112789119 42 Pedersen 2016 7721588893739446061969301949886018960239872891960494257176891579929439664126310252096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*766415905125974605673749852970754009599 7721612401546743747698704886317106275492542484862872293685044905820460650658252947904=2^6*151*1451*1811*397146551132611410020713293405501599*765622024609884706568482113628389311999 42 Pedersen 2016 7894927625015551182592558563146863352989771566929113604869574058921895801769437998656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*783620856393462663038394249136206738239 7894951660539818541210153420984911704709313399556709978357055541858888818936272081344=2^6*151*1451*1811*397137505280723179387550339276951999*782826984923224652163759672747970590239 42 Pedersen 2016 8016828742699485400079625665062598294352931624049667585150766170321538420454923974976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*795720303376628217597468367735232368819 8016853149342705518516632734222188405996147105130918086215012163991467034052913465024=2^6*151*1451*1811*397131378381811104351357791111320819*794926438033289118797869983895161851999 42 Pedersen 2016 8089524066443185739135737938913915636148169697711620059579187837653537464148081132096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*802935768109622051845533754576756479599 8089548694401951858130146121838076013556753242587060160834752308972803769814722067904=2^6*151*1451*1811*397127812649169820139318057821221599*802141906332015594330147410469976061999 42 Pedersen 2016 8542239119444272134592721103078630716750920746958703618698244361838040637042862039616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*847870563510513946821112125029951370479 8542265125660592905295704504398627122783028758723142121136181749827151540665006120384=2^6*151*1451*1811*397106974551627348940602093557922479*847076722571005031776924496887434251999 42 Pedersen 2016 8542419256490153483836228409167733846472227014027590057890218508869934336783874909248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*847888443236949241827318846583390245287 8542445263254888191104328070675978049318819303600075102997333550795303183443661986752=2^6*151*1451*1811*397106966700282659591508342041051999*847094602305291671472480312192389997287 42 Pedersen 2016 8634178039010316878173554505403915020934723777451916957912550292643606918511944933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*856996075270489295566479750080574612499 8634204325127890364926314520685428586706169326246721718183232911125054400073655066304=2^6*151*1451*1811*397103010002603694107513296579516499*856202238295529404177125210735035899999 42 Pedersen 2016 8696005235290599674814972081944874855565442508767411861781482001179951646180233813415=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5633582470574223542094972776722382399557881407 8696023735811586649357570196953405584450224720310981560005587541097200130622631338585=3^4*5*11^3*79*601*60311678900423281207801286207*5633582470574223421471743287103476039176785599 42 Pedersen 2016 8701487754934404617122905735572450365096335284680929099197518107453271493603313106496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*863676984803960848961043660838670803199 8701514245971438720113916299824830426840235253924493449299275352430500295489141293504=2^6*151*1451*1811*397100160696016666026599393562775199*862883150678307544599770035396148831999 42 Pedersen 2016 8962433291984482959584217922287693204041408099369094126445686038639434970919202110016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*889577458491309141594284448490836168079 8962460577450938853979039914211355048542659971313519609458923232516074980726125249984=2^6*151*1451*1811*397089519652477317669640176234001999*888783635006699376581367782265642970079 42 Pedersen 2016 9025735445489596762317961375575003057103549756912912752064127259604623185307898225088=2^6*151*1451*1811*328481*9085995379*132928044795118424699*895860592434684588586632468964494618497 9025762923674785368999829322711208202912140710518635714026091935139271692061966990912=2^6*151*1451*1811*397087031126400509915425751834370497*895066771438600900381470017163701051999 42 Pedersen 2016 9197658189526363853735896701068199650424975897303468392441673822945276295106891001664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*912924998128377079233923389505328792091 9197686191117653526285344798805547271685138977123415634266759602504113789175565062336=2^6*151*1451*1811*397080445595033615576560368637051999*912131183717824757923099803087732544091 42 Pedersen 2016 9540433259874945599456386610559595165737052223951395673229187310448452201990748447296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*946947563873728791288132024534737948399 9540462305019629669673334569935108903303960701811156070243981443672133354266224352704=2^6*151*1451*1811*397068024782021968617422994366260399*946153761883989481624267575491412491999 42 Pedersen 2016 9834269602263361854210475238166772743041454291599413176402025590585079653534025718336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*976112655334776847209440262826508294159 9834299541971096221517765414907853508227847491919002597833377929668398935646165001664=2^6*151*1451*1811*397058067410060237987650054458401999*975318863302409499276205586723090696159 42 Pedersen 2016 9969361006276711548299789339682140910618156103083718403135308186172846370812693970496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*989521320585730028136751750357200819199 9969391357260251558982827813357070527335036331194003358388302264202822400734032429504=2^6*151*1451*1811*397053686703348402826737557327191199*988727532934069392038677986750914431999 42 Pedersen 2016 10162115764469243466699875892407891040513506944343018592664154613574879824404703519296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1008653433742809051795396891703617116399 10162146702280413601011484935954654807337960830711415190229479599744953480710125280704=2^6*151*1451*1811*397047637998070552885441238756978399*1007859652139853693547264424415900941999 42 Pedersen 2016 10268822119855665888711394519268055365795074153517537090105194019572582900989562166336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1019244705704009431901929719595887881159 10268853382526456806018732648519988103942581906147742003351243424790849653229732553664=2^6*151*1451*1811*397044387282051759938112454460276999*1018450927351770092446744581092468408159 42 Pedersen 2016 10565915795620522526099402259331200444129017035439634553854497550890082402992149749056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1048733107838852321258957389226312018339 10565947962771074714292207593477170217425963243678090229192585532298830611827659530944=2^6*151*1451*1811*397035682868395047332495717683451999*1047939338191026638516377867459669370339 42 Pedersen 2016 10601946259011991270987204970563893464634220122751356573630403251513747836917088645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1052309356275837888704270142963184877999 10601978535854629104881854847336849054736197239585323541828381989122827605309087354304=2^6*151*1451*1811*397034660434992433405349510243915999*1051515587650445608575617767403981765999 42 Pedersen 2016 10673525683397192684029777123205122504887045213183329654890188439232899728643800735296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1059414061030718038653368291722118870399 10673558178158103309016780177988804799091011043050082621325913251966580136580596064704=2^6*151*1451*1811*397032649733267168952221770028291999*1058620294416027483789169043903131382399 42 Pedersen 2016 10758590970462939104454571421557145286307582124513092834545533447406722438791723426496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1067857321851577640889750473707596601949 10758623724198835782533841290746286090141408893969634016500838302089750356060090973504=2^6*151*1451*1811*397030295037204756322765855383073949*1067063557591583148438180681803254331999 42 Pedersen 2016 10783530457602484470402865319040729307499182656401161802464027264625908840732955045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1070332721652378955106444230482998665499 10783563287264808448294152370343706483450859717083772166440627789678888536360420954304=2^6*151*1451*1811*397029611736375891727991190643835999*1069538958075685291519469213243395633499 42 Pedersen 2016 10898991160653537702898987215764256901703288022516991863621714996289887366472917369536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1081792917274435642656415997372794015709 10899024341827447590282475386797731497576567974621356452765323540624936152636770950464=2^6*151*1451*1811*397026489099559174501748275755870749*1080999156820378795786667223048078948959 42 Pedersen 2016 11204391661292584087573906723111857273606432472296947262292179759975368469296491720256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1112105823639209362506137101628627288639 11204425772235770277703915362148244919814866006477882904325027764233978387132175159744=2^6*151*1451*1811*397018540117121784493042976835140639*1111312071134134953026397032602832951999 42 Pedersen 2016 11499288219421276756224176371271693796013839580948576131059750828953988676823151830976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1141376148131618563545531787381917126569 11499323228155261788384371714369378403841458799515465033413159186265194922192973609024=2^6*151*1451*1811*397011265638875873300970048477172319*1140582402901022399976983791284480758249 42 Pedersen 2016 11659971155416270315566333022291066386750421500632458676935326755776779555065758239296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1157324932704797570759873251979022296399 11660006653337590671841266218319832474782674669769505758495439768382764571619630560704=2^6*151*1451*1811*397007456958592997041328291270441999*1156531191282881690067584897638792658399 42 Pedersen 2016 12012710543540646008028125124669694462894287926263337920056078253014926067462392386496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1192336519198623702830087413851571779449 12012747115350990559121041477538855757154785911385317972266410690245166893291502013504=2^6*151*1451*1811*396999453655316612582051257558331999*1191542785780011098522258336545054251449 42 Pedersen 2016 12046542372778243164859971524594676309293788673586199362000748667127715383873349906496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1195694539469325177672378158363486878199 12046579047587094006603970629446691166810271041835047302591102828224210574345504493504=2^6*151*1451*1811*396998710702036991492232631906331999*1194900806793665852985638899682621350199 42 Pedersen 2016 12201972748147177947047613839224570036617580836611661369054226825396403077101719602496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1211121974607582334827128168073416189699 12202009896152331086411768834351856975296501443910721459391264234882770700801742797504=2^6*151*1451*1811*396995350416781160552497787927794499*1210328245292208265971328644236529199199 42 Pedersen 2016 12435362657427205651613800757593357664200847880258011864379593972403104596747748054336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1234287380203462970824120886246439390659 12435400515970706284148598704891319299934368670285839346555957644340384739571770665664=2^6*151*1451*1811*396990462624468541983509162305542659*1233493655775881214586890351035174651999 42 Pedersen 2016 12927665711285631253089393770352781690770976010470661104518086857929320487697109053376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1283151531845245316851552315734277612169 12927705068609432342860778187057914422444906671211207068975821627908445702310171586624=2^6*151*1451*1811*396980731811178019701607574864258249*1282357817148476851136603682110454157919 42 Pedersen 2016 12994988369909751941705011754733570015030040990375681749536043203791324183175501343296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1289833726022499002921104075720260872399 12995027932192416742398050118725177177677801516045540896063118146981485175799679456704=2^6*151*1451*1811*396979458477091458327047239546841999*1289040012599064623767530002431754834399 42 Pedersen 2016 13120692662869514262728648352176410108444138733535474814183999538631593370774909740096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1302310661895773666197378824967421106599 13120732607849618159903954337627408447148229190170959653143651521497408948682677459904=2^6*151*1451*1811*396977115928373691386884640354298599*1301516950814888004810744914278107611999 42 Pedersen 2016 13153486905433742499841149798477531537855786659613257134243793164080643689101238821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1305565695211282350995446662332901559499 13153526950253496666210667302291013111680153521248480546824870656290514526368585178304=2^6*151*1451*1811*396976512165660517691962591526267999*1304771984734159402782507673692416095499 42 Pedersen 2016 13748447800298581401704579293100312990374635903626358039445148062655368409677354723904=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1364619278486364953113827774132408403151 13748489656432853682490183433456862719527987041884460728240924107734605734568216860096=2^6*151*1451*1811*396966059139209840082607811702155151*1363825578462268455578498140271747051999 42 Pedersen 2016 13797405201577591780597928075675580116221820391113993180649207718914234136028439576896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1369478606214145225087023630292302513299 13797447206759057702522189900673822044561499412413240276524472727326831126028674023104=2^6*151*1451*1811*396965239171108410477700748553484499*1368684907010016828981298903494789832799 42 Pedersen 2016 13841491540793278878435754932752732368763792404566786885534683659381892231244314736064=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1373854450621126900376527284421937899441 13841533680192349622996232072742473352240697381008231974625632367562081631724272527936=2^6*151*1451*1811*396964505754287450479728413237051999*1373060752150415325230800529959741651441 42 Pedersen 2016 14126468369222486714855225799912332701415463898189920227450227573312735428912453090496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1402140180010007630673587511805608192949 14126511376212471610655447069493758014822764970546456621953208997891051562896033309504=2^6*151*1451*1811*396959875430195433761177585359931999*1401346486169620147544579308171289064949 42 Pedersen 2016 14401383565245524300779921662782763930920137970635435692773405533106696038096478376896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1429427229565794410675814071772374557049 14401427409194526343283310009926997833950607153680205147250015741555382297583035223104=2^6*151*1451*1811*396955582393374916328304246977032799*1428633540018443748064238741476438328249 42 Pedersen 2016 14700972847656578333607633259727232476685783226436608391723905358436309378842721260096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1459163336240843337462831053792541111599 14701017603683031829284992913037904226720793031628578606866308646112447837871825939904=2^6*151*1451*1811*396951087025485046074887842655861999*1458369651188860564721509139900926053599 42 Pedersen 2016 14925967892356898324932244610769249861279847121096943991798190523221696663590224671296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1481495499116371011852546676898618804399 14926013333364153898491327012333204295478314911337986630920539969501440058770300128704=2^6*151*1451*1811*396947829701871764197114441516466399*1480701817321711852393102536408143141999 42 Pedersen 2016 14938432740230760812861671502946806035979563963373011078265678647545742164410700328256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1482732713088387774313492057964754103139 14938478219186325451580189907595958135363563427450724287632977203760580647752750551744=2^6*151*1451*1811*396947652115212392231174125919455139*1481939031471315274226013857789875451999 42 Pedersen 2016 15096256141573280270560040729200071863326328531141542403799861258930160391572247112896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1498397670994662520410300216147125378549 15096302101010538105007252655254702340638520052977972238838914664697919278753794487104=2^6*151*1451*1811*396945428989303262164986118837610549*1497603991600715929452888203979328571999 42 Pedersen 2016 15099870319284016191424380930287247394112406214540579169527499737980985139573797253696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1498756400696486667026632021926147629999 15099916289724371229409127363855182469442893012333143307831423428003486798387162746304=2^6*151*1451*1811*396945378624139441406447506285643999*1497962721352905239889978548370902789999 42 Pedersen 2016 15136649722555600027485061215981032920231782155780977675786424709404378869504302494144=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1502406986092354976474975252759639344961 15136695804968132881524318284849274207674668456599432470511466289710843334748288609856=2^6*151*1451*1811*396944867455737866602023160757051999*1501613307259941950913126203549923096961 42 Pedersen 2016 15147157586072360729106969018514143158138149392181895656777203300705917691823901738816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1503449957149085015071234920220729422779 15147203700475308258378492200393166001055506137799921644697092077440692660529368021184=2^6*151*1451*1811*396944721871371768451683611017974779*1502656278462256355607536210560752251999 42 Pedersen 2016 15271318900784195968261809089291333064504020255104862577229602403460908485217608044096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1515773742798131407124700701141647857599 15271365393187099237164078859118525395145106175836822102611919580402370439419371155904=2^6*151*1451*1811*396943016822640575116604558179149599*1514980065816351478854337070534509511999 42 Pedersen 2016 15413061533552465845336672642649420889469611617435608530220051934981793239327408933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1529842584027960532676521728070099987499 15413108457480349637963591037712100293220286800101885865537319966984386314330191066304=2^6*151*1451*1811*396941103944603212641897569798587499*1529048908959058641768632804451342203999 42 Pedersen 2016 15523129161782261589676185201771460469178042035554391909574178847924392171612521697856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1540767483303963700963787049712084853039 15523176420802913172261274975993624411566320362919553041250020591167472010650589982144=2^6*151*1451*1811*396939642648823030578118516384205039*1539973809696357590237961905146741451999 42 Pedersen 2016 16050629347527166731807616046579052466254344909772508161765896180694643850476365983936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1593125170028206340110957042402257374309 16050678212483188175730943110016282837545267188303718789191380023723160741489693536064=2^6*151*1451*1811*396932917768703305621395494045182559*1592331503145480349110088620859252995749 42 Pedersen 2016 16370404911277658038065885283059000030291703646731453909038717215314250353426972703296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1624864891153182292315444012151655712399 16370454749766774108436389865141967590482976223909721591448551341518410810445488096704=2^6*151*1451*1811*396929052233189637410226797382424399*1624071228135991814982786759305314091999 42 Pedersen 2016 16517799039161120836819414875449282577812433025607648881305585349066772591654019436096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1639494678556607559583989051660965105599 16517849326380777056017602283215158356663472290867797590186081890618544931008175763904=2^6*151*1451*1811*396927320921441198252501728985697599*1638701017270728830690489523883020211999 42 Pedersen 2016 16574101782411114842139094806451496371791174343464027419983071885770677727052813048896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1645083077333445573413052762667361593799 16574152241040316022356085182928452688639701327980059606638990670195634267625356551104=2^6*151*1451*1811*396926667715455955701662500314971999*1644289416700772829762104074118087425799 42 Pedersen 2016 17106334155755363224800648098916887489924109425530449602424490115936282370718580726055=3^4*5*11^3*79*601*473861*58309019*2182799234136439*11082093631286558310975615899649632895746512319 17106370549028538177721200791822806746091479974781820120268699081139480643013689353945=3^4*5*11^3*79*601*60311678900423280572903601599*11082093631286558190352386410030727170263101119 42 Pedersen 2016 17106509855854250875868796755488945729745634746158468383025985423267949394538010245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1697927902552661186545381551995222777999 17106561935360523662545096601925823048507995277914035000529712750769242436244965754304=2^6*151*1451*1811*396920703612452267152302766027505999*1697134247884091446582982223180236075999 42 Pedersen 2016 17538379530535701563365236723528553049102457187900865405380838944270225299155887017536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1740793664013467218197887208285275808959 17538432924837313733768051189687963007400420933867887165424386457672876388426505302464=2^6*151*1451*1811*396916131925816742227457361354960959*1740000013916584113760412724874961651999 42 Pedersen 2016 17570802191002704861853195799587161420242724593662098527781711611826363806162584220096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1744011815485965048066838724743423382849 17570855684012713040566680219761506750486783669575302957824509901979079576566042979904=2^6*151*1451*1811*396915797781436154316452312110293599*1743218165723226324217275246382353893249 42 Pedersen 2016 17713598536439256357587982222064816773293580977119942455426233712432790350667599754304=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1758185244276659857450136012586988315751 17713652464182195482403313306781598100890210373589533567791015981051369655945511029696=2^6*151*1451*1811*396914340705008983973194678603942751*1757391595970997560770915791859425176999 42 Pedersen 2016 18419968726010981829811345756311359055572546256848256196403464385054932338839389322048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1828296895601888790720930677667925370987 18420024804245811392504124906698039328382447001218015344151756975249683720162521973952=2^6*151*1451*1811*396907465484616039535915835741051999*1827503254171446886986147735783225122987 42 Pedersen 2016 18428441346561234878847103078946886702980943261979585829838580902000786435605627276096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1829137856087764437645123670345522253099 18428497450590332168386504528331448848291395963733340038811555568717448445800887923904=2^6*151*1451*1811*396907386220103226954598220089211999*1828344214736587046722922046076473845099 42 Pedersen 2016 18482201046035470101447785677541482771487996049931458609057224330698958572710180418496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1834473841893127967967468238899431187449 18482257313732003331078124443127677549719577998073116792947735076027040767475649981504=2^6*151*1451*1811*396906884972723310940235216238703199*1833680201043197956961280977634233288249 42 Pedersen 2016 19249216384164600563162738844426252859578076022521147786848839079171792891613267081664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1910604902832459456829178503017993655841 19249274986982701547846042527044350966623322274313130207735392619150692093937028982336=2^6*151*1451*1811*396900038564043155563442005397407841*1909811268828938125978368034963637051999 42 Pedersen 2016 19483919495410607680116495215719781380563942025211882573446475847074631505115034354496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1933900651922045817450935634168589402699 19483978812765002588945993624421712460159906741515145399392889367149989382846924045504=2^6*151*1451*1811*396898051369071191662798552220674699*1933107019905719458564025809567409531999 42 Pedersen 2016 19522250415025861817381787612011036781199073979494014849765227673745908772918446609472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1937705235001449950385433823366849607143 19522309849075911501235079399443453690146365628653394677358164183879424691586745838528=2^6*151*1451*1811*396897731368864131868435981433051999*1936911603305123798558318361336457359143 42 Pedersen 2016 20076755011293074468070185310010766464388985719851217161761395496787844431478879621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1992743278063962322754850711988785821999 20076816133491428097424140785081094543256727369973273142078925696784056638909344378304=2^6*151*1451*1811*396893238941360292732885226105547999*1991949650860063674766870800713721077999 42 Pedersen 2016 20104874031428628524352827614605690537910665780005469156918665152490412333560774636096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1995534266365077304413008387043887655599 20104935239233262913136017976340951264184802548057513804758388103268998864391020563904=2^6*151*1451*1811*396893017735364433345088665056997599*1994740639382384652284416272329871461999 42 Pedersen 2016 20455039678366954166687804117906225682784656726185752457900805908202962256494217974336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2030290392977807478507674039718268058159 20455101952225047730136626553817417860623127377700632139815112264149641884365460745664=2^6*151*1451*1811*396890314034496212689992323530901999*2029496768698815694599737021345777960159 42 Pedersen 2016 20493241265578891210994244550632129365235864590745915045187479073860871874766120699105=3^4*5*11^3*79*601*473861*58309019*2182799234136439*13276252904090562307502080850261533246752368009 20493284864407303404930500324701928966333471624587787533575306025792639224705300740895=3^4*5*11^3*79*601*60311678900423280464410234559*13276252904090562186878851360642627629762323849 42 Pedersen 2016 20603304114825269442904390405036862932542733775296985315959272356548259528766600053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2045006563940797185611896485985999736249 20603366840063493355941705264965950644373153769349100600929548741332438424288759946304=2^6*151*1451*1811*396889196964710476222740748354400249*2044212940778875187440426719188686139999 42 Pedersen 2016 20903430841396973725279255073736692774638249406385957686780484240910997413856562696896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2074796015304161932736082074003108699549 20903494480348858158781872037370866008077044988957610506136550332922484702734310903104=2^6*151*1451*1811*396886984250762633830204712790390749*2074002394354953882407004843241359112799 42 Pedersen 2016 21012622387018843294100157572375570708196459059261492192751492133871000036299304104256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2085633957911769654451837139928111997139 21012686358396326699407411641255171921196885356297959101602004720320796653600594775744=2^6*151*1451*1811*396886194915864941210409378717349139*2084840337751896501815379704500435451999 42 Pedersen 2016 21040367683120000045301283844386638324809406040073536356125734414837571663979778821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2088387851769236882056844793390106871999 21040431738965988979573402422605654653375637960058372034552212060370266429410045178304=2^6*151*1451*1811*396885995653959671053031245777907999*2087594231808625634690544736095369767999 42 Pedersen 2016 21342384295246731845872585955103304869511541688681377346741123561208058578671320238656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2118364886072871253398061936983451548239 21342449270559998341564824525732903824881571155892189075013323746953622668829909841344=2^6*151*1451*1811*396883860155642725813165438284150239*2117571268247758322977001745496208201999 42 Pedersen 2016 21654417031984835814779237067389291875739207405424365645955364854244539878694897413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2149336083276851609423292842726890919999 21654482957258731755031809601374235981038689352989547213059352835305898732105742586304=2^6*151*1451*1811*396881716434133983123119931327059999*2148542467595460187744922696746604663999 42 Pedersen 2016 22005041483449646868791562884705629196758607991897871591693370400835749919822519810112=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2184137749103243794413504242137062905303 22005108476173798490795210233791740925519604191022922462756197961171353613396431357888=2^6*151*1451*1811*396879380160038373249322257744926999*2183344135758126468345007893830358782303 42 Pedersen 2016 22446670035706441983590931478720689334098167510470160170355539265221265883771250607936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2227972140090025410325072488341741424059 22446738372936115263969973469140576389014578041185806363300953782560488935581560912064=2^6*151*1451*1811*396876541425275299533533497880638559*2227178529583642847330291928794901589499 42 Pedersen 2016 22450103872088053730123671540952770420157318281935273014567825251751598845708314423616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2228312969789027030441875742787627328979 22450172219771788352224698916574576322318199896113049500644824019084735500190785736384=2^6*151*1451*1811*396876519790797789385007287703568479*2227519359304278944957243709450964564499 42 Pedersen 2016 23275580560019537827910164164834617487292288303850989000863167294171799947477396300096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2310246684682130249713842789395701934099 23275651420806103443591175006155441160088952939946746942167225550213244828647070899904=2^6*151*1451*1811*396871504284766730410156280913813599*2309453079212888195288185607065828924499 42 Pedersen 2016 23635221864258138752396638834610103630846748245869924784449497177126785807702693319232=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2345943329440334627167173448818313441583 23635293819946102600258298272582651495043821887060103440105990465932508093026519608768=2^6*151*1451*1811*396869428766605804401841835149301999*2345149726046610733667524580934204943583 42 Pedersen 2016 23639581028249678429369692152978266692969892908100517691499460378489739182247396613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2346376003681626755301684419366580719999 23639652997208795209914680573707773428585532665921609748859768139741657248354843386304=2^6*151*1451*1811*396869403997092088457009456147459999*2345582400312672375517980383861474063999 42 Pedersen 2016 23947276545857476840767731438369660590802787823753825865231989738442652427082230108736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2376916704808798623094250761427033171759 23947349451572879643015403172300325550602799666584399603533362169849767838386779811264=2^6*151*1451*1811*396867678413021904507329196465323759*2376123103165428313494496406181608651999 42 Pedersen 2016 24315726373630369077404915176553643813409008956920735890276676081410604265431149893696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2413487650521153892094780578441649414999 24315800401064069673675804883204692107177223035562222807685787068329846855984530106304=2^6*151*1451*1811*396865669599108323448509724113294999*2412694050886597496076085042668576923999 42 Pedersen 2016 24381545387567465866366392577468353477780409419526477569085130291021085534504098463296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2420020598575666227837064490646012902399 24381619615382294938857958919944461172795777987174046100929825035003489796556842336704=2^6*151*1451*1811*396865317144052088251330623888614399*2419226999293564888053566133973165091999 42 Pedersen 2016 24593676926938314533746125151117409199513005470276257001372399295750693711806858934336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2441075978237809810631488368589815923159 24593751800571953428465784863807760466749841770408180741243077937694475804010899785664=2^6*151*1451*1811*396864194042626401355295239710200159*2440282380078809896534886047301146526999 42 Pedersen 2016 25716099753549639698993032930719601066221838984156808897665214605993375225715237372096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2552483451288964622420292210446397133349 25716178044316705095595221928035347795918905537518933236043325045126380622995085827904=2^6*151*1451*1811*396858560063164833717333796336155749*2551689858763944169891327850601101781599 42 Pedersen 2016 25803364261250270503122987927547325742831065740760584746645963831322538449479697474496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2561144998488010355377075573447194651449 25803442817687686806011434818827982652686398509724614083331616111279710354936020925504=2^6*151*1451*1811*396858142585152042869689839697923449*2560351406380467915638958857558537531999 42 Pedersen 2016 26054844695951305689335299579097614491318473195731291761004040056480866249246818278976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2586106001674690902702179629035403432319 26054924018002338495860690162762301558870758374921671729010371773983508411048411161024=2^6*151*1451*1811*396856955138397150345637501934351999*2585312410754595217856586965484509884319 42 Pedersen 2016 26133387849949742937215690916534956641349470213134384962299232176744339407934931676224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2593901900069640125804470370892461540231 26133467411119609206208057294016908686887412039473482895749850762600813752674815267776=2^6*151*1451*1811*396856588956940309173835199017676999*2593108309515725897800049509644484667231 42 Pedersen 2016 26667874959807114841203539290462979436407986227293965973528454719684437107290693036096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2646953082632808400863951096442637880599 26667956148183525583354239766616683133300540831737319825957815249531392710424302163904=2^6*151*1451*1811*396854154395564653121181875202086999*2646159494513455548515582888518476597599 42 Pedersen 2016 27219067247061702351851252366320648013779187575823075886876479345048312484993920280896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2701662358346410721097248327015482989299 27219150113502336800225515400182251522429926334274314156384122815568780632277785319104=2^6*151*1451*1811*396851743928817290598109686992584499*2700868772637524616111403191279531208799 42 Pedersen 2016 27434446359799723032364557970108357401415625975566060264600743463145315792775623621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2723040079940495563618950952344631196999 27434529881946164649131529187138177366796500821892929375956543695351262870124600378304=2^6*151*1451*1811*396850828365581081901836395008347999*2722246495147172694841802089900663652999 42 Pedersen 2016 27465202046860490327555673709349389186731314460805700578458291272034732787203553186496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2726092773895176412692330943196711041949 27465285662640350490943412376335850407149045341202334697626177394470569181428741213504=2^6*151*1451*1811*396850698797233602445007485802550749*2725299189231421891394638909661949295199 42 Pedersen 2016 27731550616152385981793671971796097486165904302303987316617297992409160310699933507136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2752529532264734953255919125834217151359 27731635042810800687851606012543372439890414764395525751896363697746658098811879612864=2^6*151*1451*1811*396849588743847291589796791315151999*2751735948711033818269082302993942803359 42 Pedersen 2016 28071911677046515255326983640469477772122082846999530902164225791129890276941165727296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2786312492500588883725821830856819518399 28071997139909050802664211536648884049655772691334648419651557324126464102801247072704=2^6*151*1451*1811*396848200901692124517588309122330399*2785518910334729903906057216498737991999 42 Pedersen 2016 28646298356368069070158253389714296537180821855440074378372393166565611622690607141405=3^4*5*11^3*79*601*473861*58309019*2182799234136439*18558094193911943931064040285595176847577165349 28646359300609660641765651461514563594794554062000084681414993468346795011984183258595=3^4*5*11^3*79*601*60311678900423280308451814949*18558094193911943810440810795976271386545540799 42 Pedersen 2016 29079146990565017077519594322116699956502368998631334890941811095711162597468434696256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2886286885738620820524433099030900607639 29079235519881099875307902491398430982379865029205296801114660044125753204818280183744=2^6*151*1451*1811*396844284250173091250906075939084639*2885493307489413359737935166906002326999 42 Pedersen 2016 29212432232493967126603858647441364051047757448247588536401108591363862993457847456064=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2899516278126466549785456256714925860691 29212521167587128451788155965670733076214811425293609578608855544868633705625299807936=2^6*151*1451*1811*396843786211489942944091897729612691*2898722700375297772147265138768237051999 42 Pedersen 2016 29830711881132400709353913754106880657816490484604079947378685485937807791607593772224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2960884393297217614005007514246632232981 29830802698532304375796564502221346690176585859461705290314077772779827973201961171776=2^6*151*1451*1811*396841534153894837400744833877051999*2960090817798106431472359743363795984981 42 Pedersen 2016 30573946345551645339726231361710344904982812415294849840401724961914332899100749422016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3034655054052096644418246669729469677329 30574039425674002506919159239578201312263377640275240986131037323832195124277953937984=2^6*151*1451*1811*396838947557567751788420271720251999*3033861481139581788971211223408790229329 42 Pedersen 2016 31281159105975113591308976822200242640486545520714910970339741409629885647684589190976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3104850335794699232266736386083585497819 31281254339154505947024575081174574393742730878399712117746753464750840027796816249024=2^6*151*1451*1811*396836600490040196235464709624449819*3104056765229251904375253895325001851999 42 Pedersen 2016 31354835372282246643182561281205255342407531452573332528070367681415545811326455576896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3112163165201334191483810948818319013299 31354930829763592210278534708118001413571689795959957964067202308389457358698658023104=2^6*151*1451*1811*396836362068310091960144481093832799*3111369594874308593696603778288265984499 42 Pedersen 2016 31808211655532277592491222433862753510336980681157557250318781771793792317505968649216=2^10*2687*8623*1448663*3962626379*220136910613*1060888842130752585919546968584244834580904417309 31808233620647338673300790445803523072007797979328496971733364519687361805641783593984=2^10*2687*8623*1263699057395745129618191039*1060888842130752585917019571342098318239968333469 42 Pedersen 2016 32216412935015286376193481252039328396921623909791019756708076872263286005663505935936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3197680117303466604328342910429421418559 32216511015505910922066327576579730743683665076811189461261423097340560605010649584064=2^6*151*1451*1811*396833654911426011191823932416570559*3196886549683597890621904060448045651999 42 Pedersen 2016 32484347372004159150114565099515312425366357475751380457021888952422417854865663562816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3224274282942839032640719529328468866279 32484446268201395356589527136099723400155048842080440210564628461497333750419958197184=2^6*151*1451*1811*396832842320103515078717085190376999*3223480716135561641430393786194319293279 42 Pedersen 2016 33286061265659233475642063210793163951950686436058438106307987934177109478739897726016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3303849392148135808018418056889195647079 33286162602615227921797316439123865469340585307805105226479217863440988869418197633984=2^6*151*1451*1811*396830489045372583166708931908376999*3303055827694133147740004321908328074079 42 Pedersen 2016 33580796207949666695698276266354944856220550843891836592678910723864873322488766737728=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3333103675259597787645757148070597175907 33580898442204432496492173404407924110651524678119028165517471650060401316832233198272=2^6*151*1451*1811*396829652166185205488234432500365407*3332310111642474314745021887589137614499 42 Pedersen 2016 34101020500378343891034046112598847797215267951678816031907742957918189254463189847104=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3384739184147349014498324243315329298951 34101124318417559535255983361788136265005390866737268489542406754463405549692935336896=2^6*151*1451*1811*396828210339496890290550650073050951*3383945621972052229912786666616297051999 42 Pedersen 2016 35098944804634582025022501583839250690843209676533060300118746502430757067274129247296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3483789401585609998701084099591502523399 35099051660780664657848417938996173829777727886468213155632386406900761967421243552704=2^6*151*1451*1811*396825564215148239588674372310210399*3482995842056437562766248399170233116999 42 Pedersen 2016 35205752234355726662776717800891095368353404309946960846317219463351449140878342445376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3494390705805558826319309776665454266419 35205859415669143428284473748174727681758486408058108911733518077473411363010154194624=2^6*151*1451*1811*396825289891614928213517282659405919*3493597146550709923695849233333835664499 42 Pedersen 2016 35438548764350455966008397767646001000122633702313326236195416497468471890544272159296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3517497214802788153191577807991732276399 35438656654395720800126265035681520586099076482306268621277121226094294587593276640704=2^6*151*1451*1811*396824697710145761815931596069388399*3516703656140120719734514850346703691999 42 Pedersen 2016 38762378961581994249354031414125772667747461866366643829693626964798118044549532076096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3847408113214082890812653738234725640599 38762496970782894279133845130350742249268667385102308696708258389513924125247383123904=2^6*151*1451*1811*396817018673063610778136240269211999*3846614562230452539506628575945497232599 42 Pedersen 2016 38809449040124380520091163506067433547933462627282144576086342374209859687990607621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3852080112377320264391278924990224071999 38809567192626659461469657119929941944047785014063556486648834384218768290941616378304=2^6*151*1451*1811*396816919375512133204557311840147999*3851286561492987464562827341629424727999 42 Pedersen 2016 39271477811077573652509137407571844628797697343992546871888128173448891881550809345088=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3897939352432360926472413812114621242247 39271597370192333913686356146585465792804655015632288658139639101621788717776815870912=2^6*151*1451*1811*396815957333422087773211752820369247*3897145802510070216689393574312841676999 42 Pedersen 2016 39313271775001276090357885124219259033418585353896764376239814115808777274727986424896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3902087664279856130866473314370113137799 39313391461354673845096904683166006780769409257158578640624967223099722066947431175104=2^6*151*1451*1811*396815871425110351751532453920569799*3901294114443473732819474755867233371999 42 Pedersen 2016 39610217763458865275192345065624116355945619406908221375354104880466161916670927880256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3931561407527411356497877898367045203639 39610338353842401197679048168526301024089589507995001758747295654314042439925418999744=2^6*151*1451*1811*396815266268246904749883871495451999*3930767858296185821897880988446590555639 42 Pedersen 2016 40765271807165249018608129960195135564192877064518690886353255289957210063511335173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4046207732598459185860999590584007359999 40765395914025542707547748282404141137061425813873604578045418001263118063853784826304=2^6*151*1451*1811*396812996210364109606709468754083999*4045414185637291534056145855066294079999 42 Pedersen 2016 42950795959540735424197488395225856210721559629060420088002364835781337964666420539456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4263134649385704816070369020113028808439 42950926720067952527891554610698604691243015083084613187318372529025547590909407940544=2^6*151*1451*1811*396809035108422625075612621662160439*4262341106385639105750046381442407451999 42 Pedersen 2016 42980199877295163654642600859538458231657372167255528411643676558464806375623635013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4266053171797365632915470792848567194999 42980330727340437453705616729297478861968650078756747428385828245631360962101804986304=2^6*151*1451*1811*396808984563104592884118895903259999*4265259628847845240627339647903704738999 42 Pedersen 2016 43105628946639721642131285393236168043641517581885114191306422612495016541705020373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4278502790008555243213924620399330378749 43105760178544536561103173942229602859767422506748629187156807663872849419589699626304=2^6*151*1451*1811*396808769725288624311355761959483999*4277709247273872666894366238588411698749 42 Pedersen 2016 43282898326558269443878537372349510703136909174645239210411110330104582520109377239616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4296097882693630604684504024090282670479 43283030098146623625628325510085050619853698325059136502828667482233750953368090920384=2^6*151*1451*1811*396808468218216798397169838545472479*4295304340260455100190859828202778001999 42 Pedersen 2016 43485314219505264749241742624152764787098393683199734001320066478452013848004229898816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4316188923791484808338249141008418775279 43485446607333860527504765797921757780779143672978387887130643946513855865732719861184=2^6*151*1451*1811*396808126947751690596330125183501999*4315395381699579768952405784834276077279 42 Pedersen 2016 43883012903299193646401086780206848653662183544763028255688985422241632667335334693696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4355663001070380396013016192829813427499 43883146501892069915041697678070628496564545661157245424045372944387899891910745306304=2^6*151*1451*1811*396807465605149177023648343173211499*4354869459639817959140745518437681019999 42 Pedersen 2016 47009635771633565509968995183202577609452969579274937176265613673748641095991611973696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4665999840883872546826982273707508434999 47009778888998924076213265383621515385545185300093053325078024542988069340019908026304=2^6*151*1451*1811*396802656164270519023456949412058999*4665206304262750988612711790709137179999 42 Pedersen 2016 47307660125393768852732854350827553084668824688974466878237259468204817756133722245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4695580618620162282858052715079425777999 47307804150072269134209394140843892517559030465481354683481233922193697811225253754304=2^6*151*1451*1811*396802230931016069896614827490155999*4694787082424273979092909074202976425999 42 Pedersen 2016 48384384008338010439683574076037418709098396611673789191700309156760809304335064940096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4802452186204722509870386161544084281599 48384531311022877207634563940226559643751397712353676733855696479248916733612122259904=2^6*151*1451*1811*396800738279822109001542289972473599*4801658651501485400066137593205152611999 42 Pedersen 2016 50314688134642181128354618855053040587590661347197488818510361594214558624863215698496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4994046922014771107841643491761544601199 50314841313995444976763897366751377439593729422781910104848133592700852788072054701504=2^6*151*1451*1811*396798222284515572868362607769023199*4993253389827529304573528103104816381999 42 Pedersen 2016 50993642509007240757699722101422355000108064663467266332290153502336038857454588632255=3^4*5*11^3*79*601*473861*58309019*2182799234136439*33035501103843534287311983448530468897762176279 50993750996632065495878484977535225867131522320612100477980827656212776248392379687745=3^4*5*11^3*79*601*60311678900423280136657464599*33035501103843534166688753958911563608524902079 42 Pedersen 2016 52519083248900981491906232943359237441117960421972050097691513997587208753015747404736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5212846899584121342393298587656831102009 52519243139372418954960003693450112107890271230703057415602698540393125608742670515264=2^6*151*1451*1811*396795575289459878524815513853808249*5212053370043874594819526746094018097759 42 Pedersen 2016 53165767683513090196700252235539500023402873492930308070976581189868944222160993436096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5277034367099514131060720163059371886849 53165929542767543756346677756514220102409158930744877035297895229550110030053201763904=2^6*151*1451*1811*396794840414852105590367035867478849*5276240838294141991259882769974545211999 42 Pedersen 2016 54048333180011993848636473002942184799811704858976716677385780772580470882948188853696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5364634502659772692347634830483853811249 54048497726171941186133866818793226667733049088432267195655705537006439304129571146304=2^6*151*1451*1811*396793865874551626537862194679771249*5363840974828940853025849942240214843999 42 Pedersen 2016 54058141041792162180795958334898024385839767613121198237671701332379653298536522911296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5365607994173895227542041671743167614399 54058305617811420587996881088165427550498957444710139413628226099665239065787521888704=2^6*151*1451*1811*396793855223400180144370815600026399*5364814466353714539666650274878608391999 42 Pedersen 2016 55999019384028966378027810622399052769857833549533904137033285544386364127819523907136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5558252286932200630542763306352894751359 55999189868909041572207409778973121356463590911154302066824106289158621540111489212864=2^6*151*1451*1811*396791820904366920383904677815151999*5557458761146338975927132375626120403359 42 Pedersen 2016 56311974383437612000374309074678812190563797068357555371168530684060799523795483779136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5589315024464102377591285150629056994359 56312145821086077248400285258312736948556160098328592168856053252209716470183785340864=2^6*151*1451*1811*396791506014172147213614495432026999*5588521498993130917748824510084665771359 42 Pedersen 2016 57446521983806396109936365161299391394635356603742702811089211775883690260530475619136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5701925957008070240327104507446150766859 57446696875501266385479340277652142065719376303564668134962361447193789371425113500864=2^6*151*1451*1811*396790393221381888566555165968918859*5701132432649891570743290926231222651999 42 Pedersen 2016 58139705550925858937654125363740669907349912510606182436549122894737690007475314943296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5770728753728193282969306791000679584899 58139882552966921171003873697394140821563912617314362790574463922104990105272665856704=2^6*151*1451*1811*396789734707615199711181710532296899*5769935230028528380074348583241188091999 42 Pedersen 2016 58304081858823063202452862852188875243579686081998379731787332947611456650763666206656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5787044128521125470547355607858585796489 58304259361295658832447622490139176028586415002795315341392003663146009570537627873344=2^6*151*1451*1811*396789580849904201301736887485858249*5786250604975318278650806844922140742239 42 Pedersen 2016 58968705606055202189350590535388024423919332848119319118290206943219023059618053176896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5853012184812769452760506881550093100799 58968885131925726717956405010616206952145156881410394599612968914912236826611860423104=2^6*151*1451*1811*396788967503429182428291656723171999*5852218661880308735882831563844410732799 42 Pedersen 2016 59093176781205854129680550635397715532604642570422502794950218061530173923218296056896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5865366726044889035966840604826972945799 59093356686019681626721953478208696016300408550937237631569859645442482343245857543104=2^6*151*1451*1811*396788854169684513491005295790171999*5864573203225762063758102573482223577799 42 Pedersen 2016 60639053447676108488986053526743954575511947344016989860712918277024031423132443642944=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6018804636408976234110638541367704635911 60639238058797314100345991804210753452121429429779012379095779433071955675325049861056=2^6*151*1451*1811*396787485394765803362910047397762911*6018011114958624180612028605271347676999 42 Pedersen 2016 62820577736260668249142049868369955015042490145675119623286181344666728818182585102912=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6235334541743023524710267911359334563503 62820768988871507276001116582935192359462675350181283986255920359800942302428980465088=2^6*151*1451*1811*396785668426131317357243003779301999*6234541022109640105697663642306596065503 42 Pedersen 2016 64421400250992979309526645320259580581566387961252861631074908209756342231915117025856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6394226170585029424791294622400310785039 64421596377189774801277383008757152926954518175397951974019579094265949505989338654144=2^6*151*1451*1811*396784413414442456097598136321451999*6393432652206657694639949998215030137039 42 Pedersen 2016 64455127257822002172302074310731286652941368966232615019714410447835415832719391775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6397573786577252659378244849576200880399 64455323486698179870897558139155984482803036499714285413908487481564454939082925024704=2^6*151*1451*1811*396784387643829968185716926597291999*6396780268224651541714812106600644392399 42 Pedersen 2016 65320351302404563393678370968960480923091822097396530030695023394148789963008938802752=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6483452674768664879626748191823828926463 65320550165391464840087964803300219406353022890193251672268943294268001628680187085248=2^6*151*1451*1811*396783735631129121179662855294178463*6482659157068076462810321502919575551999 42 Pedersen 2016 66140298624217654379990181477900306057401684894365187274931061192877515492437981752896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6564837565553580068281748890517923444799 66140499983473639908780383571267461313753535898556061969138822021576548440078779847104=2^6*151*1451*1811*396783133483907399907651743844676799*6564044048455138873186594212725119571999 42 Pedersen 2016 67012208834227776322580638970317847919982819901400043822273736040812518685555132997056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6651380097406744434657203086944496899089 67012412847950022599993539134493005042866552663089921990854166590104187141110180282944=2^6*151*1451*1811*396782509345277107060981882774251089*6650586580932441869854895079012763451999 42 Pedersen 2016 67098295947730914344718688126013282678618026967108219867765009430645270434419397732288=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6659924780880981775825139980111474160297 67098500223539021821834976357633608948806577803325809965479707923370809003628253083712=2^6*151*1451*1811*396782448601613390902297342013912297*6659131264467422874738990656720501051999 42 Pedersen 2016 70860134887880319319328707047608219164654232788352581365961057567202322074979188453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7033310781602976496775168173786624492499 70860350616329341370699043083626969757699233753585164201206841705197925199999371546304=2^6*151*1451*1811*396779938387475265782548514834939999*7032517267699631733814138599222830356499 42 Pedersen 2016 71296623534695521592886826999880572413537259323845881722117625460144988400751154533696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7076635004885223333315832691229565762499 71296840592002002667848112590503434646087133418816292633585807449468946641815245466304=2^6*151*1451*1811*396779664279619787785312549105403999*7075841491255986425832800352631501162499 42 Pedersen 2016 72406110854937985914126414004199429744736615991160668272186951953755434161289789058112=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7186758548170317768017479480486382567303 72406331289996699386772934819250171818413616313894681481890169074996689446702666109888=2^6*151*1451*1811*396778982418296012133938658709694303*7185965035222942184310098515778713676999 42 Pedersen 2016 72446678309112858745047656301479652478553495887935486534179056428192802651343758252096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7190785121267896199844651286882700384599 72446898867676191334857261839462260005811740566555850428245130684349419590544804947904=2^6*151*1451*1811*396778957882463766860581476614376599*7189991608345056448382543679357126811999 42 Pedersen 2016 72666364861664381569463516653651770637114489148302993291575035061448358411627402672576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7212590383155678566711357685949817831969 72666586089047203819139401604837528298359867420815374778601161651530608647997439567424=2^6*151*1451*1811*396778825488543775377791544705851999*7211796870365232735240732868356152783969 42 Pedersen 2016 73622814873309543443847766791743565707102602657176582821054417762350297525436380728896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7307524018119994373801109667225776388799 73623039012533810898341225949485687197707329706739741029827193203977456314026428871104=2^6*151*1451*1811*396778258294377634405706456055220799*7306730505896742708471456934720761971999 42 Pedersen 2016 76381906672771839452913114225135724602428002645843307669891054531206386652627853684288=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7581381104778032678968488100568565642047 76382139211847385052029782840836591492893986984274741350704490177451278090495893131712=2^6*151*1451*1811*396776701701346612331754826730394047*7580587594111374044660909319692876051999 42 Pedersen 2016 77796282741032604901065384226990760820692640764886372684385393738392968066303194358336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7721766759785318000738308082749835954159 77796519586071666129742207552118280376593154381501935788888052166705807836699716361664=2^6*151*1451*1811*396775946568073069203346192330856159*7720973249873792639973857710508545901999 42 Pedersen 2016 79943557704614726432963194950788288261467889947213672579066670862119076105892194245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7934897205787493859327850634881240652999 79943801086873879754379425359643155993462080374322578611240410486125367562522781754304=2^6*151*1451*1811*396774851224527693497957263226900999*7934103696971312043939105651569054555999 42 Pedersen 2016 81315744976464063103043917524112108714864715042871185121917390023935416878045663638848=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8071095359357859024043991065910346085187 81315992536246056202283010525372193593366333847922558105464935269080822324186814057152=2^6*151*1451*1811*396774181559864976654408972941051999*8070301851211341871372089630888445837187 42 Pedersen 2016 82060525721103929775600236671396754585515165546888649500778873826184824973109983567005=3^4*5*11^3*79*601*473861*58309019*2182799234136439*53161736535346912107500520897899984546714737829 82060700302700562716697888768112519175282656769490327122167720139093419026578187952995=3^4*5*11^3*79*601*60311678900423280053286493349*53161736535346911986877291408281079340848434879 42 Pedersen 2016 83002199953301286145403132149153824721637693594185622575450212365547548167429328453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8238486544684348806590893418290323554999 83002452647370944294509674211918929406562394655025334153441251911173936742269231546304=2^6*151*1451*1811*396773388857389671388237326174314999*8237693037330534129224258154915190043999 42 Pedersen 2016 83322625026342353920579146258898821867000584000022552927788974200644120158700025221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8270290733661430754562577756927992221999 83322878695922489777652229091710760465056583469468258780266089695642954155796998778304=2^6*151*1451*1811*396773241872695343292621596496587999*8269497226454600771524038109282536437999 42 Pedersen 2016 84398516972825233793438943088132404465812654018450692704632877947655438006191152402496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8377079726358255271759589667530554702199 84398773917878967002713310774724220340921902549007664004419601823081751151046709997504=2^6*151*1451*1811*396772756508173565069522139043106999*8376286219636789810499273119342552399199 42 Pedersen 2016 85499567693649859032617206244337065651348916411898494480367373024675355832157068383296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8486365884479753272896780496049740007399 85499827990771220590903795941941807635839040242030872227694019268174785115444032416704=2^6*151*1451*1811*396772272442674703062475281232091999*8485572378242353310498470994719548719399 42 Pedersen 2016 85550650306577244722172035312094930747355591699393277588814432850652997449625600867776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8491436152731755759384564346660491770769 85550910759215849879490009024343568890367494160343375086071025938307728023951650972224=2^6*151*1451*1811*396772250287224611129150660049191519*8490642646516511247078188169951483383249 42 Pedersen 2016 85756311675124783752897198370466083523672739425591552925934936009152023910450655917376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8511849327545116588983592057526709284419 85756572753884241357272504260169934149173606864596688908985197149004373215178896722624=2^6*151*1451*1811*396772161355270069469039348057851999*8511055821418804031218875992129692236419 42 Pedersen 2016 87014975193049638218889692609803078108483270270419915987518828508976296628044401759168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8636779539786997664797323478588978833017 87015240103717248301384413809832486227128747936796493896562911835868550270521915296832=2^6*151*1451*1811*396771626245290889019976041598585017*8635986034195795086213056476498421051999 42 Pedersen 2016 88147014122895438820101998973556020067975835344504699133763209295210979016928555346496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8749141471119428075293576972328130613199 88147282479971991739463354784392041292396329035558870855668696847888242392239419053504=2^6*151*1451*1811*396771158023514011037411380612331999*8748347965996447273587292534898559085199 42 Pedersen 2016 89322889392236144757088743217369425873092688936653525896175462750541958792216625869376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8865854432825754361252810761983975359919 89323161329178139643654587385350867725581986275121413013164700872390866901961022770624=2^6*151*1451*1811*396770684238637058385396529644101999*8865060928176558436499178339405372061919 42 Pedersen 2016 92165167839591517158441164988700426248216445702661183570719762286323002040202394775616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9147968313638045037554891536199622879479 92165448429640397982528233875814210680221963802825929159181736790328419045624001384384=2^6*151*1451*1811*396769588959612924226674313524251999*9147174810084128136935417835837139431479 42 Pedersen 2016 94321785951791724331059727423628469881696880945097004501687525868350749397155390028096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9362026125471709597773154060476532466099 94322073107505223405666301358781198383324034321556019962738010538062241633413621171904=2^6*151*1451*1811*396768801951781505186695394936858099*9361232622704800528572720339032636411999 42 Pedersen 2016 94932769732069921069961230958837305013489717931511474912044304962708932359979333093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9422670080158143175652022273280271152499 94933058747878429921199745267392054809579244403955367257124241237695229510869946906304=2^6*151*1451*1811*396768585488366527944264588771323999*9421876577607697521428830982642540632499 42 Pedersen 2016 99507548751075488269426504303785016419734522725439740843857513685884809400805025062976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9876745459053959989946454702351605803319 99507851694460961943666874464920567958259275237080584414316251171116072430772636377024=2^6*151*1451*1811*396767049181206774313727109391226999*9875951958039821495476893949193255380319 42 Pedersen 2016 101294709892957849392364216995433986923591010252334318141082073543379830771322119496256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10054132359989890467274340308151166182639 101295018277223472402896462192656085853780657088145386113947837532951359944794995383744=2^6*151*1451*1811*396766486713506929751968000001534639*10053338859538219672649341314102205451999 42 Pedersen 2016 101668147149956465177265158389610735656526140268152435364499528886188032924325769330496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10091198339190416005972371984801132596699 101668456671124246034796828269263471487917292629019642538132929634196802529910237069504=2^6*151*1451*1811*396766371680750665165394573274031199*10090404838853777967611959564178899369499 42 Pedersen 2016 101716502027334314525489164052049783786521591079942946109780567889522888678643953106496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10095997862659328938819238794784330803199 101716811695714949491757380247907010493480000120663169810679733406641333189168501293504=2^6*151*1451*1811*396766356847398659018290540722775199*10095204362337524252464973478194648831999 42 Pedersen 2016 101847658066027406913778517938575673468711690832438428792832690822812910804240446662464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10109015918332974552093034667076768767291 101847968133702918356161158250714412252863062972681417446279252424755887365045887801536=2^6*151*1451*1811*396766316684867146780763675837051999*10108222418051332397251006877351972519291 42 Pedersen 2016 104403836487087721458522153365902011702343584894354749980778479683188403660765411799616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10362732585355850177975327535969495810479 104404154336859711710943772969124584688889286998105914298781021749879974749282936360384=2^6*151*1451*1811*396765554083476142088734759490501999*10361939085836809414137991775161046112479 42 Pedersen 2016 104615365634029008707980968637562872895208573127234566479759239579196128420587668650304=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10383728173808503486674771835536407427251 104615684127785869505806968207442195311433330841789804011017761763999175747111650133696=2^6*151*1451*1811*396765492646354076904504882343366751*10382934674350899844902620304605104864499 42 Pedersen 2016 109761461577653594769886382526331873782523641342706420955773496089018611722236298645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10894510324318474655690776225421920971749 109761795738319616739515247602714703219323405838174714731687278945662987884069877354304=2^6*151*1451*1811*396764070963696490460515449286715999*10893716826282553671505068683923675059749 42 Pedersen 2016 110328686000534978505066416051236031697875066688404371954043227138016304141553523621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10950810889584862642448673687230239009499 110329021888073877434999343739389525738901077207867312934557069096581121440546700378304=2^6*151*1451*1811*396763922375551176296590025468027999*10950017391697529803577130071155811785499 42 Pedersen 2016 111744614172920127138552617572236446482751870842652464651275161716154249895587952989504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11091350600616589173891028086998146202051 111744954371147808111999173782405582018454722324654421825325392199402071379427487394496=2^6*151*1451*1811*396763558047255858054844983811114499*11090557103093584630337726215965375891551 42 Pedersen 2016 112296650159810220163736788440407047337696870204088328516523046021158938954671599397056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11146143618786400822744350857086413811589 112296992038670706092879028938013756099457896800290383800783192097853683355660913882944=2^6*151*1451*1811*396763418494028033861907380691163589*11145350121402949507015241923656763451999 42 Pedersen 2016 117692339409004854096122747305893768899518861541140948274130226654561831705094249493056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11681699463135077811014361472830267441839 117692697714642892389232019365321898404514158039049286895338602027627629206462071786944=2^6*151*1451*1811*396762123417373115696442695173451999*11680905967046703150203418004086134793839 42 Pedersen 2016 119209545060372307167338332129022716874830689782976327350682114380261220310925027655872=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11832291596251335863653651041261522067493 119209907985030934891655396444678347599113133476362436116547705152532854531279671992128=2^6*151*1451*1811*396761780376334995219522821333051999*11831498100506002240963184492391229819493 42 Pedersen 2016 119674800062019211490172823719632499176237704834958504437966577563382416688618400863296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11878471059844730223855809428658409127399 119675164403112341686843485453284693836360085798459146138932325307252048589437739936704=2^6*151*1451*1811*396761676924683354723969517358216999*11877677564202848252805838433092091714399 42 Pedersen 2016 120033820669836772387281420298961466982534682214403047244039473205083140331613860437312=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11914106096608014599055959342564225789603 120034186103941636388646502272557307269543046463774967835523003910888454842880636330688=2^6*151*1451*1811*396761597643001131609125420391979103*11913312601045414310229103191094874614499 42 Pedersen 2016 120544682972948942227271184920738059662169433110049377966461222882615731427669351609536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11964812369607332524247021949226717450709 120545049962336370798958789566029821980652624322122585560474147358215001767131856710464=2^6*151*1451*1811*396761485644638609183959356305508959*11964018874156730597942590963821452745749 42 Pedersen 2016 123838184408862294256896677108585988517773489146459418329482267213530462568264625406656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12291712949109280297248710535612273408989 123838561425071683380742813017637131089957086851594426343674257974044810690918268673344=2^6*151*1451*1811*396760785781058734287005859368670749*12290919454358541950819176503703945542239 42 Pedersen 2016 126308435608530402480410196218643805654540517246014575164528656122357535084075669250624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12536900802948166950287658324951906638831 126308820145237188941397908260669729505563414617113564257048024190432189037052528893376=2^6*151*1451*1811*396760284812595906235668110008301999*12536107308698397066686175630792939140831 42 Pedersen 2016 126950985408976949586351575265653395483795574840837875021979483089355686619887161387584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12600677882209280502549739221278674245071 126951371901879163689273992560049833636659935460698270318883405523659409283131002836416=2^6*151*1451*1811*396760157698553635876067347247997071*12599884388086624661218616127882467051999 42 Pedersen 2016 127389504632435124474613869911901900236509011473844321525838095644407718464424914056896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12644203652900638088033074507003942289549 127389892460376738272027780926734456236914210438256683524854433784360454043303239543104=2^6*151*1451*1811*396760071683645382277130257074952799*12643410158863997154955550350697908140749 42 Pedersen 2016 128289131216795197526015492057176547489405510375580715391719369976295004135564230761536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12733497207946898250298394457328115669959 128289521783583527464780744394034865494558003720890932294152245507431979397266673558464=2^6*151*1451*1811*396759897063977105753116027426651999*12732703714084876985497394315251729821959 42 Pedersen 2016 130906483210067268027611671260147750046254909113507110813519571283701192045464916194496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12993285733930625225114303670688089268949 130906881745190500895443701475076656776812160967691548315138262069297873973193362205504=2^6*151*1451*1811*396759402679978990958768154478447199*12992492240562987958428097876484651625749 42 Pedersen 2016 132911276474879090090748854140122113702375371505223695155080797724362427501838999733696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13192273981788133795786392145048397531249 132911681113447402650080239544622886498103839171146651176321039342855163126337000266304=2^6*151*1451*1811*396759037170629227224672263679803999*13191480488786005878863920446735758531249 42 Pedersen 2016 134256658522040092347360946994953829980714956117113239786501113598286498617755495173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13325811549457808018306768585491422359999 134257067256524717165880335570507147911358319280564513269958332604835922061289624826304=2^6*151*1451*1811*396758798004952442007702609324083999*13325018056694845778169513856833139079999 42 Pedersen 2016 135046444821569588468816894491155843609541443011244046120051680190393261500562421813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13404202770479787747018510583779340301249 135046855960500291832758539895102077314858747361812954995964557448179132856289418186304=2^6*151*1451*1811*396758659826324958135990163313141249*13403409277855004134365127567567067963999 42 Pedersen 2016 138114077429744501080200207110215419965787678696993268599618444901406786810638158065535=3^4*5*11^3*79*601*473861*58309019*2182799234136439*89475227359581754051750984375092882592752684503 138114371263788863891241795171460085423418012701051608342506983782906755982465021710465=3^4*5*11^3*79*601*60311678900423279997747449303*89475227359581753931127754885473977442425425599 42 Pedersen 2016 140021179314275544161179822801632248941565779666727441998178635268570024560663353831488=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13897976227142306585013891638392949593847 140021605598418123088633540650525356932762544381069061135106767753479296455296898584512=2^6*151*1451*1811*396757825296828568782437586785426999*13897182735352052468749862174757204970847 42 Pedersen 2016 143453476622122544596056131223431079038676908427543114441812112986818743895152267308096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14238653163464030611920765854158205598599 143453913355640868799418002924861839672710847980258606111197765617036521480982183891904=2^6*151*1451*1811*396757283262863074801229153541990599*14237859672215810461150717598955704411999 42 Pedersen 2016 145233028368511508054128044125924241196747132964868606780196846264845251074252032821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14415284784390264852418596357143021153249 145233470519743738820133994085586738193264013656810017871280519672048825538129791178304=2^6*151*1451*1811*396757012319057788311619528151867999*14414491293412988506935037711565910089249 42 Pedersen 2016 149091085591838487873664118752087003755207040578462649714538191876182741445857138424256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14798221050427601382344020661262287545889 149091539488641092497425556494884753285349793352355876486110455031209215866954120455744=2^6*151*1451*1811*396756447127979481367639844635451999*14797427560015516115167405995368692897889 42 Pedersen 2016 152761598785014029187825340508665085751281412020231482417060768994579379306054083533095=3^4*5*11^3*79*601*473861*58309019*2182799234136439*98964414326665088911418989291510866848793826751 152761923781272409601855491963419565179317142157891028140285380876970389632571874354905=3^4*5*11^3*79*601*60311678900423279989951311551*98964414326665088790795759801891961706262705599 42 Pedersen 2016 154856633957023808776683314329506933871264007877479411152484165821975420671039750821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15370487721142717704238503565271398309499 154857105406612737488959625484518319646162265460919437515527114431211106295406073178304=2^6*151*1451*1811*396755654990427058057566632765005499*15369694231522769989485198972589674107999 42 Pedersen 2016 155749256291559298003430536298637350246502058549681591589873248433351956511750518690496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15459086060664956729465921069512185217949 155749730458671021393864883607646373178129461038792735725470118560588376720326767709504=2^6*151*1451*1811*396755537594796251607120070826089949*15458292571162404645519066923392399931999 42 Pedersen 2016 156732637492499734867500699850880518152036157750360279996128421251045869771433159960896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15556692784303624541390158874962668909299 156733114653442920927179421559351141139801425991875385007832315700648690997279185639104=2^6*151*1451*1811*396755409810920395338631817291771999*15555899294928856333299573217096417941299 42 Pedersen 2016 158525215112243938445247395509212441496882896923211714279559425252443929581421207547456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15734617304483496454515986679408469285439 158525697730557340789953142959282547629236175217131085189633092872079922393332604932544=2^6*151*1451*1811*396755180956571461254368191947637439*15733823815337582595359485285167562451999 42 Pedersen 2016 159183802933801858374083968032662194917656179383644719770419384659869097651791658694336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15799986257468484156896026432323731456909 159184287557137259538069697540627463795253431482814311897639870203216116134366580025664=2^6*151*1451*1811*396755098170943056328872325492620749*15799192768405355926144450533949279640159 42 Pedersen 2016 160806320119364145145502824961342762603648978266289852886123465496302232854036857313344=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15961031217834530007026204807397096583511 160806809682333326386342875005087242625919298187623552485585919501862869380610895390656=2^6*151*1451*1811*396754897111103755199326895057051999*15960237728972461615575758454453080335511 42 Pedersen 2016 167492755886687044316751832836057784157909469466626879607141312061214496650675670824896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16624701712495857448793361367403040019049 167493265806016255812792188993833148221258829389309449951279759057993610316730946775104=2^6*151*1451*1811*396754109644894653857331794433544799*16623908224421255266444257009559647278249 42 Pedersen 2016 174156433977695408007793875949223627899495192894371836013959403057650879212168550891072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17286113365702246741394961476934484172543 174156964184100584431629777706735689148035299034671307211991595883444530044598478356928=2^6*151*1451*1811*396753385021474859619526775366924543*17285319878352267978840094924110158051999 42 Pedersen 2016 174905759568934554022154697769650670666386978065386054982386707194224798001906154593216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17360488608822122804870345903172282935129 174906292056606169838569778348982957562625272877397514317138902667177998926755006366784=2^6*151*1451*1811*396753306991849462396753361448251999*17359695121550173667712702123761875487129 42 Pedersen 2016 176007933896878692440962798594018460889212145452823350644365701736780109890256969695296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17469886291965136247097890550608554985399 176008469740038675525194660455612282613008942588994346070989174496979409880869507104704=2^6*151*1451*1811*396753193426403133202126057259291999*17469092804806752556269441398502336497399 42 Pedersen 2016 176466610463016914930530080290379971036498220255917616703756444592753454315965976690752=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17515412804763806600160928410268891873463 176467147702583839270572483149645023993217257002722402466410090214554837373119373197248=2^6*151*1451*1811*396753146583502809487727108513051999*17514619317652265809656193657111419625463 42 Pedersen 2016 180695496234313205182765389224568348792701129816650300344321439511942536186843955848155=3^4*5*11^3*79*601*473861*58309019*2182799234136439*117060989794047612199689227151389372165746084499 180695880659199101997331568145034458487459799743061257378894595161263320994628812151845=3^4*5*11^3*79*601*60311678900423279978587146899*117060989794047612079065997661770467034579127999 42 Pedersen 2016 182516598658884485765985440638901255210703568982970412311372073698860261347020921082432=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18115911904488833847192921115083808622383 182517154317193798352018499257243659840174769923542318063145794533033823806993565445568=2^6*151*1451*1811*396752550755960561975749157500124383*18115118417973120598935698339877349301999 42 Pedersen 2016 192505994724906078938891991794659129005814160024804282688733981816425248892633004244672=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19107421829837124621806257418004142499693 192506580795194191729033040491372387338301342975015507495241772022130747402965717803328=2^6*151*1451*1811*396751648933377158741733802133051999*19106628344223233956952268658153050251693 42 Pedersen 2016 193652443100860548541999163759418248913430977549253545221476674128546140524186673065536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19221213988656891676455159602884015920959 193653032661426098989239956936444427850621996629420479883037588559537692190335623254464=2^6*151*1451*1811*396751551386331016243444484741651999*19220420503140548057743669132350315072959 42 Pedersen 2016 202098806581653973563445584148720445864685636496993303337843544243116192507132789276096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20059568296460539786744577471124365096849 202099421856549541461870020374146955542888872689340620983043911844886854110449725923904=2^6*151*1451*1811*396750866830914055466170107347157599*20058774811628751584993864274968058743249 42 Pedersen 2016 202994494614106035601938117113523416241160283282428897659550117201797559528289575013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20148470925640763321858934072874419382499 202995112615857689143303997203827529869163169391176203551654770776201478962555864986304=2^6*151*1451*1811*396750797578789887979962984776926499*20147677440878227244275707083840683259999 42 Pedersen 2016 214853030902225836000024921510544197201462534228641571198499669299396019491980232620096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21325504687448185542428245579592586576599 214853685006415696236770156012939240231566102912784862291231338438328085267551594579904=2^6*151*1451*1811*396749935140263249145951217699893599*21324711203548087991483852602325927486999 42 Pedersen 2016 215132644662371223719417054178612967298508473434391133829408363028557289441989857951296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21353258098827190221453787955772954374399 215133299617824532675696337405169430578710414214501776064777416987271335509424106848704=2^6*151*1451*1811*396749915952157743752632642585286399*21352464614946280776014788297081409891999 42 Pedersen 2016 222700566310341622204001495735520674565600033721978939281114043264365152395962072821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22104421570435266862704020027314546778249 222701244305773644442384491402147591637085354666803179422647900850150368306339751178304=2^6*151*1451*1811*396749414915508774874492537054274249*22103628087055394066233898508728533307999 42 Pedersen 2016 224130415581984664570271628287281004592340333405934753046994238079484025771713430184896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22246343037480543625582162528296513109049 224131097930487227740142069753060434880897074574414659460788032894511080000014467415104=2^6*151*1451*1811*396749324052382913459030516397371999*22245549554191533954973456471731156541049 42 Pedersen 2016 229691228639242151856969540636309849519826613184157726526680682563771970973976692810705=3^4*5*11^3*79*601*473861*58309019*2182799234136439*148802173445730312795606675043476171185559159289 229691717301252004276581053259270718767179080638710084069564026306465232816688256949295=3^4*5*11^3*79*601*60311678900423279965330489849*148802173445730312674983445553857266067648859839 42 Pedersen 2016 232730367406915000944521678053986336530559847586987126975485207889620778027271271005248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23099941947322501525036495748533188969287 232731075937335955775515137550911819560273156949915439823424941883072443151188073890752=2^6*151*1451*1811*396748801101751576788462517173096287*23099148464556442485764460259967056676999 42 Pedersen 2016 235142023497529150850315941799855337820503457082571219603388004886390909466139661982016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23339313870766808948456050198723240598579 235142739370059019613935202258328564081815488989210944971790588666245993447553921377984=2^6*151*1451*1811*396748661320312778756134892903338079*23338520388140531347982047037781378064499 42 Pedersen 2016 236469204299522104530040085038645220359247337711805868329850574483754970459355428158016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23471044851219543926964386441580186280079 236469924212555938447016391533464294309242139864210435800253335090964355068349803201984=2^6*151*1451*1811*396748585612215336851940256054001999*23470251368668974423932287475275173082079 42 Pedersen 2016 237684770638881517630597030744141357792086523506923821853186499057491983537656347045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23591697399424507802702619336765746665499 237685494252617325772435721357850465909294499519021121455280033643828018840653028954304=2^6*151*1451*1811*396748517012934085445297998656635999*23590903916942537580921927012718130833499 42 Pedersen 2016 250470123061882083917240920285976233074865046738316388138698832908691877007228120351296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24860723448917165665852117401384043724399 250470885599679394036065382831490322295561581256895489107136040950303936633261044448704=2^6*151*1451*1811*396747835818589960873615266209636399*24859929967116389788195996760068874891999 42 Pedersen 2016 257174638250851099804916303802205119228838759566460025939397093848684638497020309036096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25526188439050312025181837055606710630599 257175421200049904566550460182363533750381633583957240799744430515485708265462686163904=2^6*151*1451*1811*396747505679259439675433564005211999*25525394957579675478046914595993746222599 42 Pedersen 2016 257367993624365200744668050633211480233207444877548659098652287541115093058988825069376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25545380167027818237290813155768394847419 257368777162220164632676534438350343087727834845083766764818721752659618940590423570624=2^6*151*1451*1811*396747496413373108701380953737851999*25544586685566447576486864748765697799419 42 Pedersen 2016 261248009820841874840265498871547535725000450998981216621646254750886193089462078828096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25930495998244518977788402715018044353599 261248805171119685096784556075170162706912404611035501096896154215112015199929332371904=2^6*151*1451*1811*396747313376287623603698902353911999*25929702516966185402469551990066731245599 42 Pedersen 2016 266218167320082588818331293870580817575177097715205890021451931404567149947144556534336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26423815159730527831043457597035732198159 266218977801637955955467298148894251569930587811034174396106148822898713717678002185664=2^6*151*1451*1811*396747086707417665807760473318401999*26423021678678863125682402810513454600159 42 Pedersen 2016 267082041510721919560588989135413299693270869516745248140382754580458170735144940613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26509560066490666540787838598518563594999 267082854622278479775859025821476670096968902235725337803386920689798620286369299386304=2^6*151*1451*1811*396747048170223133904818040769563999*26508766585477539029958686754428834834999 42 Pedersen 2016 267321411286461149982956866845582205082927793882987823916722333415244400729804379516096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26533319011166124204161106590615144719349 267322225126761319629495131155406896032381914942942807691744321636150875402157655683904=2^6*151*1451*1811*396747037536073366093917796273211999*26532525530163630843099765646769912311349 42 Pedersen 2016 267931734513319639542020927188661672357828302985452378061448495900903635840699403653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26593897401801684858294504287146279229999 267932550211703812847927660495565900321474122986644811432631514131847700847648756346304=2^6*151*1451*1811*396747010508078521390921174508693999*26593103920826219492077866339922811339999 42 Pedersen 2016 281425020060096655483963710945951523491793655382162008448109452702889003443016137496256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27933190233597101063968847691573344901389 281425876837792458998694308422079441102093566030731740441199053187986164389564977383744=2^6*151*1451*1811*396746442908971435755911400955451999*27932396753189234804837844754123430253389 42 Pedersen 2016 282632343037183778419023062350704346997526414602627863571394047268960484112176022674496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28053024576631582346995326920883833920199 282633203490485248332758239205035329358050072226294515686829586671548619180889295725504=2^6*151*1451*1811*396746394764242689389648620957192199*28052231096271860816610690246213917531999 42 Pedersen 2016 288409362192543102088233238645529988718744504266946806923722281933641397250788718951232=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28626429794885903508462647512647450687083 288410240233552869880265711205130971162459352373019298189705412339696627312297229976768=2^6*151*1451*1811*396746169971653691288889663998439083*28625636314750974567076111596934493051999 42 Pedersen 2016 288719782347964549391935753815319756307419670566574670292894805175700321733484771615296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28657240933326538316468173324785421340399 288720661334025561867764012972870149640981696053334451166711944961735194212517865184704=2^6*151*1451*1811*396746158147419511787267756302541999*28656447453203433609261139030980159602399 42 Pedersen 2016 290533062123169318804615555205622370302143027039798031938278020288888898034078738666048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28837220271683564481110032810512835069487 290533946629626731413239895820756913438556209323229791970945003353615102359560484629952=2^6*151*1451*1811*396746089582560298346593996897301999*28836426791629024633116439190466978571487 42 Pedersen 2016 301468408845958255422473153115898503974983082205859753992192569610627334270880622228544=2^6*151*1451*1811*328481*9085995379*132928044795118424699*29922621705474977177781702787055828702311 301469326644271402687852882407511879811505224096314477627635801723778834958266100075456=2^6*151*1451*1811*396745693575162802829863297185176999*29921828225816444727283625897709684329311 42 Pedersen 2016 313695841414377759329917748501767430335072847526483215401042937238917965710370687939136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31136270726195333017904468607227766909359 313696796438206602840732744942448122159602508992206731130184556273233001574240261180864=2^6*151*1451*1811*396745283473534179050996051672651999*31135477246946902196030170585127135061359 42 Pedersen 2016 320965274129436113528935096124632431581725821255117941718653742173068900446339824453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31857807307685839235826191934477335054999 320966251284516151678985055721584273253182564447676741000626204202828138266366735546304=2^6*151*1451*1811*396745054471441930479349668742043999*31857013828666410506200465558759633814999 42 Pedersen 2016 324661557958132599448510550196943852171748767612632659779516507539828855911246862237248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32224686554322472200896656286105411052287 324662546366275855325602342341944379713757363436964232782122329058253188941838018658752=2^6*151*1451*1811*396744941963916236382069825848304287*32223893075415550996965027190230603551999 42 Pedersen 2016 342759665649497318886183965094172038199917305980251556466386943536540985326513543142336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34021036732792968253420496623855680856409 342760709155993247528849805251797488094119408253332503143791895728675486478987799577664=2^6*151*1451*1811*396744426121874211411807406067008409*34020243254401889091513837790400654651999 42 Pedersen 2016 355309210292483121121261564101778387970241172436688352395656640566712530264812812094016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35266657387924072780068722040229082464079 355310292005141175308610591994625550363508066462514691077136146830725178838108547265984=2^6*151*1451*1811*396744099282361715113638374954266079*35265863909859833130658361375805169001999 42 Pedersen 2016 358419580752367380071943978462774176606308051690387851240434074728389831874146132393024=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35575381074731857833781261315586734479431 358420671934318658955096457235256863314495782792074574635165421543608607251441380950976=2^6*151*1451*1811*396744021815489025584118089092676999*35574587596745085057060430171448682606431 42 Pedersen 2016 359133851919445356468006796418499158102871051940153237854549665165070690617640846001856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35646276947401963457846387722348632947789 359134945275942468473150257030806077069718580923307191140851720028050212405049657678144=2^6*151*1451*1811*396744004215313850439692555724420749*35645483469432790856300701003743949331039 42 Pedersen 2016 375427209372506525979369476256749569449906953910061458416794715772963070487925554927936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37263494397304482563247019609608038379059 375428352332927455972488249199187480860661321063941186906753467825674359878898616592064=2^6*151*1451*1811*396743620923291251846607797430718559*37262700919718601984299925975761648464499 42 Pedersen 2016 377481869863331762485058924952459438739918769961229572070766658068228004268452335133248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37467432278674878620566158852579020226287 377483019079014860041830767843096273585157405792364324459149407615193397525910753762752=2^6*151*1451*1811*396743574938014341097138273269978287*37466638801134983318529814688256791051999 42 Pedersen 2016 377900349356662461867716651677573593177489118652225122838508490892713527091131612662336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37508968981039044885148858733567070830159 377901499846375480290564971794880438829562310353091647235824239113027681075610690057664=2^6*151*1451*1811*396743565633337842413481370323401999*37508175503508454259611198226147788232159 42 Pedersen 2016 379006455280077663677203568297368161646760838570161558157325240891353613624790783679296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37618756899578297477173058971245472593899 379007609137248501507589231496514494625799398435955725937534431437872550068203725120704=2^6*151*1451*1811*396743541138574356327900476365691999*37617963422072201615121484044720147705899 42 Pedersen 2016 397145245548928073319950443673794863066515115221172507712071152492757104999864037058496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39419145077853708418432816148486312097449 397146454628306687453237156543516402761454201456662812372152251448250711056768513341504=2^6*151*1451*1811*396743158919717330009404716579131999*39418351600729831413407559717720773769449 42 Pedersen 2016 410477055416227230922060345116368905400517044765159800825725412043879186628390744333632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*40742410440336015323745702512463724587683 410478305083316690935177017985836060614012436254593517917195260523707205726590039794368=2^6*151*1451*1811*396742899531903562324329714893051999*40741616963471526132488131156699872339683 42 Pedersen 2016 427861442991788755927651668688549916209099557385179034949143403832344857108158643441088=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42467919441415751077596643649990133372497 427862745584362690505995760090348145620891516077579632189390537005321092018024789774912=2^6*151*1451*1811*396742585578548856639918553345583249*42467125964865215241044756705387828593247 42 Pedersen 2016 430949083188602937384443785719702093982830532349857782484868749922608385289364115412032=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42774387007704256799949179559828871799783 430950395181269488930003461819505139363444668127630715166194777813190282135244111915968=2^6*151*1451*1811*396742532466293848868773446041426783*42773593531206833218405063760333871176999 42 Pedersen 2016 431794623299416855273749889088496885244386595170933653019828954949214264989814364754496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42858312142578399553315060121318366065199 431795937866267847484525479488017959810821950447878821787215597803565792932086793645504=2^6*151*1451*1811*396742518054166878690709068325781999*42857518666095388098741122386201081087199 42 Pedersen 2016 432262164514066530818624965892823481445655971310749219050108953507557555004684548645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42904718527085603547833579717521385815499 432263480504312232196283577261444176336595234008465189911226563618916716767621627354304=2^6*151*1451*1811*396742510109193132779249381518715999*42903925050610537067005553442090907903499 42 Pedersen 2016 436509182292271859156026005267426732418232359976507418517097440457846307092634572933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*43326261556553079504318673294750480049999 436510511212249626539365781954216599514378032533872390216317646399223498637695027066304=2^6*151*1451*1811*396742438718703480257268305700203999*43325468080149403513143169000395820649999 42 Pedersen 2016 455995321343850992751111829408576017211503621538000039916667555424494772200462326280896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45260382513281984174288475783940788395549 455996709587940429927262711509989377815656509931206932112172806495897156081497379319104=2^6*151*1451*1811*396742128213924267613722388833990749*45259589037188812962325615035502995208799 42 Pedersen 2016 459071981068236731189183198808364022242376033189287861159401635275461371937273083372096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45565760199128683519211359633028625039599 459073378678989547718685596280877786219023938114014730157125349621292009257245239827904=2^6*151*1451*1811*396742081598035510576831688908811999*45564966723082128196005535775290757031599 42 Pedersen 2016 464388947842224688180322812876280665940966781973617113179167639021173307618770255621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*46093502346332955361130240792498736071999 464390361640090293432226413626618693941941177661428615933990442786679945712865968378304=2^6*151*1451*1811*396742002494343515433991899580247999*46092708870365503729919559774550196627999 42 Pedersen 2016 474312424595616505473048541560758566039185273713841332947762415130241194723014053464896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47078469368355300620856844441459896960299 474313868604774430488087544232749609255724073784313896055666483341472113723287284135104=2^6*151*1451*1811*396741859600806864413599362148392299*47077675892530742526297183816048789371999 42 Pedersen 2016 474379959207994061051115734809941723758335837912341982586500260091894410545785205897792=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47085172600265852353434953574432347278223 474381403422756127330742628557519396869072123720937563480988040580744388756303489910208=2^6*151*1451*1811*396741858648821118406210451246801999*47084379124442246244621300337932141280223 42 Pedersen 2016 475714615522020845138119961025556752145901647351439435758526589095234464846006020840896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47217645571959060328773680780405674348049 475716063800045521036791223111334295983660974679424794853822061342054110512204564759104=2^6*151*1451*1811*396741839890608514333627730003771999*47216852096154212432564100126626711380049 42 Pedersen 2016 506435177163064906918659956922200178766492440107540184686388885505658732503466415816256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50266853109437364651585765369186470512639 506436718967571382420450022152705241796679403481954233051782260584075143278138059063744=2^6*151*1451*1811*396741435451695980624675030793364639*50266059634036955667909893668106717951999 42 Pedersen 2016 509006724564606532302633978291789874478423146552394449846345466562403274245452376108352=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50522095243724626439463835575971248235363 509008274197999212989235200351788027872697047343581202979866801170218176781088538579648=2^6*151*1451*1811*396741403811397235472244800675987363*50521301768355857754533116305121613051999 42 Pedersen 2016 510138711260245151883282437407917305560998155007565164020461455607956976605596463524416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50634451990485885541183811113993634601679 510140264339887752219468930681637954564430638164461787508109085552747752724479635035584=2^6*151*1451*1811*396741389984559289721051160566251999*50633658515130943694198843036784109153679 42 Pedersen 2016 512857115001098040267510752048277815380894705335310562776882471096246170882852527103296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50904270533303260253138152578694007124899 512858676356720128334510253175673114493400608851554084713141764421528515418511133696704=2^6*151*1451*1811*396741357029464319212653533605654499*50903477057981273501123692899111442274399 42 Pedersen 2016 515999893191079880966107343541341162012361117125080847005444549664407220954360718714176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51216210889651164768250105178565503743619 516001464114658135329834729204585890072390183619768748007028983592663611774042440325824=2^6*151*1451*1811*396741319362476469623789342805633119*51215417414366845004085234363173738914499 42 Pedersen 2016 519581027068943644331339692905184011274374238455540327278027928363056555843809175548736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51571660784763498556833088494547338469259 519582608895019592698311265468337106176855774296426941365750879089176220464128954371264=2^6*151*1451*1811*396741276997137271516131353620621259*51570867309521544131866325337144758651999 42 Pedersen 2016 524109686507459527371040998290618616943033227139271006725473179027413796819643390245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*52021158507361957946596014866941278715499 524111282120704782795054963198274061730322975740073370627649373179864591145379585754304=2^6*151*1451*1811*396741224251437013061262702969763499*52020365032172749221887706578189349755999 42 Pedersen 2016 529630891842996881521940015421696894228161211278401683769065421563247495315298438087744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*52569172606902156653215534157768883107111 529632504265144147256220282828916433720348704789184625847029426503307040648981365816256=2^6*151*1451*1811*396741161165714020136221749063734111*52568379131776033651500150909970860176999 42 Pedersen 2016 530478579226951772236842674103508074340630337856996882825174941193494486670020428373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*52653310872041396230904406641457376128749 530480194229820693179632158024330473187639852118048294402876208994075033512458291626304=2^6*151*1451*1811*396741151596260869669687588775483999*52652517396924842682339489927819641448749 42 Pedersen 2016 539681372822160704608508616202206075017943456168810800707907842329716313994095562005056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*53566745591245132030723070699263931469839 539683015842255278674502211516883523963686182804768988148443705640912914090963735274944=2^6*151*1451*1811*396741049641671667929939046778821839*53565952116230533071359893734168193451999 42 Pedersen 2016 541922557518500206861469736513328731468793625175665303655332795956341106499848616047936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*53789197164520703880696546144066893909059 541924207361716120991014976023241611199531269835056818477865157385557373266133315472064=2^6*151*1451*1811*396741025336697638405013226344061059*53788403689530409895362894104791590651999 42 Pedersen 2016 543909598214410551091481931644541754404150950074317322899604955214100837324550759621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*53986423359081905937060135505139552696999 543911254107025159574246001119661048009351399687536766692842484744660565572077464378304=2^6*151*1451*1811*396741003955358320748540923651547999*53985629884112993291044139938166941952999 42 Pedersen 2016 546226864341682779711152087926580874500626886409234978547494722181918797953283202652736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54216426489369126222591615269109424607759 546228527289043027596793428348113417860375830156677412197254503156297107929376719267264=2^6*151*1451*1811*396740979217154991351601554548651999*54215633014424951779905016641505916759759 42 Pedersen 2016 552540081147760639337368902859338997280596629951844166674992164216193364032377887678016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54843052672046334575292367201232958910079 552541763315243344936074222176345910560711524477520442533040467736957117145288303681984=2^6*151*1451*1811*396740912872531861177637914114462079*54842259197168504755735942537269885251999 42 Pedersen 2016 583210195289920883985601252905871402667924210977466261286230513000951579676544934636096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*57887252980306604468728035136784740155599 583211970830301703403207049497112375181520223084121105859156938479859531593086860563904=2^6*151*1451*1811*396740611004055057899968854596997599*57886459505730643125974888141881183961999 42 Pedersen 2016 616048779429106796851343465553469965126014948100487487439914317028383225782807984524096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*61146687473963151052693642274007245165099 616050654944132536658081317531081414755796790874949466360780764466356803475196034675904=2^6*151*1451*1811*396740321113204154108239985670011999*61145893999677080560844287007972615957099 42 Pedersen 2016 617238025832280585652965161777108695273100706709649315320415521419110989820124760024256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*61264727604181071054293825446775883258389 617239904967879197183305046736347333262704531243590701398939098016277662262843298855744=2^6*151*1451*1811*396740311193610701111705843417516639*61263934129904920155897466714883506545749 42 Pedersen 2016 643181602025095727703553988857179927453716379793968012438066678763270547681133579300416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*63839789512247999784763226336967520495679 643183560143996629259302047533893777240693950445074723566197302347833008357654967259584=2^6*151*1451*1811*396740103925256158476683575130047679*63838996038179117240909502627343431251999 42 Pedersen 2016 649457926430742839297422770664117829061095644067825104018929122401038077127510544100416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*64462753893855828938612716502173199820679 649459903657450009241749493678862861923526166051377635000917176973785459598548402459584=2^6*151*1451*1811*396740056270113412004339325684372679*64461960419834601537505465136798556251999 42 Pedersen 2016 657281009325022315968457907745431376083005768916299388725675676793285016760460919777856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*65239243712182726736614485019009502873039 657283010368527774882795650928775455509076102935447597846912339108913306144526031902144=2^6*151*1451*1811*396739998144884157877500128510201999*65238450238219624564761360492832033475039 42 Pedersen 2016 687153617308132166135224112232595235951536086227168764805798720935931783880179714371136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*68204286555166942224720807773122222167359 687155709296587117973288451534233499387731450642233608885571066518533214570986370748864=2^6*151*1451*1811*396739788368482755864437436280151999*68203493081413616454269696309636982819359 42 Pedersen 2016 706763418485786157960999267274737003338195149859173345883813701053496292301768165221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*70150681749956138913813022697213535034499 706765570174832992381610218149548368231935834114605209478669392045029572911448858778304=2^6*151*1451*1811*396739660302688044977175428891387999*70149888276330878938072798495735684450499 42 Pedersen 2016 716415215753767712076774147251589530778106250065856400553151891899511412721136733910208=2^6*151*1451*1811*328481*9085995379*132928044795118424699*71108682886902203145019452285059677336277 716417396826998731180052352696765695823292929331883238692202900984705452895963041065792=2^6*151*1451*1811*396739599844256536904119427927145749*71107889413337401600787301139582790994527 42 Pedersen 2016 721794017235328422708835603975034422710307988623053407950099093393977669957420456476096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*71642562514879505517918268459009821896849 721796214683923432448100166011432741240956489013824923447417159128954596801627658723904=2^6*151*1451*1811*396739566853305754317556518078743249*71641769041347694924468703876442783957599 42 Pedersen 2016 726169670133243178454266928510357771949328600543371755626326403494570189066838061708096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*72076873383072897411919046129104710761099 726171880903190378950442799733957582602269366609785337627208130912900341986307589491904=2^6*151*1451*1811*396739540375695955647135860914965599*72076079909567564428268151967194836599499 42 Pedersen 2016 730204307641150354080418736800372295648269190280621771425147512814573562339490977419072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*72477336344780817980516289868081906342043 730206530694253567815816486645922616894383272229233027529294111050204950191054995828928=2^6*151*1451*1811*396739516242811164941993325931489499*72476542871299617881656100848707015656543 42 Pedersen 2016 742872549146341051133582050228316771071245490854530979482958237251396494705670772335168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*73734738404533986194982205257677253270767 742874810766970223939553185512493714906312131830438351846300574865654261236798392720832=2^6*151*1451*1811*396739442172411810431617648841772767*73733944931126856495476526613979452301999 42 Pedersen 2016 746128584132145371397890888258785174573184393181471473815182614457844416163540522338496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74057920204952078264735370652044190354949 746130855665532663568414975997284972840952848612254284525436998541947894781441468061504=2^6*151*1451*1811*396739423540905192892105794140026949*74057126731563580071847231520201091131999 42 Pedersen 2016 795274423439179853546886208807536112770312214978144652126648558556261547572340697662016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*78935951583470003738112417574877723956079 795276844593446450688561387216492529052206512727421042922665526739137957918201525697984=2^6*151*1451*1811*396739160851533505078092942163258079*78935158110344194916912092455886601501999 42 Pedersen 2016 801160828991234271428295675293499206444925484965511955984420897524137448116743845426496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*79520214084517444350997243029920929445699 801163268066227975126539546146430337103236626943439619169750107639790069804363968973504=2^6*151*1451*1811*396739131549388245242253634218394499*79519420611420937675056753750237751855199 42 Pedersen 2016 824646034090619966639154387830499804538117797161750097245805943532458844892688789267136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*81851267313459550613978865361988112310109 824648544664586669354262357732961197627364216112567068440808447159932358793051503852864=2^6*151*1451*1811*396739018805553678082859883351243359*81850473840475787772605535476055801870749 42 Pedersen 2016 834273346521418769419454041445740527242597391623741554813697096021950410568395806136896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*82806838177451495863560841157281709590799 834275886405027377743811526959916157475992873910196081086821871288657422040568187463104=2^6*151*1451*1811*396738974422764569741394247044472799*82806044704512115811295852736985705921999 42 Pedersen 2016 838938796344139724035536556826051609545286617864859007618730205551587410317423428600896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*83269913199692009645685171635044279381799 838941350431365864817334649832682977599875892988825343755307464153224636597911636999104=2^6*151*1451*1811*396738953281048493812412211589288799*83269119726773771309496112196783730896999 42 Pedersen 2016 853238159090762505328805806870675410350077391086212929205071401818589314414387774380096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*84689214226073141103208265152297154016599 853240756711342798111286744175838777721567277084816068894993620584325618455500532819904=2^6*151*1451*1811*396738889923063479260446300051611999*84688420753218260752033757679948143208599 42 Pedersen 2016 859771447942107112065151704450167627411176058546271538743496028652847926105326204453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*85337683933196825880590453756458875367499 859774065452802956330916607473258302201281908244581994785084427168978811229620355546304=2^6*151*1451*1811*396738861676628499729588759114127499*85336890460370191964395477141650802043999 42 Pedersen 2016 868887883062294941201331276029923445156061686672027795020731190440145918806315912019136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*86242547034601502113701509095541243773109 868890528327304437283927170944783490174563059762954464997393340547784596213866877100864=2^6*151*1451*1811*396738822971969305708132202061925109*86241753561813572856700553937290222651999 42 Pedersen 2016 896100789415567557689884278705984967712119968093341834736829548933018864236115854413376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*88943597885775655113224960044826849545919 896103517528261301942278441732049303290537934198359209160439656852437460242740706226624=2^6*151*1451*1811*396738712121115525147535928885351999*88942804413098576710004565482849004997919 42 Pedersen 2016 922919733352598275754459344804376573729425175526410121050339381304969100643526961898048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*91605545507551716430301367553900068277487 922922543113586778397670497326991303038752780573015326964162161365726468637473797397952=2^6*151*1451*1811*396738609270890609105678879336779487*91604752034977488251997014848971772301999 42 Pedersen 2016 928101786066128968441887982690883162326261194467597205094263216920294573447636483963456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*92119896591960167822411067461379830839439 928104611603494363527250851691075157072660851003985134804664789647871891979668496516544=2^6*151*1451*1811*396738590083034593824104682374191439*92119103119405127500121996330648497451999 42 Pedersen 2016 960027487439574380067283198449628834288288921874217539728547648026869984314575613719616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*95288721771807457635907388189878212165479 960030410172380513899131373778736092205335746028745222697384482947629014705548894440384=2^6*151*1451*1811*396738476439399393801792471712376999*95287928299366060948818339371357540592479 42 Pedersen 2016 973843897014863544643012661249944648928720468595770274442091974032603181383792372325952=2^6*151*1451*1811*328481*9085995379*132928044795118424699*96660086680760578856113670370565607547263 973846861810708557057937939273141649048893641137328294142016383077613331872210507162048=2^6*151*1451*1811*396738429568221538303496430338051999*96659293208366053346880119848086310299263 42 Pedersen 2016 979964918100819309402025599895909596937682247774450714700749296397654656366060039084096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97267636238299385439091479196464892992599 979967901531661099537732881442081993770750135612034361589354567567180511641474860115904=2^6*151*1451*1811*396738409225569393765884237507784599*97266842765925202582002466286178426011999 42 Pedersen 2016 1022246896645690232140761254674887512166182618292008053494051438610799895855725410441664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*101464386583718353397257918706334331495841 1022250008800893999588408398866155635752569664582876601187719142262678806381378165622336=2^6*151*1451*1811*396738275358951355226839401559466591*101463593111478037158207444840883812833249 42 Pedersen 2016 1042919402598719170009511731526028667882548278167458977477740374723225443828265140001344=2^6*151*1451*1811*328481*9085995379*132928044795118424699*103516261862141767980786158335287330730511 1042922577689841048570152733969504974222564805671341715340337865764512132972489236702656=2^6*151*1451*1811*396738213859735771881562938970732511*103515468389962950957319029746299400801999 42 Pedersen 2016 1064760844828826600642358913167447990126500941802546707171199170607595488819208380972096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*105684161363967969001588350730826753814599 1064764086414606782650639424642957798498575091679671475270331214639199342729114742227904=2^6*151*1451*1811*396738151477449373526384355034436999*105683367891851534264519577320422760181599 42 Pedersen 2016 1081425529370998176781279275710422388028183235916672361077562679672385320067259902891072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*107338235345733909122539807723337862797543 1081428821691180084283778273993063743229212395052628677144086760593525859844803126356928=2^6*151*1451*1811*396738105575511105281943864292424543*107337441873663376323739278753424611176999 42 Pedersen 2016 1083810046251985846341284237860628351406609107423827428432327342782712736130889455611456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*107574913533187279916727535682707756101439 1083813345831653347771887011513213990418224519340488521824362724340644081825384228868544=2^6*151*1451*1811*396738099122934893150306662364951999*107574120061123199694139138349996431953439 42 Pedersen 2016 1151285861842126756543602257440811747886638677004812332818927600766497160223399402048832=2^6*151*1451*1811*328481*9085995379*132928044795118424699*114272309495508014538869091770853858656483 1151289366846933044278428304187998226693061003607981180921074090763268175219494751679168=2^6*151*1451*1811*396737927611121703614531790806408483*114271516023615446129470230213014093051999 42 Pedersen 2016 1173863126285959041121323814616663416876575106565011693158538671057273492872610133944896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*116513243945931514168177672820338392142799 1173866700025580035816155851946852714636784978272108764680328435684964779321650243655104=2^6*151*1451*1811*396737874626168087367250577552824799*116512450474091930712395058543711880121999 42 Pedersen 2016 1178716096049947255759867292111279994625636964556046030596629062153822866816964551568448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*116994931493067265691289667309148532350087 1178719684564076399396292054613058843180131899157759911188609387090908569827874466927552=2^6*151*1451*1811*396737863502124646356327007981676999*116994138021238806278948063956091591477087 42 Pedersen 2016 1186496175198809145866208312458838494705584038601468715020587145787275082237819802161216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*117767152921180492689369854176059026645879 1186499787398814850539808506109649531736293571625807034108975558644803723747438222798784=2^6*151*1451*1811*396737845858403845778082003164822879*117766359449369676997828829068006902626999 42 Pedersen 2016 1233733122328965637788295654957357780329131130249191631907706181516740219139698641847744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*122455714833547996621134223460680582453361 1233736878338369349524178862536319593908679016919813008416677067496607662115113642056256=2^6*151*1451*1811*396737743511248565798504216466205361*122454921361839528084873177930415157051999 42 Pedersen 2016 1243082303387410498693733111352409937336617761782212925939856942412527379578013965309248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*123383679422404081373556882119674028782787 1243086087859705687504854076627643493463280217199477927868093611007448454604632771586752=2^6*151*1451*1811*396737724176711254957659341455114499*123382885950714947374606677434283614472287 42 Pedersen 2016 1244365614371953531487539023832605970921625480252323984146984828171620390163680103988928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*123511056049586875620770217660113562734957 1244369402751194265159330817167896861794464127587297581892952545658966308412079193547072=2^6*151*1451*1811*396737721545441877896390080037018207*123510262577900372891197074243984566520749 42 Pedersen 2016 1253408283244489147936607531187821105085621608613075698932317204381018855613561268559296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*124408597390374646224125690646731637157649 1253412099153467638652128926410374170752394675307274802341838184518443639679683480240704=2^6*151*1451*1811*396737703157322412462793136293691999*124407803918706531614017980827546384269649 42 Pedersen 2016 1256435208955352841877456391656843581947555596622367792419095874072869959336270920707136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*124709038664879898750636044667016457076359 1256439034079583179668997308802074978545629044111030455627779967345514529478066492412864=2^6*151*1451*1811*396737697061247231493519528002651999*124708245193217880215709304121439495228359 42 Pedersen 2016 1281046159778672267448781938515234310646926793553849647468448231295426085949119602702656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*127151829185177920481654017244719241026739 1281050059829125346325731024009764468125421506592978133903665681451467811928432699377344=2^6*151*1451*1811*396737648565390433949144606902378739*127151035713564397803524821074063379451999 42 Pedersen 2016 1360090950412518419490401078462855238648720610304073789903418325983615475227976675744576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*134997518148009225514122856036928192906219 1360095091109000661218354932272032769727520155541162765336605916771470682539370022495424=2^6*151*1451*1811*396737504678466338365751378518170719*134996724676539589760089243259500715539499 42 Pedersen 2016 1367769485959974919124294883242284519892423951615316180483178330655841430681450745421248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*135759660739725974240113539931617735179537 1367773650033191724432614574765447435188283773238510555362577769517054186070663767474752=2^6*151*1451*1811*396737491587307725293334883715400287*135758867268269429644692999570685060583249 42 Pedersen 2016 1388876052436355001646221068206966208527628043500663050186539419554935477932191836342848=2^6*151*1451*1811*328481*9085995379*132928044795118424699*137854619235018567985517471181382591748687 1388880280766955134474539852266406208151395207973239829148051314999388491936871233353152=2^6*151*1451*1811*396737456348463364145767594409801999*137853825763597262234458078387739222750687 42 Pedersen 2016 1388923499539371911496190395777497934590876348201053026456368653370633398874164284293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*137859328656214740953036645807467872389999 1388927728014421246412863298262307656655519796214881246363341223315026815664582595706304=2^6*151*1451*1811*396737456270453720291469738851723999*137858535184793513211621107311680061469999 42 Pedersen 2016 1393140740495556511341710564216449128646173645405024342336830537481468335494465092721216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*138277916150194009946235190273139050660879 1393144981809684576061678816059188424591500275168743625115357328226397204762851812238784=2^6*151*1451*1811*396737449357948132319771479773212879*138277122678779694710407623475610318251999 42 Pedersen 2016 1406048716889451941444165590515950976583372734665814932210057312765924090433851704613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*139559113394363935157610592970319624907499 1406052997500961134132950097021974986062959324228857085868560860343399385865134535386304=2^6*151*1451*1811*396737428458098854483160904748147499*139558319922970519771060862783365917563999 42 Pedersen 2016 1473627657959931735537781872764953922394571343171656266441396576434356931334039281756096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*146266745204441283534848802479162183591849 1473632144310537625609597717806318959409223749810325758592503573648674250013678273443904=2^6*151*1451*1811*396737325014553104097250352567183849*146265951733151311694049458202760657211999 42 Pedersen 2016 1477869572098459968638973693756539928344438778622308413013596455205974754100678190853696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*146687781665807765513378677741954922279999 1477874071363260270524177178174424726779534881872908441754261231365614086126895569146304=2^6*151*1451*1811*396737318836978900993894251413843999*146686988194523971246782436821654549239999 42 Pedersen 2016 1555424195210881709986027998069234935358402222757087075000423259379432549209029361784896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*154385562198724107243302632615693190227799 1555428930585006175662094161146200134627478571480712357835889450796101502313735335815104=2^6*151*1451*1811*396737211832361954194136800137371999*154384768727547317593653191452844093659799 42 Pedersen 2016 1573414617551782969686949004086486867921316611205834192499149160867096492719458518588992=2^6*151*1451*1811*328481*9085995379*132928044795118424699*156171223933859945080708876423032817041023 1573419407696420009113317272181712207232909255525241526216742959131790688808977594819008=2^6*151*1451*1811*396737188517712134004905469165551999*156170430462706470080879624491514692293023 42 Pedersen 2016 1600715794171889643211314874365309695640287933482912975306084185228080268787479888658496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*158881036160106291600039119790548062966199 1600720667432943241139714419725545190100010747859205571297279318391466047400349461741504=2^6*151*1451*1811*396737154137905639455358912578506999*158880242688987196406704417405586525263199 42 Pedersen 2016 1651298540398117556892878955160902833948896550313255676625320629168689439570640651804736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*163901689521251173825233067835257398920759 1651303567654607487620940208646919695255137848684963023868689265728831168367408966115264=2^6*151*1451*1811*396737093444445816729008858928026999*163900896050192772091721091800349511697759 42 Pedersen 2016 1669909177776004679100115202111202260581813330707516772842486912913188502620506107375168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*165748911470934261215553244377206446280767 1669914261691206072852660742320505367645886102316774650611897139639548288645052977680832=2^6*151*1451*1811*396737072039113152022612065691032767*165748117999897264814705974739091796051999 42 Pedersen 2016 1745665886254825811041205621708937565863996902957756948193418375827781522288892329517504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*173268237751725438845595276828108106652801 1745671200805733007648530712630715087714732316938833350977631549400225540783502054866496=2^6*151*1451*1811*396736989616546765794933682887123551*173267444280770865011134234868376260333249 42 Pedersen 2016 1746870896990590550155330513176619407347795619632090969469653307461928114651320173297856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*173387842590372888943736780464363426346789 1746876215210063965169755857812932405492828540438232667200749309451282588428539738382144=2^6*151*1451*1811*396736988363267493784007666491451999*173387049119419568388547749430647975698789 42 Pedersen 2016 1801101711245535042108095123817806215030269619058206355084969434405997778768280609132096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*178770589478985524899634748088871519729599 1801107194566718564410357499604644064170075911331513105690124972299848299332626194067904=2^6*151*1451*1811*396736933696189589026141834682311999*178769796008086871422350474920987878221599 42 Pedersen 2016 1810915070476507797190606236020722934463864668490927400037201001797458827363678898035776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*179744626649422082901256360070304727256519 1810920583673738972290540485872169452380286728821227640968390132306259024199596017804224=2^6*151*1451*1811*396736924153736067871809993399476999*179743833178532971877493241234262368583519 42 Pedersen 2016 1850307862232101351525918002762621445647937006792156513889816928438282388594494199862336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*183654607168234850581822761103539867005159 1850313495357778634288343621663645277210754001819824135713748381569363382293873702857664=2^6*151*1451*1811*396736886867093103542384414354651999*183653813697383026201023971693076553157159 42 Pedersen 2016 1927224488686616729825444679268119825286358906669799822548151935776826155568012914998848=2^6*151*1451*1811*328481*9085995379*132928044795118424699*191289062549713370681027575545478209362687 1927230355979284455039282739221789032182446036247454900151690621172186194952556842697152=2^6*151*1451*1811*396736818456657496547251625684114687*191288269078929956735835781267803566051999 42 Pedersen 2016 1945596485166205549758635934472521619771611064130113573793050725177809981381927442507584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*193112597900357540029326872042055795712571 1945602408391060142121159379060911683221180583196186521528404021282299322990808481716416=2^6*151*1451*1811*396736802916709369551973718717051999*193111804429589666032262073042288119464571 42 Pedersen 2016 1952596768028984947345954014874433863720477808013135418735179927929597409710103139543616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*193807419678653052486720195531924341046479 1952602712565683880571252879582082934848934654563299969309746537250017293032425720616384=2^6*151*1451*1811*396736797072463150548671160718848479*193806626207891022735874399834714663001999 42 Pedersen 2016 1953964263326091657778697617488333635808359079232170083579827587180756814890056268274112=2^6*151*1451*1811*328481*9085995379*132928044795118424699*193943152124437276163361516702721571227553 1953970212026029060089060208485638131620970625505260332920829334009521141068781754893888=2^6*151*1451*1811*396736795935687135006717637038979553*193942358653676383188531262959035573051999 42 Pedersen 2016 1971558597396700185070985595690119248068447888434604144619483649593698887128046240476736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*195689499625888345433502637989199159613759 1971564599661288665647919793038487034095865339681546678165830227100424320883994033443264=2^6*151*1451*1811*396736781450478814943650275413651999*195688706155141937666992447312874786765759 42 Pedersen 2016 2032801600208302022091187070614437074587789800500283238047926716017474520227301123727936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*201768250007243505922202932460994489016559 2032807788922690956825987765160905060189265130306975135807783749595800320480585447792064=2^6*151*1451*1811*396736732985290194696731658889168559*201767456536545563344312988703286640651999 42 Pedersen 2016 2034876364607600509805350832453963048616266576991637511755884433310622940810018048354496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*201974183327042589775254168050692053058949 2034882559638456477167609934738941737537387220786867457022408686169591327025415910045504=2^6*151*1451*1811*396736731394496730587029894224375749*201973389856346237990828333994748869487199 42 Pedersen 2016 2072827021259502121310586170636163440897072640618379488918623764549025451438649107896896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*205741022933276322976236045455398467030799 2072833331828330346800946369897420135057044839598979707231753426837655315029151365703104=2^6*151*1451*1811*396736702858293559548922703489921999*205740229462608507394981249506646017912799 42 Pedersen 2016 2080171154542236499247240241122408344272383668310857933042660875314820222131237931452864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*206469974012479244668269697503425358588641 2080177487469736282481050259766447168207087226957352729641765109719301679735876422211136=2^6*151*1451*1811*396736697456271597928915104437051999*206469180541816831108976521562271962340641 42 Pedersen 2016 2110994815922092499110948059471252680524455803317993517540323224232289939184814976156096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*209529414842706903878516663162394171566849 2111001242689953624848410023203945875835148883403036598742863422851439272135113779043904=2^6*151*1451*1811*396736675193672289625551975697211999*209528621372066752918531790584369515158849 42 Pedersen 2016 2145242219212070006628216147661907894949983295488807402878678733159745837998113223548352=2^6*151*1451*1811*328481*9085995379*132928044795118424699*212928683432618974480370926141297698564113 2145248750243621943419860197056649815840303475716061768908510665246562563678592811139648=2^6*151*1451*1811*396736651208549225742070862126316113*212927889962002808643449937044386613051999 42 Pedersen 2016 2177533140017469494655347806224196881788965028728416197297597308304688034494764661051968=2^6*151*1451*1811*328481*9085995379*132928044795118424699*216133758921225595520508805693677548209967 2177539769356345766419077975225031345579679035790186326395248818646518034319306270404032=2^6*151*1451*1811*396736629284687678434977066717961967*216132965450631353545135123690561871051999 42 Pedersen 2016 2284851183620184191062992365394867170730871843765851858333450633768132564610266612831296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*226785744756784741203498022559878299719399 2284858139680920859035031025017336683150842499861387293272171691126765864496357591968704=2^6*151*1451*1811*396736560873420271712520336669506399*226784951286258910495531063013492671016999 42 Pedersen 2016 2317657893753477471293681676191982299110463175524589308055885935469921460455506883376448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*230042015556360656381848990846644039339587 2317664949691821001990733624930470850034600041451045459995732903426701195119620519119552=2^6*151*1451*1811*396736541224763390340517064005114499*230041222085854474330763403303531075029087 42 Pedersen 2016 2557499072488402122194834367148573154340748042768000725882259255434697235992202077752896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*253847749922204066327497506160227397444799 2557506858605506700599645458097736623931014618152214142848744735744855553436122683847104=2^6*151*1451*1811*396736412892418911472944330019571999*253846956451826216620890786189848418676799 42 Pedersen 2016 2596432174175871155074462888491304318481303022136223368074185519402347498363967063928896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*257712103331818528071654118706879359063799 2596440078821929367916096251940269231104293133899071548082176099220420723884929345671104=2^6*151*1451*1811*396736394297106038809226708748520799*257711309861459273677920062454121651346999 42 Pedersen 2016 2684885378290848316807313290193755650030233040090858563495815335308681024866892483226176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*266491636071257368339198165053883297959119 2684893552226155907279680540276362924944853088721482052087112302025816068587109651813824=2^6*151*1451*1811*396736354054352055603270432658911119*266490842600938356699447314757401679851999 42 Pedersen 2016 2715165164498052303580094981735356852031641446167514047442664687198770840535470978821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*269497093895077939256138916527696656871999 2715173430617933428030691609637543186472975487121749149015407681418561927375518845178304=2^6*151*1451*1811*396736340880658091111174677299767999*269496300424772101310352558326970397907999 42 Pedersen 2016 2721626561653912796210677523515942432399685916600936259055008043312459679032142985871936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*270138427902590605932598627878510885352559 2721634847445040513047979083221207003113245374305159808639074684473773148633555297648064=2^6*151*1451*1811*396736338107475975667782398245504559*270137634432287541168927713070063680651999 42 Pedersen 2016 2736385313024753276624461975583094506424893501810159214102533500690982292973325022245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*271603326117980316667175047140239399215499 2736393643747809894969570132893086970902092006746421845315239031709711536036433953754304=2^6*151*1451*1811*396736331822254894401591246647675999*271602532647683537124585398522943792343499 42 Pedersen 2016 2825381521668435261144122115916336714420008159007452478666413393320273279833587173577536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*280436755446978882462377607162797944136459 2825390123333878454428304134917714428865044530932887965839560812771904581053062098742464=2^6*151*1451*1811*396736295313769883523648666056100959*280435961976718611404798836488082928839499 42 Pedersen 2016 2950671773030582018696697611465130132555199627433570106451072522836475389710299863788096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*292872595106745776410494443034295818843599 2950680756132945233449434864007850731467547691567315168230869696054152110189761627411904=2^6*151*1451*1811*396736247649186991241602184548485599*292871801636533169935807954406062311161999 42 Pedersen 2016 3011187271711427908323714017816200488652634482990546835598168066709314774531321488645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*298879136161169756298844480755632566127999 3011196439048758963191986107967802442761305468768405334576881240905194613202104687354304=2^6*151*1451*1811*396736226047664898621312705622415999*298878342690978751346250612416877984515999 42 Pedersen 2016 3031320251556389277442016569779255854743264345241476824489576980001414601129865624818496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*300877460104998167888568645166253016818699 3031329480187091040931286503495460609867186078818258325461826035105819985360531405581504=2^6*151*1451*1811*396736219052228214495008240974490699*300876666634814158372658903131963083131999 42 Pedersen 2016 3097219423010719587570371998615227982140327981843257645329425290180254096271931726419776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*307418364293535327179704707285955728465019 3097228852266583470422641813539229165202513438392909539903036417516383299128782421420224=2^6*151*1451*1811*396736196790828408090501087175417019*307417570823373579063601369758819593851999 42 Pedersen 2016 3189559119139022740608803180893952325741192500995200306635180320402304036634821305366976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*316583655629442981461107193301361647585569 3189568829516273993744818959555587231825111621767443613189598417731650779050271748073024=2^6*151*1451*1811*396736167145106140545584758446537569*316582862159310879067271400690554241851999 42 Pedersen 2016 3190401428182158647328357813334331549007067883112707568308597581023023147044318716821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*316667260060677880483927741025210093715749 3190411141123757594135450651535831702327933590318690829580274010603735592105695107178304=2^6*151*1451*1811*396736166882580545260873400475707999*316666466590546040615687233125760658811749 42 Pedersen 2016 3218003943674756633267685850027013330542593290802614400900172079137556774867475450245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*319406982051337782035716664259995395277999 3218013740650176087856098893980079000519173294965185409756533697691473465448427525754304=2^6*151*1451*1811*396736158355646166762097028391755999*319406188581214469101854655136918044325999 42 Pedersen 2016 3258157923699085233569966246366826609761579439319740625669000358186013202658719119903296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*323392515258072959769722933443696107512399 3258167842920332281021484162902349884381486303778096025151456630087422639757658940896704=2^6*151*1451*1811*396736146209289677047675200395474399*323391721787961793192350638742446752841999 42 Pedersen 2016 3398038169847993433821273696505141859566350441297259059057358701917242419787963247045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*337276502988678645857219268081073838852999 3398048514924322443415200739948559865794978583211874563399325185937536508701546128954304=2^6*151*1451*1811*396736106138117582058910103916635999*337275709518607550451941962144920963020999 42 Pedersen 2016 3437328023735903689487134186697452877843697753175817779721210525624901761204079050179136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*341176266281462169912153614668768100469359 3437338488427292068543124569763705122285611385607692213502700113644086790714367418940864=2^6*151*1451*1811*396736095469524751201223308068621359*341175472811401743099707166419411072651999 42 Pedersen 2016 3604920452505033625666315790519100718411513555873217635527750218570061240166982258821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*357810861149818205369841407940949383121999 3604931427419197947910075128069595040005517373130139820761196457035912262541447565178304=2^6*151*1451*1811*396736052573840413870211866204267999*357810067679800674241732290703034219657999 42 Pedersen 2016 3634626664108252305481843330983657915430926345413835449268743681677757156624694341893696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*360759388113252374442066517181522863039999 3634637729460784627210119867913364710976652234784895794423556757947175459768337338106304=2^6*151*1451*1811*396736045383200114121303965600419999*360758594643242033954257148851508303423999 42 Pedersen 2016 3637415330603777670184984123588685101652923944185967062537341986895359846301393579055552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*361036180673135409234599365429343982730913 3637426404446199248705248958172829296825079127846293419534046374916837497812278241232448=2^6*151*1451*1811*396736044714210072472595909813051999*361035387203125737736831645807385210482913 42 Pedersen 2016 3690724984034623217084441481377480439932318332390264965157897851137493339395437954515392=2^6*151*1451*1811*328481*9085995379*132928044795118424699*366327496598965140479232249416311820783873 3690736220174348783751375807218551107895681843324790719052434807031235522298707906092608=2^6*151*1451*1811*396736032119823044800530431366333249*366326703128968063368492201859831495254623 42 Pedersen 2016 3726486431733668686130810324621167163146320665672137206641059375103003126291722646674496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*369877043548958977266313819385812289920199 3726497776746481484498651231465378517856138539820858375351054858865282600564094671725504=2^6*151*1451*1811*396736023873134704511365979047567199*369876250078970146843914060993784283156999 42 Pedersen 2016 3800240280141214837923007583443977035625507347877084548132478721547140953047493336179264=2^6*151*1451*1811*328481*9085995379*132928044795118424699*377197573463420491412657448946771694218991 3800251849692173824448264479377752965659553365497754722693019087468852862625593164684736=2^6*151*1451*1811*396736007355427485119028519447970991*377196779993448178697477082892203287051999 42 Pedersen 2016 3949822257579770790599311418605008082152284067546434618879142598218450551540712967086656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*392044518594370686623718782666721279360239 3949834282522016366255137820284065736255094392208413951270786603576924402627206566993344=2^6*151*1451*1811*396735975749665862817329662850712239*392043725124429979670160718311009469451999 42 Pedersen 2016 3956115941604754748472715625167971423726860174801671387981581484280553188544850855916096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*392669206026577269961903065353432403975599 3956127985707656671917570518959359461858671891463464686355698907666029059713258379283904=2^6*151*1451*1811*396735974472245257241324659419461999*392668412556637840428950577002724025317599 42 Pedersen 2016 3973556355687739799817779534774271947164144864172811776583149391454288627062382853074496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*394400276008303471353703693030759118395199 3973568452886694763209848173735497808779805804400521002575061111126872109124621665325504=2^6*151*1451*1811*396735970953531474949692795115031999*394399482538367560534533496311915044167199 42 Pedersen 2016 4209122011561302593280817872580867227576587569445478510069052947630817239564115612286144=2^6*151*1451*1811*328481*9085995379*132928044795118424699*417781638037213190007835242532002881505461 4209134825922504917251429359483548183960180437256305852006853960160989592212965394817856=2^6*151*1451*1811*396735926283471052374235228757051999*417780844567321949249087621270725165257461 42 Pedersen 2016 4579054098789396863328296446466730242160116532725066290779886723167801679701567330172096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*454499707254539213807651014047975536583349 4579068039381526456625271704937207365840881446408040993032880694312344578666157393027904=2^6*151*1451*1811*396735865409729128933638190438575349*454498913784708846790826833383736138811999 42 Pedersen 2016 4583729565214785316594116686072344317927230203445407344323317066746315802616804176956736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*454963776487130128727657818354674818796259 4583743520041027249638254682654781296606037352717561848695019600692742305283483136963264=2^6*151*1451*1811*396735864703240191839486285020948259*454962983017300468199770731842340838651999 42 Pedersen 2016 4613738503292620737791486681189343526619083226774858298529135002181986397919290840156736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*457942350943151878986784721019991091783759 4613752549478859071822844397037617490583852453903613382342538018167623909473470073763264=2^6*151*1451*1811*396735860202811961598447716588651999*457941557473326718887127875546225543935759 42 Pedersen 2016 4651364275809879093206568101893726474214564841196743546845169693976268917701216888100928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*461676943770705700490254866943440656069207 4651378436545003923825254733607139069765009788672246080445088560642481086245002185435072=2^6*151*1451*1811*396735854642140256516033374813946207*461676150300886101062303103884016882926999 42 Pedersen 2016 4656172476161870742496622690148077570510615968520255052983671040866643760079447726066496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*462154187674196408314109905546893288230699 4656186651535206552584534291041129970390111778401928911968402342825320586964058808333504=2^6*151*1451*1811*396735853938017642596086418245019499*462153394204377513008772062434426084015199 42 Pedersen 2016 4791381832300948933934824093944370072403843184055758212535928067719797486462025150546496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*475574560410026831850519275328051981913199 4791396419309186925706300133965160265199531613763511549315734624481186579702752423853504=2^6*151*1451*1811*396735834716307682170292644123581999*475573766940227158255141858009358899135199 42 Pedersen 2016 4876146926298977067825732186508338972450249904775215745944105739934149853701279002296896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*483988025194750090017402936373348458130799 4876161771368285481446244695049854100438980306978980284931462480506827382580332671303104=2^6*151*1451*1811*396735823209508104111897275111512799*483987231724961923221603577450024387421999 42 Pedersen 2016 4921986457706801826691673196510863454809862941024461443575790839467331360859022177964096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*488537884872330593618543998449816556212599 4922001442331179252733852021303593982262936076935514221187074510445633769278954961235904=2^6*151*1451*1811*396735817151944139681309391683004599*488537091402548484386709070114375914011999 42 Pedersen 2016 5104627320044060445773116889913480491111696909231591447442205900246586631218165710162496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*506666130722701033739142757846204560517199 5104642860705058778753258548941219871572208911107224922598951797533874162669396632237504=2^6*151*1451*1811*396735794096765949943385428122731999*506665337252941979685497567434727478589199 42 Pedersen 2016 5237740199208143687779787180441540711704960441554530697447263820483889552745602272742976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*519878415030038551077232618334349596848319 5237756145121474836159982061123797934108160902357360293058299295047214001523400028697024=2^6*151*1451*1811*396735778306588557514787152356851999*519877621560295287200979856521148280800319 42 Pedersen 2016 5340137498135228486404594254052323965014506291839786800338912839501335378486067728356416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*530041986235349192522807869020176732584679 5340153755789576167418712109404037900019528474354850539448132831475563439845686706203584=2^6*151*1451*1811*396735766695659037083940084574376999*530041192765617539576075538054043199011679 42 Pedersen 2016 5388456604104862478344540707414971818850148630474817840380118419102707916309219887502656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*534837959168668702190932215300753578476739 5388473008863160856806986285947527674896741320473718332656943415458341345638962814577344=2^6*151*1451*1811*396735761369956402072959893239828739*534837165698942374946834895314811379451999 42 Pedersen 2016 5402826800197759556302261513085210526076515701679063933848236791161753799115561190436416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*536264290846894291779900421387992638479679 5402843248705058979831204460954399376822114187854255286334904474966567913914789084123584=2^6*151*1451*1811*396735759804459903557154013071251999*536263497377169530032301617207930608031679 42 Pedersen 2016 5534292906171822034069269168453618763607202394538530957883168199490710139112781477244096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*549313122633988176888868117851421988751349 5534309754917974878182194757028095723822897820329963413696211782584736557451417101955904=2^6*151*1451*1811*396735745859880203407800109287543349*549312329164277359720969463025263742011999 42 Pedersen 2016 5598800119950436723800167514265700840366780855308651827099198099508209957027962532543296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*555715866332940660641784844787590944609899 5598817165084039312587542279451056561182156084790046121170158233773659214314750248256704=2^6*151*1451*1811*396735739257113354776567127857634399*555715072863236446240734821194414127779499 42 Pedersen 2016 5669623042813192791126147846717591641583838697915061365252212843431260149673662840863296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*562745483588727946844984278085493534752399 5669640303561955138859107911526869250867506874428212885929415511954345866625513299936704=2^6*151*1451*1811*396735732180923808954217554701714399*562744690119030808633480076841889873841999 42 Pedersen 2016 5834389350706146366963588154004080669441742650826036455570119634803962037699219350340416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*579099568316086153930616944819205420943179 5834407113073768304478619326532561068991304248443719684286495861571241553770787116219584=2^6*151*1451*1811*396735716383235554926155387805495179*579098774846404813407366771637768656251999 42 Pedersen 2016 5910857163018700357850770525840702652036122912065407149726381097436965568096235128293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*586689476091938639331047033425319859952499 5910875158186931218819386223801738810046580819538277728950175031791706446011823751706304=2^6*151*1451*1811*396735709350772205004480577451032499*586688682622264331271146781918693449723999 42 Pedersen 2016 6036284638649649961696446761453405163334486587236296624115365853342172994927317839314496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*599138936117102745051688943428022907955199 6036303015672569999157994163958165522195846083949242985265881191329009486096274199085504=2^6*151*1451*1811*396735698201483508860872351152727199*599138142647439586280484835529622796031999 42 Pedersen 2016 6050771745288622472792148597618282255882600765463921742186527027461474675935705581705664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*600576871896922220731975037298874339111841 6050790166416469081274674290553950435541740892255868789427594003077313532039871466358336=2^6*151*1451*1811*396735696943497501671155534812833249*600576078427260319946778119117290567082591 42 Pedersen 2016 6217355278914570670711898769374535423468044646963799760362112493335979928177723432024256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*617111327623583499793956259363910170008389 6217374207193686446268188000207933735228115630442266241035892638907149896375900626855744=2^6*151*1451*1811*396735682899516796234041520985516639*617110534153935642989464778296340225295749 42 Pedersen 2016 6311827904019700336307698491360696829712204086123138397173144761233740275582243475533376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*626488325476742973918645527076631188825919 6311847119913748276735391071899252318741134071787988207156950818935527221026650845106624=2^6*151*1451*1811*396735675264329013609767266872851999*626487532007102752301936670283315356777919 42 Pedersen 2016 6431269150657329021432254422452591113127279221906406229662885822636798404679186337500224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*638343614901096249007167985127253919796231 6431288730181433934881947547352602467137444277473280610308886314132461651726067761443776=2^6*151*1451*1811*396735665932279403412926398692923231*638342821431465359440069325174806267676999 42 Pedersen 2016 6739876204066484626616203413243862683533219263538516662252796144291511371886260931538496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*668974791647452962519869116132992642811199 6739896723121979009793394317269966301955017306287997407810735153744073865520202658861504=2^6*151*1451*1811*396735643351873929085746556537483199*668973998177844653358244783360387146131999 42 Pedersen 2016 7335503277008163399439863764972141511525054956984294031547582730103872176501168649721152=2^6*151*1451*1811*328481*9085995379*132928044795118424699*728094497255744766334570993832851999098563 7335525609406305867665452516620458411918325728616387908470749999387740527732428239366848=2^6*151*1451*1811*396735605142758122160359164626850563*728093703786174666288753586447638413051999 42 Pedersen 2016 7414954962551857713828242350989266379230447095157701892236222889623497442635382487606336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*735980573078704726403261780311950914741159 7414977536834790856654722094686184550727375378361801760320967967379972797124345927113664=2^6*151*1451*1811*396735600510006623545976924594651999*735979779609139259108942987308977360893159 42 Pedersen 2016 7468798961032522753183910869191526597966910687704207828450066077238592379926500715057216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*741324926086751957185891423593075902069879 7468821699239533937333267932540689716903145964890858362444967392156112748909155517902784=2^6*151*1451*1811*396735597426447168327993349700246879*741324132617189573451027848573677242626999 42 Pedersen 2016 7657582072609944737472365436405155134689586207137206617947721340820173831862354576409664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*760062828521497916605259730623848725431591 7657605385553201154478796322003417657765972334100243927166766813809114950479909063654336=2^6*151*1451*1811*396735586957693079009898021629183591*760062035051946001624485473699778137051999 42 Pedersen 2016 7721802937562543665910852705110250378840669257842151190142348692485971016435341310632896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*766437150311735399122075720310134856821049 7721826446021481968083593935667932466811938116585364023009530107936907730042737690967104=2^6*151*1451*1811*396735583513083209813863578281053049*766436356842186928751170659420507616571999 42 Pedersen 2016 7731798159664416002995372055914514643880038658895879540852683203072334375922474716549184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*767429238507514982161644625012427543780471 7731821698553070041380267425828067102461374039360610761122674337276935658980623524474816=2^6*151*1451*1811*396735582982116264471516017233157471*767428445037967042757684906470361351426999 42 Pedersen 2016 7795645239803714482067153729565976152300446136414772982786567620846594247875723193413184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*773766459821419118718283396563741875921471 7795668973070090138270707312124853042381351090379031154438802697718544825705637319610816=2^6*151*1451*1811*396735579622553819041210852362173471*773765666351874538876769108326840554551999 42 Pedersen 2016 7886777960797139098781268708501520763062083952514666624411726752985677636669762973912384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*782811951339803142349247674706544633548771 7886801971510355438792217321308610283154126073395995737745792200540203974453961340711616=2^6*151*1451*1811*396735574921481900694347822530738271*782811157870263263579651733332673143614499 42 Pedersen 2016 7895635984473948960761978815061467439929525120258044998331957800897978811584774667624855=3^4*5*11^3*79*601*473861*58309019*2182799234136439*5115074712196979496310276887101835458934681917359 7895652782230537637686104730552144444551002929438329990907439235850009695346790040215145=3^4*5*11^3*79*601*60311678900423279917862410159*5115074712196979496189653657612216553864239697599 42 Pedersen 2016 8037608775718891163051271048897190072265355241641684296022262788141590061754219583612096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*797782851387702492728684517521803745443349 8037633245625387607400989005709870362630107827135893999958121186049926444132358259587904=2^6*151*1451*1811*396735567375116695311573763792341599*797782057918170160324293958921990993905749 42 Pedersen 2016 8205129149007834751215781921881034703971918339267951041465957243451466478324102629485376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*814410294299793272747692714992258050901419 8205154128917739549223056474038476799779541721440956038746815680859533085962971787154624=2^6*151*1451*1811*396735559318929651295361175482539499*814409500830268996530346172605033609165919 42 Pedersen 2016 8278751217280076454835448297865754768603002937916790638605569379903766445526751529106496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*821717744213096104372098418030477002928199 8278776421326932548468159851648162329880649330779290056667799230400464311019908925293504=2^6*151*1451*1811*396735555881514907724646281541775199*821716950743575265569495446358146501956999 42 Pedersen 2016 8419568475371823187871451082780666633886196151376231143921962099354890675408863808453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*835694736228981300798137315130357599804999 8419594108126424923493293383639484846176142194310853183953702562244891605251874751546304=2^6*151*1451*1811*396735549474210215013783746690564999*835693942759466869300227054320561950043999 42 Pedersen 2016 8681062742012321210599852940644262607300355654336691857077583256817726811281499565694272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*861649674754007222789435962445637943175843 8681089170866911462640164491548599901978861997650644001966921476732695346559738657153728=2^6*151*1451*1811*396735538127405719211431359149365343*861648881284504138096021503988229834614499 42 Pedersen 2016 9201778243900280031773082066638927829783135949546500830367417164497769158382658988751936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*913333939247310955154484661734893236447559 9201806258034771059750313634695945741865138341840318375791263446066811860771753534768064=2^6*151*1451*1811*396735517453148002116130071746276999*913333145777828544718787298578772530974559 42 Pedersen 2016 9353185086611124148868917765879443727941710966631975520124454665421072874312126762617536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*928362013649534276704871070977228676427709 9353213561692569356616065595733363373984822631401060847808069049709479311552604429702464=2^6*151*1451*1811*396735511873738401560880045493860959*928361220180057445678774263071134223370749 42 Pedersen 2016 9420839436677771966629588543543569259539981538924881688151826108645735351718314364452416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*935077130273274732177730170246863638183679 9420868117727890993104197472430092545311804069434154464385181719386163266563191878107584=2^6*151*1451*1811*396735509438617007851257219598751999*935076336803800336273027071963595080235679 42 Pedersen 2016 10375509137433371626643193691082425332178206185121449650812053706718577720874983924376896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1029834058266964877356913572664110127463299 10375540724904910796029743014991304333347222330363435592559664044745351464547303589223104=2^6*151*1451*1811*396735478462420870093068556178171999*1029833264797521457648348232569504990095299 42 Pedersen 2016 10474629919145550574958178520893495862848744416337642121755673720993722154362384280804928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1039672414682744450986843715098429042670207 10474661808382991523329124977972287898938165018969204541806283330747265251513225384731072=2^6*151*1451*1811*396735475569806606496557515773551999*1039671621213303923892541971514864309922207 42 Pedersen 2016 11236699600631276952389279139464293461720164389101898555140664770533523965609753441387072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1115312588323495455060920047599361017746543 11236733809933599145615057633193770914698346576050073192088294690251861525083856595860928=2^6*151*1451*1811*396735455034977316799381556314301999*1115311794854075462795908001191755744248543 42 Pedersen 2016 11264260311443049834088837109244251216630011558229186033044427228099310531616784934968896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1118048160938588489522650538634550557948799 11264294604651921270787291153706144630810385880418475948446105673856704589624129394631104=2^6*151*1451*1811*396735454344383315108966539107971999*1118047367469169187851640182641962490780799 42 Pedersen 2016 11314973406204943375239699975251755612645700559564611487432208060446721889147566441196096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1123081752205690138718142999282667908795599 11315007853806087637865221444583082363735356089809050263688576904991865885695692234003904=2^6*151*1451*1811*396735453082446147438014524469637599*1123080958736272098984300314242094479961999 42 Pedersen 2016 11618114952525295525359501355808530452379102870777808673811970657907552760959529380658496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1153170443251230276581367740879158703153699 11618150323018496447350344055259676094431119673965351648678247335066768241502315969741504=2^6*151*1451*1811*396735445768865172259746628724825699*1153169649781819550428500234106481019131999 42 Pedersen 2016 11759021996276270820036123827443106613208533528999561499909947412886117497591525504056896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1167156347054343718622669447742988671820799 11759057795750563194611116335867840364471232776984109517048827942182109430862522649543104=2^6*151*1451*1811*396735442497721392781531298597452799*1167155553584936263613581419185641115171999 42 Pedersen 2016 11779952486673155991391966493935502661937807940239796545782469521100781877219552672658496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1169233828899468295923949499697413027716199 11779988349868781069261892295840001040580296965663772931872818464705065329018708677741504=2^6*151*1451*1811*396735442018497504939242561647256999*1169233035430061320138749313428802421263199 42 Pedersen 2016 11942837862375016989451756261541828841476486786146811227815074687584177602649480029240896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1185401219363825061670124909212842411916799 11942874221463142471616904817760808394130270743456845689982318221060526752862813756359104=2^6*151*1451*1811*396735438346479450779331687726448799*1185400425894421757902978882855105726271999 42 Pedersen 2016 12164225649103363949813874136116564849581864886861410610415393674723362657724593635896896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1207375339364802118014175480790225917780799 12164262682190260940098576888237136597147176852331343285566483132001151334986150837703104=2^6*151*1451*1811*396735433513272076340154816237412799*1207374545895403647454403893609360721171999 42 Pedersen 2016 12377352269971696587716536682455687862151031864347550551709655909166871477888177746516416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1228529487078063603524446001269031309280929 12377389951906855551885810481132146220885971796625690576789749459372561975368080368043584=2^6*151*1451*1811*396735429023759012372525137896251999*1228528693608669622477738381717844453832929 42 Pedersen 2016 12581667477993594558780223851437448826278105216406892207072673515917980697966606829983808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1248809047054905416502691337259918933155927 12581705781951319637490616434679028736156231051308290083166107182243305684968719197792192=2^6*151*1451*1811*396735424862655829042638721002926999*1248808253585515596559167047595148971032927 42 Pedersen 2016 12597074024605296321254052472201385290246541059807457564287639871418733353120577762171456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1250338242992265735848148781848068405991439 12597112375467115085182994816637783020249930583331545935716076039777926957775722802308544=2^6*151*1451*1811*396735424554357510587611719669343439*1250337449522876224202942947210299777451999 42 Pedersen 2016 12957027126866357022275234666727223206520047653864402317586202412805337482598262262916416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1286065835650816601521185471627920844162179 12957066573578820077538106862811609237530057793826602610604092104570678572218063051643584=2^6*151*1451*1811*396735417560052011070146101699651679*1286065042181434084181479154455770185314499 42 Pedersen 2016 13055457683672833859795593412611771227902634149605523097425713464336937652106843688364096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1295835682935493238704199462648668776312599 13055497430049859928330527390328588874471742364457118246363575440624825139365712650835904=2^6*151*1451*1811*396735415714585434410979182863104599*1295834889466112566831069804643436954011999 42 Pedersen 2016 13499381497802653347549717368522531165515414422345921542800366606263914099935352270975296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1339897892992951019229326551506071712242899 13499422595672956386391945080845168796001909639836622283791553070045814170590491645824704=2^6*151*1451*1811*396735407725884439819121553465442399*1339897099523578336057191485358469287604499 42 Pedersen 2016 13885101562329742627129316096602734159278573175579931950092190923935784338530523811045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1378183017524699212584878209518347959540499 13885143834496304186735952273796242315463007531906427690803261454277821850978857564954304=2^6*151*1451*1811*396735401199344939118747826283548499*1378182224055333055952243843744472716795999 42 Pedersen 2016 14089933884725578625834273609598209558238674148656418112884707038206251263327287975954496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1398513904331602737283623684909991499490199 14089976780489022832587726721130715314688349820449299112724386324672776912850190782445504=2^6*151*1451*1811*396735397878763556631613931590762199*1398513110862239901232371806270010949531999 42 Pedersen 2016 15104473786655537961872813805294667036163955678706126014034725219129362456572112507621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1499213323573476834067150647952793081884499 15104519771110809535838744005930130931457071581818996497252508582778059783638019716378304=2^6*151*1451*1811*396735382759584767991450124145147999*1499212530104129117194687409476619977540499 42 Pedersen 2016 15758237036015940315278934197750433757010712219617895417944640594163775377617777280584896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1564103407647092677534065394623310404146549 15758285010805156854094615211709349147734867242848557112374597507294157363588849817015104=2^6*151*1451*1811*396735374048327077495359793765965749*1564102614177753671919292652237467678984799 42 Pedersen 2016 16060452381302547385125929946537058182002284390788135957865070081765888909588739071621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1594100167457575495847132945281326671321999 16060501276164069918019653598432640485100611995640866701247758253210649560009265152378304=2^6*151*1451*1811*396735370261070967111685789264427999*1594099373988240277488470586569488447697999 42 Pedersen 2016 16117206408289205972478369421454415175177021747141059995538161477904921016188183443794496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1599733358962732009629299179867613826325199 16117255475934173484131017074013606020670364325906823175443851003258466969425319634605504=2^6*151*1451*1811*396735369565690161690512072064281999*1599732565493397486651442242329492802847199 42 Pedersen 2016 16415128904393620282235334897184270334859374959672684306229392333754027941801283295772096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1629304026690766986597624254051616158920849 16415178879041631396279256788883824005509691499769105428157514067174667398525910227427904=2^6*151*1451*1811*396735365994254886177576308568343249*1629303233221436035055042829449258631381599 42 Pedersen 2016 16448789811958807927743288440013328652619277026865876233968661421373651918405837978821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1632645081918383664279904917535401297496999 16448839889084966920031917525892983204905210690924896587746933629030198200521151845178304=2^6*151*1451*1811*396735365598869041120163752722907999*1632644288449053108123168550345599615392999 42 Pedersen 2016 16738519513622076854269674246588521241385691171947825151247788380940118053784720837526976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1661402563648882242104583035140096273875569 16738570472808921651560300175811691184084146860728189315908711827325307129624347895913024=2^6*151*1451*1811*396735362261412926026143916215796319*1661401770179555023403961761970131098883249 42 Pedersen 2016 17146480312112540852265166197024481468153699140327086219518378444460318062795122909102656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1701895219879841489111617127888313446064239 17146532513305916675764109256486149276624766969520669174127442732525973679502416592977344=2^6*151*1451*1811*396735357753246599310170886326166239*1701894426410518778577322570691378160701999 42 Pedersen 2016 17550382529402322780619003134356224566654813318794822887509134583497582386627927820559296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1741985036588099649073176219009046940782649 17550435960246178812210345605290545493053752050121555675606426148239736179570212928240704=2^6*151*1451*1811*396735353496398269724988090487894649*1741984243118781195387211246994907493691999 42 Pedersen 2016 17682916522038334952162914182806082089583429952623415327418229196834330761346134335093312=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1755139862793421849081696545299796540841103 17682970356372146503963870095828905092511065478616265496756746640368719365930074849674688=2^6*151*1451*1811*396735352141956620164793947058593103*1755139069324104749837381133479800523051999 42 Pedersen 2016 17785667233669737091686753719985443233885086772703392691822969961867306086434308162821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1765338512416062115985853878840367877871999 17785721380820504061754615308966507910793504028199359792574070285943611929098313661178304=2^6*151*1451*1811*396735351105778834413195550756367999*1765337718946746052919324218618768162307999 42 Pedersen 2016 17960325196395792557748838904992266710513982959090389900157443790514194469701136565714496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1782674405641183286278172495003156569555199 17960379875279831950469715635305671242908866473323152053210429981553545383966602672685504=2^6*151*1451*1811*396735349371665310086925716018531999*1782673612171868957325167161051391591827199 42 Pedersen 2016 18583475733580271798402295319485549818480191404533799602929124341051640680242395331653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1844525986910059840048423411243241189354999 18583532309600114090343123555001808629039735481324618737195992853829424689036096828346304=2^6*151*1451*1811*396735343450252839536105420988443999*1844525193440751432507888628111771241714999 42 Pedersen 2016 18813942242324080226661631170456114957495110192261807472673440455873631862883105034821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1867401226751347032911382070668012417746999 18813999519982192915579430253189295511258119123080405481416974895538634242273772789178304=2^6*151*1451*1811*396735341359635541640277028724507999*1867400433282040715988145183364934734042999 42 Pedersen 2016 18885983026047615576444097368885138964121657834390194536558237849968388377200824399586496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1874551724300915360722494819514944199516949 18886040523028575499589313663102651352435985908785461997062781484681513948337715094813504=2^6*151*1451*1811*396735340716603682361013980209425749*1874550930831609686831117211474915030895199 42 Pedersen 2016 18930850259433813428275695885898405286414289075621561124517569841225190119081006691603776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1879005077329598567360863309875215156686019 18930907893009752822315937189235167507394101484544134577979644722771172241247073088236224=2^6*151*1451*1811*396735340318594549953060559643638019*1879004283860293291478618109788606553851999 42 Pedersen 2016 19498523832299609790319061855865614256128348266095588713785590661341754379125371573463616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1935350223536072605861696715943267593526479 19498583194115830111208552821148442081505459699357045977216623269209257013868769446696384=2^6*151*1451*1811*396735335441060881344175957140078479*1935349430066772207513120124741261494251999 42 Pedersen 2016 19516526220640749976007844558347994048425093247306985722999207359679520641779366126851136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1937137072971438287552966739097046676912359 19516585637263912474918437777252688106587349129444975012563757426293365096822094998268864=2^6*151*1451*1811*396735335291023554584068724220776999*1937136279502138039241716908002273496939359 42 Pedersen 2016 20078217486144760960561481873118465946091184429868176749002207763312052556515570637573696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1992888437823514927156783115882697887959999 20078278612795511300524059973820847289296778339145966072167198595305914051918789682426304=2^6*151*1451*1811*396735330744876979369966339821383999*1992887644354219224992108498890309107379999 42 Pedersen 2016 20948533048059511097280623057021031906681074488859871230419625254098277793118448721266496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2079272690897506951566763579520044333280699 20948596824321733793283169051634854397132494080206307623488836208273921286971867413133504=2^6*151*1451*1811*396735324182345532546528170703752699*2079271897428217811933535785965824670331999 42 Pedersen 2016 22875545280729797021783249759940860912226094331070201844388064590603350966188055320821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2270540685712442768433866599780655833778249 22875614923638489672263022503420967004334524496716129332178953364392517185639750503178304=2^6*151*1451*1811*396735311428745663000589537186107999*2270539892243166382400508352165069688474249 42 Pedersen 2016 23360732463458260305215501501211249693854480027799895074736197309613171851319361792511296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2318698542718771049130248177778133994076899 23360803583483509126578255810315647778658952742436003126318074535433156874111823052288704=2^6*151*1451*1811*396735308549194693589926076007454499*2318697749249497542647859340826009027426399 42 Pedersen 2016 24139864905765354155324380093993652730964015442435594641417232045127009491177541330879296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2396032301897267937744202836343886086893899 24139938397801799788849769502754960064431954749181617729717087391341224823451158777920704=2^6*151*1451*1811*396735304167285768800767260685691999*2396031508427998813170738788550576442005899 42 Pedersen 2016 25040433895585486998592959949501099651905189982930732488368628030362969179278263826316352=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2485419396569064626017150111780612180449863 25040510129337732618290088539471159880963231332392319329129872634364418603019928672371648=2^6*151*1451*1811*396735299442157116435995607113051999*2485418603099800226572338428758956108201863 42 Pedersen 2016 25414694286356270911537209042443907644864719779765903105819433070046195830801928326108096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2522567076935466463591259189746394712329849 25414771659516644375164609447912891683544950099547991917811687885428552945236788525091904=2^6*151*1451*1811*396735297576978402308108867108565599*2522566283466203929325161634611478644568249 42 Pedersen 2016 26527929267657858142370008521982551169752048781560249622176376061360433087885948284492096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2633062598978075669179175236656986210882099 26528010029979941406232760827875903973076914179644910795070300724685338967238447798707904=2^6*151*1451*1811*396735292340106920528249728348624499*2633061805508818371784559461381208903061599 42 Pedersen 2016 28329174732120042598681238824579304612905345245240948303953523302185507490736923550831296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2811847456861293703688756286974647317813149 28329260978200955439553569462166093119725379766105179060027837140139273926290324653968704=2^6*151*1451*1811*396735284738438584029254467641506399*2811846663392044007962477010694130717110749 42 Pedersen 2016 29127869670033752901656126598503922199528424699872359940953820744524600493695254551013696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2891122915861316181012225870614947769632499 29127958347682436118847092891383347185637198719524439295042762264840617256109638888986304=2^6*151*1451*1811*396735281668628138267438916928072499*2891122122392069555096392356149981882363999 42 Pedersen 2016 31125492579320056643456411263885303084420479261692117377547653075296852811850139071606336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3089399461166954784899993123645015970116159 31125587338584201546136818307960644514953319530641055891446584576831785123542421343113664=2^6*151*1451*1811*396735274680484693849131361469651999*3089398667697715147127604027487605541268159 42 Pedersen 2016 31857432996235570256706667513716127738540755492993616313342457001187609089173416846453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3162049117196093252759428829910564978836249 31857529983838274880985301636991834894810092569632949469135315311705421027640745713546304=2^6*151*1451*1811*396735272339373943616154747928700249*3162048323726855956097789966729768090939999 42 Pedersen 2016 32866838810405814080524296632089646832715608986702581726951303905787739277966765488822336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3262238946174679845483790017567438504995159 32866938871069994940183725883763246399261409485015425268961509972680003756041264493897664=2^6*151*1451*1811*396735269281846798399322990954651999*3262238152705445606349296371218398591147159 42 Pedersen 2016 33787152470309489525905814903156961541231042470083199044667196375733777944297667616053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3353585822622188702989936277239749094361249 33787255332800660680849299791774432364446066217074121042682861746186993405107355743946304=2^6*151*1451*1811*396735266653397736210472528061243999*3353585029152957092304504819741172073921249 42 Pedersen 2016 34850047978641851496360603333169886029895446459780513362554187465346284714992580077995328=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3459084837693214092229387642091846839810307 34850154077039923588681293628196345859807746675468763071891877293214847322362332806740672=2^6*151*1451*1811*396735263790480361584128163819562307*3459084044223985344461330810937634061051999 42 Pedersen 2016 35086980835314434453043379714904119906120186173482237554464725879742637420542716843064896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3482601902937134334350518866596839572172799 35087087655037095797346144985094171546500354825697787840465237360228296922595405294535104=2^6*151*1451*1811*396735263175941828480934954821104799*3482601109467906201120995138635835791871999 42 Pedersen 2016 35536667639154721762556636295270409047617976412335073338929391990432512170451583595858496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3527236125702852326754639469127452639141199 35536775827915656765874718494430817842706427961141128370339869401550711052255631354541504=2^6*151*1451*1811*396735262032114024910841444067881999*3527235332233625337352919311259959612063199 42 Pedersen 2016 37040775964007536368371828463606274147316255630521041905017619237105303642967444081275456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3676528267393306069585239226724454801067439 37040888731915217212153929359172831719323981400504796987509824626247510888791994275204544=2^6*151*1451*1811*396735258408052713983914388268169439*3676527473924082704244829995784017573701999 42 Pedersen 2016 39195871853654038156493027647340455677357468380230004607871358273852368588139774072780096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3890434989134975808320671196440395725804099 39195991182592043072596349361451781286887669912068180217363717667213864044132117434419904=2^6*151*1451*1811*396735253700237829313014064574996099*3890434195665757150795146636400282191611999 42 Pedersen 2016 39212754977302566638591525069126643573268604801223619122872370890274483024326099249516096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3892110744561806659236158672610078428625599 39212874357639995012009083238482953886185889303457784956125370636515450987933622785683904=2^6*151*1451*1811*396735253665399421960864919321217599*3892109951092588036549041464719110148211999 42 Pedersen 2016 39981468484850315772404021602039988035538399989737617767637877812047554370148275519474496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3968410359417947047434126414619026882182699 39981590205479263319044127895201033152896052628368061545021995724495658143019996198925504=2^6*151*1451*1811*396735252110323527637373463892219499*3968409565948729979822903530219514030767199 42 Pedersen 2016 40008369781965682195504129370873557191915695518985185433066085835855965739995650262765632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3971080481106820275030767713943696804408183 40008491584493642671796065497684169322686287253547198341293838908177546169247901657362368=2^6*151*1451*1811*396735252056985519230084348452160183*3971079687637603260757553236833299393051999 42 Pedersen 2016 40838508653384574895062046225067992389472546597142740800652991442655860304534936397573696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4053476946817991873054965481722802577959999 40838632983209039780688343862772068839182085187977466007415716957065582146607903922426304=2^6*151*1451*1811*396735250445586150575677063589879999*4053476153348776470181119659019690028883999 42 Pedersen 2016 41250615057762859965902723331600736583298496885294249166604757268531424707588918958867008=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4094381080315163263615654066856675946991727 41250740642214846930765755443746228286456285258299932018641785722967586001567170102508992=2^6*151*1451*1811*396735249669728180302301577825493727*4094380286845948636599778517529049162301999 42 Pedersen 2016 43305878653160668920941728715954831761092235119477515551825481422629002984562164078630336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4298378823579689491012101053268827250703409 43306010494710930793100705428693710592163283768558802860471474497810710925728138288089664=2^6*151*1451*1811*396735246020816059784822493134651999*4298378030110478512908346021420285156855409 42 Pedersen 2016 43788451404522251150677177037392153311680808778183223967530792889474920832597275232293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4346277181950437407288694709680007295327499 43788584715229625922206010005108791274671710173228488742046338417367891955456575647706304=2^6*151*1451*1811*396735245213712050607581234459911499*4346276388481227236288948855072723876219999 42 Pedersen 2016 44548389945846801897027703076434433229972115591404061957644264216985893858305887404053696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4421705826625057875042465207532122086673749 44548525570130959036003541453033988395672891308872117460927497837591974631606559955946304=2^6*151*1451*1811*396735243978162922414632529913337749*4421705033155848939591847545873543214139999 42 Pedersen 2016 44997591248803379006386182341400818866760871122533870769107009383712925230926195113165888=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4466291860396988603871007597704893910257447 44997728240647738208728278835804490220373733036382639156266772899916383121063680070450112=2^6*151*1451*1811*396735243267452192949467023550009447*4466291066927780379131119401211821401051999 42 Pedersen 2016 45344540305856053976612725969243968387709281126011465866708877524409878116632210885137856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4500728720381754577363736916551762121994289 45344678353961201929419482502985059483817024274103028308322688085295851480704185346542144=2^6*151*1451*1811*396735242728159441379348444271346289*4500727926912546891916600290177268891451999 42 Pedersen 2016 45722772268387019051440320823137095905057203283732216921956104117008884191956946795138624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4538270604040670464256180368281665450960831 45722911467991451848644780878007772293241378211339780686965612104646456022955401627005376=2^6*151*1451*1811*396735242149565598766144732164551999*4538269810571463357402886355110884327212831 42 Pedersen 2016 45906305364836324005472894327346554992386545986636351699186565434750562306872445557741376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4556487409697057344268605594583311163415419 45906445123193718589587932454276528305830227931835270519111398085050401181884836346898624=2^6*151*1451*1811*396735241872244677649374295303789499*4556486616227850514736232698182966900429919 42 Pedersen 2016 46718460473275651887784478986747652743098244910956758214932671256193547561512435509855296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4637098874656281469816914279273361345775399 46718602704179312241407936852015770927092328519096768995815202120457460683176650646944704=2^6*151*1451*1811*396735240671221877880378677151287399*4637098081187075841307341151868635235291999 42 Pedersen 2016 47473365936880954296557883810811008934281234402890134749387320005673997471357009017020096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4712027954944756666313119617818240983770349 47473510466038563496370184458197002160887518027574511881747939324556916683141054010179904=2^6*151*1451*1811*396735239591710677427518929495611999*4712027161475552117314746943273262528962349 42 Pedersen 2016 48128330431713654794675011226248193357742739577986514289255637311886335620316215906693696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4777037270131113608214529447891010082989999 48128476954862312111111661626833716178187982733230166915072721876785365672624886173306304=2^6*151*1451*1811*396735238682551210525341640848773999*4777036476661909968375623675523320275019999 42 Pedersen 2016 48641954508453705788411209668589967511395054743519349406614658172194770977641768210464192=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4828017666405303334023306140558437341181073 48642102595292943581935299371723156998908807780024489165357011749771340193271052952543808=2^6*151*1451*1811*396735237986715543138282510322583249*4828016872936100390020067755249878059401823 42 Pedersen 2016 49765384006348738131252989693583987428615896411190134552049235089740819860462830639644736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4939525057866216053006971064101159933880759 49765535513386138826792125230264013295834030416169084322139234306898305897952203298275264=2^6*151*1451*1811*396735236514807872021997534896657759*4939524264397014580911403795077576078026999 42 Pedersen 2016 51897742378897098378211493149641902993294609638048863858163653730951066546266708632457536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5151174939081032757040356442628435702981459 51897900377742131064612013172621687032257682397021152190068091625356805216261742879862464=2^6*151*1451*1811*396735233896278280632480301056964499*5151174145611833903474380563122085686820959 42 Pedersen 2016 52120440274852833665418750638160228548283869672325571213433455757566387835180853019420736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5173279095602101787776712835602078529524759 52120598951685168676612467608516690739133505811092133752032099447160391742288365366499264=2^6*151*1451*1811*396735233635162762097385761275526999*5173278302132903195326255491190268294801759 42 Pedersen 2016 53229954061601575253590520534475287191654291114633743434724320695232533284414836644751936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5283405265853179928252527649679900053572559 53230116116266717986793385767305113700143932266993241244033853842488684238798263878768064=2^6*151*1451*1811*396735232366805368994246329113724559*5283404472383982604159463408407521980651999 42 Pedersen 2016 54548412104558284684854709946508543890718285218811006997021820497263934651139499030339392=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5414270458013640084422528787973816669196123 54548578173171596691834619716444900673776368707044469198382549301239075425597451182268608=2^6*151*1451*1811*396735230926676972843368103456948123*5414269664544444200457860697579664253051999 42 Pedersen 2016 55444278662419515407577200189903113362229482223509708415644011614298944668628184607427136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5503190806955293412517962763649575310881359 55444447458432420485080017470523292842736022565355844255215219596714291549660459365692864=2^6*151*1451*1811*396735229987218527898162657452651999*5503190013486098468011739618460868899033359 42 Pedersen 2016 55493764973542667730801281981333301697098790237366034703568499741497253343420333993778496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5508102632287194612310038948375579190433699 55493933920212993420217999005443197083495700180047048440034116950380260039065565116621504=2^6*151*1451*1811*396735229936208301421242589068694499*5508101838817999718814042280106941162543199 42 Pedersen 2016 56358184659719918759004345197802878689642461686150183423754793963691767346007675113093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5593901682885109550567799407289294552089999 56358356238052158417507283653114919690625300428100807482464598645250322814416614166906304=2^6*151*1451*1811*396735229059618204971788059467819999*5593900889415915533661899188475186125073999 42 Pedersen 2016 57268079854734856623753992689921581683023738002787089686002513169526621494365001987441216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5684214461647853161959090247930021415840879 57268254203175839424973509909364017335851941656660526282898091421542989805922205477518784=2^6*151*1451*1811*396735228165500183910430311149501999*5684213668178660039171211090473661307142879 42 Pedersen 2016 57907673699955450936875491900140547998130342003177218434094170374773609138429349034847296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5747698143898171786728768254371357398923399 57907849995592673934473628027826521663571548010142883269085890233319754037581935137952704=2^6*151*1451*1811*396735227553814062046386864102491999*5747697350428979275627010960958444337235399 42 Pedersen 2016 58627229402877998827165261378108998401695182576564912185312573748659219308225068703478336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5819118539743264326250257886509923372234159 58627407889149434165262341781819325854600930307321531049691167216821402926004195967241664=2^6*151*1451*1811*396735226881608626680311488120901999*5819117746274072487353935959172386292136159 42 Pedersen 2016 58788504977556321812507233181800969722902957359114364717505100834078367304196920503045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5835126147405725495713417190532976024727999 58788683954819337191264102666058224354137170738483621521255225117445208969692076872954304=2^6*151*1451*1811*396735226733203159803925187375495999*5835125353936533805222562139581739690035999 42 Pedersen 2016 59021621671572570475843942799757416736604618462209718143480197910644584762646650239998528=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5858264434680938578235983317138147516238607 59021801358542149648834633611086486583533771590242720085950320582817996007401239438337472=2^6*151*1451*1811*396735226520123051344716500204801999*5858263641211747100825236725395598352240607 42 Pedersen 2016 59830070205140725487364481611627860852101495404254998102163677285143252648293733344415296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5938507998943311255160415991489440305790399 59830252353372176893110721427871203445686612279678537010409245453167964220498323692384704=2^6*151*1451*1811*396735225794025765540607114038791999*5938507205474120503846955203856277307802399 42 Pedersen 2016 60317313794456769233332117289134007787746697322756363991551483050970349451642937241697856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5986869967142014119032621273648423046103039 60317497426065354840180959877055441907712335853255276941820908156510953181069885869982144=2^6*151*1451*1811*396735225365814870023752081116451999*5986869173672823795930056002870292970455039 42 Pedersen 2016 61986494097966405703456589074943197381960262268414765016768405805627717548497338271637568=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6152546533291503652288018903027392945901367 61986682811271188813302007442922455221052169471048029761547903348712317127154557888618432=2^6*151*1451*1811*396735223949899596095774727521051999*6152545739822314745100727560226616465653367 42 Pedersen 2016 62059816696664751755352332052541246158662637438104060338910835439219263670940743734902336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6159824258979948952845726004923036438140159 62060005633194773153107007936711645548508711034782806138457231269916651425992314087817664=2^6*151*1451*1811*396735223889448613371971081599292159*6159823465510760106109417385925905879651999 42 Pedersen 2016 64943701651560683232426541846069747675146234421731579505318726972109109526277993470652096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6446067845423380198734217442221011554578349 64943899367865530942795765822727663277440532533209097875667700907225334539692570292547904=2^6*151*1451*1811*396735221620088178169563714328570349*6446067051954193621358344025631248266811999 42 Pedersen 2016 67552412485019561976681508387185797739103802004364114802147022998710639452528570900370496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6704998682347160565027223918678393373044199 67552618143351939546603724612252269584638258624495413890298069022529964225878163026029504=2^6*151*1451*1811*396735219734177552163443901801916199*6704997888877975873561976508208442611931999 42 Pedersen 2016 68158870095922974130000495667117485416468807182303957530247930897134303546768052913298496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6765193386465366980209622712958765773376199 68159077600570772984684722078034088322825078788647048900854651198515503706089887157101504=2^6*151*1451*1811*396735219316433505635906683575131999*6765192592996182706488421830026033239048199 42 Pedersen 2016 70625480876075187556784208244227975948696877994400720567560808340194156069253867404620096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7010019905939434635151678684575486303014099 70625695890137395306713693349436095923533023603222109598437885563519022721524320422579904=2^6*151*1451*1811*396735217691296850229462673455611999*7010019112470251986567133208086763888206099 42 Pedersen 2016 72527386867992551842917378086731640243125411059611436757821558598516576144462160160927296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7198795949616365414978513082119470958318399 72527607672267133183102221692285393922544866678390646917371461227682456205028391851872704=2^6*151*1451*1811*396735216513694523984543247907991999*7198795156147183943996293850550174091130399 42 Pedersen 2016 74801576025276440502918740855497117735650061978945258985120144180438197954483320377055296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7424523421694111999729818337621072821325399 74801803753152006513698301700799869929653603642237579883317276363852182418452831379744704=2^6*151*1451*1811*396735215184199064995386295706837399*7424522628224931858243058095208728155291999 42 Pedersen 2016 75831410255360283203100396439699407447963795886714104476162497085505543539573552264179136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7526740898490805684999259610909271379750609 75831641118490129456635498408252584474390909531045425721795552810333560972701966204940864=2^6*151*1451*1811*396735214608387357047443185703371359*7526740105021626119324207316440036717183249 42 Pedersen 2016 78604197809545996083738065169479010116351272057195099211517709436465329974854695170799424=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7801957374310476437704505607395421431873531 78604437114222834571970661575808431028748785498460301390180152586982123554618017129744576=2^6*151*1451*1811*396735213133038348506868940795625531*7801956580841298347378461853500431677051999 42 Pedersen 2016 79264871589844335234272789446790135992479402252364871484362711643483944673693360107794496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7867533371723507965172966956971912557950199 79265112905893719919470322922088451043806677414596883781186100460349794351732814970605504=2^6*151*1451*1811*396735212796733124012218279445531999*7867532578254330211152147697727584153222199 42 Pedersen 2016 81308176967531747724763002670468221326712106876914587358294999336762083932158129817964096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8070344187222734774551731824292196544337599 81308424504273496379975953851199957783177199339332114621316292033625037436674567321235904=2^6*151*1451*1811*396735211791211685647993273296129599*8070343393753558026052350929272874289011999 42 Pedersen 2016 83822525005200057729914275210299768540405243502847384954540526644100840336175144865013056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8319908927538512194762220904158207755634339 83822780196688771319228734870017284337268871568376615651553554300242921517369060416266944=2^6*151*1451*1811*396735210621164255500831843123451999*8319908134069336616310270156300315672986339 42 Pedersen 2016 84272038258126974341451215513508484704636102970880590426068781432087780496485229337341504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8364525924292565115554844211392273752127551 84272294818125598647386640802614464966681441566567686606581729181329106224061105399042496=2^6*151*1451*1811*396735210419340957810826770834551999*8364525130823389738926191153539453958379551 42 Pedersen 2016 85786039073486513618400769412021953882215469309113345527844265429294377026198415544613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8514799957426606160002583195927979834907499 85786300242748840744317454582262572022211106634918361187782416141690607421932890695386304=2^6*151*1451*1811*396735209755140717709116640797563999*8514799163957431447574170239785290078147499 42 Pedersen 2016 87543313156082100041596655435247389410366304649896928143628706525033976187884285692440128=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8689220381137441309189419527161461259219007 87543579675235631083821831383383869825166958929239483870422159396738659014162209502695872=2^6*151*1451*1811*396735209013022761192624860663971007*8689219587668267338878963087510551636051999 42 Pedersen 2016 88111882848702426190769925550547357456732595013735139056058805185538541037749499261268416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8745654472824207112635450524158652516868929 88112151098824408591478639862510621588348550453279153938621700812087108623050417349291584=2^6*151*1451*1811*396735208779247110248942453181420929*8745653679355033376100645028190150376251999 42 Pedersen 2016 90262933536859614463749764310446824205496921735605071569269372214956903403645722380016192=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8959159683063061304868736985813929021687823 90263208335696603662093638334418819434456932954841577529041455449008634011909147678991808=2^6*151*1451*1811*396735207921459544804319579165689823*8959158889593888426121496934468300896801999 42 Pedersen 2016 99122188112553926887738262536234518970190551467045698590144840645188806848424561376696896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9838496009797228810821998059146063194230799 99122489882737387978417295879969751529371491903392837820823531154644099019485901496903104=2^6*151*1451*1811*396735204781024043563191206816171999*9838495216328059072510259248928807418862799 42 Pedersen 2016 103019030296920312529819479639378344964728195036815451509586993025990273472304454315738176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10225281925359987862635066194165031638862119 103019343930752097846970763856668597763249245643596439478795420850158182811332010795301824=2^6*151*1451*1811*396735203570711612885251510769814119*10225281131890819334635758061887471909851999 42 Pedersen 2016 105077473730457590007803084197365950779571772243103369920558681558523367217588029258645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10429595287412221217450796078366032785971749 105077793631068432678602075740586937506882334908323779234494854161270624938672356917354304=2^6*151*1451*1811*396735202967617807893559274917659749*10429594493943053292545292937780708909115999 42 Pedersen 2016 106297063841457737729051749984278794199098681851895501929916290401547790887721225394368576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10550647220073738357784648914468595619049719 106297387455020630307578663439995474123826014685201029164886098935891562849824340055871424=2^6*151*1451*1811*396735202621315000576792166029626719*10550646426604570779181953090650380630226999 42 Pedersen 2016 106689148210050275031513736593872037675178084269432755546802126272491267322420051092675136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10589564041517604216323554060138874540793359 106689473017285079977869140663391794502777904583143701631063062115208940678948934384444864=2^6*151*1451*1811*396735202511664398477281696248945359*10589563248048436747371460335831129332651999 42 Pedersen 2016 112083893501372440958572899366592352549227136794243590434667130115593612302499645564552256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11125026192154121142543968843582307558521639 112084234732510988219113623164907845388185362869026518093113919857465833735054845438327744=2^6*151*1451*1811*396735201080859250145277863783873639*11125025398684955104397023451278394815451999 42 Pedersen 2016 113463066365538137841031339694267904383080377917829462290716748090613408058469114875167296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11261917709374333698933790741268861623628399 113463411795466644936295897759929917761124598878422812206763516259033644368750568657632704=2^6*151*1451*1811*396735200736910305079195865124491999*11261916915905168004735790415046947539940399 42 Pedersen 2016 114094853663511912048836800200776045190382193265989381924301139310168079279565027103872832=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11324626543072571119632479143351092450287483 114095201016870202609363756385166893453880718818934987395979146193093816496443919401855168=2^6*151*1451*1811*396735200582127283430149868093051999*11324625749603405580217500466175175398039483 42 Pedersen 2016 115369773611817193535278355210164207163293032774068633633565094618346930238465553160227136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11451170307521852682306760304552241698143859 115370124846575138645624830783340864096178287476102354347238201659753710728424185212892864=2^6*151*1451*1811*396735200274943827546444411036295859*11451169514052687450075237511081781702651999 42 Pedersen 2016 117663795139318957334650618107929928658864059303217732822880599062732024095783750827904576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11678866266161173402846458238944110200758719 117664153358056074008728690592271060371297917644907968979778378106225267316613331550335424=2^6*151*1451*1811*396735199738979855713644259180710719*11678865472692008706578907278273802060851999 42 Pedersen 2016 120742921880553663690445785587359509207404207450444756407078404749777215760014434339664448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11984488818832211942829881932933041532199087 120743289473464810373299738590661074185771111278143750362223755750342835259921852486831552=2^6*151*1451*1811*396735199051601218993758266591051999*11984488025363047933940967692148725981951087 42 Pedersen 2016 121381542818496236381190738789110903085582162326509744808945442361420085525780325868063808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12047875933961132385729744475481560917425927 121381912355641678882784705012690635000754484089141587645660457736888620643796443999712192=2^6*151*1451*1811*396735198913403200632192671081051999*12047875140491968515038848596262840877177927 42 Pedersen 2016 121671411431765407038454447018883384394133335718169739664590711880736638725060605913314368=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12076647203535769622267632188252478544830567 121671781851394441473295281616189961327087235167651479506683962134127079654393626093341632=2^6*151*1451*1811*396735198851154113057310283864582567*12076646410066605813825823883916145721051999 42 Pedersen 2016 123437183534950967742394563681945412298355183206065385023963315414529106270359903844524096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12251911108845000273854063298059148639852599 123437559330342802366022408139361864273914739827400637725987824179249647568671380174675904=2^6*151*1451*1811*396735198478270672454104015510644599*12251910315375836838295695596929084170011999 42 Pedersen 2016 123544097342337262721467895446501709873264646243989832907987071122426603152999867018616384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12262522971712352291982618910794766903462271 123544473463220290425404213564362699995660803445230945175877545769351889914342943888007616=2^6*151*1451*1811*396735198456035587838417375042051999*12262522178243188878659335825351342902214271 42 Pedersen 2016 125392224919679795220948749862754383617233250223474427772953429112983489745609686716293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12445961171993343219967202613280434630389999 125392606667050783833029781675865775888122017948976218375880479239758463406492196163706304=2^6*151*1451*1811*396735198077669388102225747475469999*12445960378524180185010119264028638195723999 42 Pedersen 2016 128107546064697941408527232026979060434878817413932867222523708996911710836490164679324736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12715473747928858031033925275438858788550759 128107936078663682322354090265883635612016697802160378890260704073146964331486709898595264=2^6*151*1451*1811*396735197541565602447503891482577759*12715472954459695532180627580908918346776999 42 Pedersen 2016 133007194267562838878830896658864235294067705936401309949854094142407553635484151122488896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13201794421545941173868707376762109643828799 133007599198145789598594523851820829445779486940173466198636162961236746750651268167111104=2^6*151*1451*1811*396735196629579868631214686518660799*13201793628076779587001143498521374165971999 42 Pedersen 2016 144799641021180233388042968482645965750903364413569149192265462106381008369219611715333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14372268384443830187879569823934581039399999 144800081852996682438569066005414604679133232086743647613218424443162027456442033084666304=2^6*151*1451*1811*396735194687646642737407080818003999*14372267590974670542945231839501451262199999 42 Pedersen 2016 145902754325853660551445794342726473543419770202022134213949463990958850534947393731955776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14481759266889444878365618751869630204736519 145903198516017122196921762428903043365249400148249020608144554088169175381574693343884224=2^6*151*1451*1811*396735194522045957514265822421063519*14481758473420285399031965990577758824476999 42 Pedersen 2016 149416607334757805188791928010621142947269223392666487101622743989182727280292618617493696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14830531115709628026069868813657758441783749 149417062222587322674811926973774865153971938636677329475569740505110889948720761862506304=2^6*151*1451*1811*396735194010841996775210824295967749*14830530322240469057940176791420885186619999 42 Pedersen 2016 151986255441477697190732663819976427237288065387531231287115528573375146502812900378295872=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15085584733128155700610084952605946080383743 151986718152411157002814516970295562178077403925887655988975821218128248895476263041352128=2^6*151*1451*1811*396735193651966796506685326958051999*15085583939658997091355593198894570163135743 42 Pedersen 2016 156736577681568069779462232490885356892794093633401107090917174489613496383660141808610368=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15557083872668044434549485684070345158354567 156737054854506870551284483554002752251708718219799281433267962532500485100280123606045632=2^6*151*1451*1811*396735193019523819168320652337481567*15557083079198886457737971268723643861676999 42 Pedersen 2016 174773927705713470768870918411251534480429136419799753341110654754139663935089675905221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17347403473344766531723925005062198509096999 174774459792032712230213042639574092840006636287979629770615396276031894041243061118778304=2^6*151*1451*1811*396735190931195870074397570432987999*17347402679875610643240359683638579116912999 42 Pedersen 2016 175033140334721723535215856794026450418895416354699817720677909863600122672849232605221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17373131945090072473900743925154083348159499 175033673210194676196211118421300532074571800572308385071957466988326900223545104418778304=2^6*151*1451*1811*396735190904321877287777604751975499*17373131151620916612291171390350429636987999 42 Pedersen 2016 176028751068466278635070433803691667581987163423447520353746564215337917399993756177809216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17471952526210965931924691002186114548220379 176029286975002603674078696971299287933480278371385782993312947683264653750004662551150784=2^6*151*1451*1811*396735190801837268421209159088251999*17471951732741810172799727333950906500772379 42 Pedersen 2016 180627290007995660195914449278819008882180338119422482632524124444151789470672773728245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17928386225556702683918318663119319974934249 180627839914444273884218322327615538905858699434758578521474851584621249170616073247754304=2^6*151*1451*1811*396735190343140306358175724759355999*17928385432087547383490317057917546256382249 42 Pedersen 2016 182444622987511052211395809374490171969943527778751130604097632485047453652367874860293184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18108767869746522534509989230631370911766471 182445178426695747305804489020741167974720792819031990569421715509669881994346871892730816=2^6*151*1451*1811*396735190168239004702742925069893471*18108767076277367408983289280862396882676999 42 Pedersen 2016 182889483803342008578074404830697401311374283806406139967979897289784152646584010942712384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18152923083072706995238185295057809652936271 182890040596872613142532565318094292555141546605160494077895950765088864343235975771911616=2^6*151*1451*1811*396735190125954882493922059667051999*18152922289603551911995607554109701026688271 42 Pedersen 2016 189209693360266297379230601803316577615832005441979385376241612230567285524705570914738496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18780243339928564217732102349721826636423699 189210269395208273329930318955124386046141135591253545240080507948311074864376726275661504=2^6*151*1451*1811*396735189546696497491110885496444499*18780242546459409713747909611584892180783199 42 Pedersen 2016 205673348513571929633776815974848220951394815403903580253138696088048915200302157304984128=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20414363899782916507591071409133344466905007 205673974670896498790557179355473339088915205228896924944682299122828746181680248802151872=2^6*151*1451*1811*396735188204927280985030592167301999*20414363106313763345376095177076703340407007 42 Pedersen 2016 218712740051516140835655439286366021608022635584560932925398327492316583777893823637071296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21708604917450685944906998398881071015185649 218713405906305541562864840338715419755754456263298640414838090170766822941314812087728704=2^6*151*1451*1811*396735187285582984810120639772066399*21708604123981533702036318341734382283923249 42 Pedersen 2016 224432413085987546017737258765440908463481106655399789737290642188309195066475667799621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22276318175183590014135445952019525718946999 224433096353899213476729082539619882116721487438049781666483943004791854973446880424378304=2^6*151*1451*1811*396735186916023374575575415819547999*22276317381714438140824376129418060940202999 42 Pedersen 2016 226992299249251840619595732716693914525818699864433348968345937173043202606648975106821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22530402858768386093847351347886903538871999 226992990310547934283926039547610568619396441549695245077449296420215754022285758717178304=2^6*151*1451*1811*396735186756656921478849551524967999*22530402065299234379902734622011303054707999 42 Pedersen 2016 232273023739657997960075874383299641288419316495545500262492378280628487982114200324725312=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23054547733059346253338357924186942070649103 232273730877729923770448341128459884020602216576029007782476560514398182676855437596042688=2^6*151*1451*1811*396735186439001283126543506994651103*23054546939590194857049379550617386116801999 42 Pedersen 2016 232400622195113975135789370164584892545178643967494069215462014312995938785487562726272576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23067212676386005182398036213703503242950719 232401329721649977915274765601279784949655615840799738226850981830336355872932314915967424=2^6*151*1451*1811*396735186431504372853476458080851999*23067211882916853793605968113200996202902719 42 Pedersen 2016 241434919752509406509332027860885128918257807068563740478960726679682950741382540037500736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*23963923111882319302354742483258669016607259 241435654783297315447216248583389444918565178264331567960624137127906571508787162188419264=2^6*151*1451*1811*396735185920846567066575317630321759*23963922318413168424220480169657302427089499 42 Pedersen 2016 243511742118542922484895465226404297299177590151622245925327898344938150240196706973016896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24170060697728152244872852531834550815748299 243512483472063191834175964254936205742852161588853845780932395365728994683101643260583104=2^6*151*1451*1811*396735185808811929339485244571359499*24170059904259001478773227945323257285192799 42 Pedersen 2016 252193860384070262023918464352974761911424049095440978431226444764760510537496895456742976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25031815139780869247945088963592694192848319 252194628169658585036810540338698998724129246026949505098644595305602137673481738844697024=2^6*151*1451*1811*396735185360433993797047570169351999*25031814346311718930223399919519075064300319 42 Pedersen 2016 258157235173682971939119104661167321479638353418122792623950638130727172632460747412879296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25623717318190299847227229415028773581612649 258158021114325562572171569239397195413290623013087791134257888595657175170276288695920704=2^6*151*1451*1811*396735185069933920746103229736724649*25623716524721149820005613421899494885691999 42 Pedersen 2016 261940066188948432336384659294368019302023926392288361749863761403727009029252983518260416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25999186913425282500104488864939614160829429 261940863646140760377665057823938474163743489707061281020108938839367847510410667108299584=2^6*151*1451*1811*396735184892513478301756824456251999*25999186119956132650303315316156740745381429 42 Pedersen 2016 301179717074308676924057127508335731116815439426795342400684474974295576530914688661297216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*29893967244778341841939964640104620244129879 301180633993721039680151552082114188489383215513189191134755938558985510749491635091662784=2^6*151*1451*1811*396735183315009624325952799108251999*29893966451309193569642645067125772176681879 42 Pedersen 2016 347397972902849883330611518980910657753194244126300703920802975456754381367855380314232896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34481417685567185316033930814118702701939799 347399030530329795940003134133534151164979664770799570503656665944094537127695591487367104=2^6*151*1451*1811*396735181914024595546557437864296799*34481416892098038444721640020535215878446999 42 Pedersen 2016 366835714216002547625232640648211095120184664831727599848592737994126987113046780045275456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36410734864600511432183854861608489881129939 366836831020250788620630991201373885089145816028895325258961971182263710300031730311204544=2^6*151*1451*1811*396735181430275855141106719487764499*36410734071131365044620304473475721434169439 42 Pedersen 2016 372450258286329050062710767282434296921876017652548617171151566197538908772918235246378816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36968013416300904652785085870920188426082779 372451392183642188182009080969503916684671993914763914222748903658025112022007588743381184=2^6*151*1451*1811*396735181299944910376912632591197279*36968012622831758395552480246981506875689499 42 Pedersen 2016 373255000944443731516020902196853766526953553704075474193286283395318699346355210454734656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37047889149287999142308568210583595244559739 373256137291736477656869044380391401108911169925561756036193236174239445222981645783345344=2^6*151*1451*1811*396735181281585613398978882499974239*37047888355818852903435259564578663785389499 42 Pedersen 2016 378272929296330018571190694732157396829210307510294509691498174103707891254570054478207296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37545949866142059409384535625758642803950899 378274080920335155522855698834733952634955009003611909962105528823331370383831182974592704=2^6*151*1451*1811*396735181168869372445397100816304499*37545949072672913283227467933335493028450399 42 Pedersen 2016 400037549821134705274254194524154918330744918096872577954586524285361101784937766427707456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39706224334103706943306655588530973070700439 400038767705920135669592795234935645415851579072575744340028523558747673085291587064772544=2^6*151*1451*1811*396735180712708515429293531287451999*39706223540634561273310444912211392824052439 42 Pedersen 2016 400065328075859248180975309252557525029543230300749065938492282313639353367819767516133696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39708981499310312518195942786114784869912499 400066546045213524200823996630128405991549894170517236669668708563503703569680475683866304=2^6*151*1451*1811*396735180712158029503721236962299999*39708980705841166848750218035367498948416499 42 Pedersen 2016 400317291925235737008758867649994363654046181756838775252951458039495226746837143450748736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39733990484421586250660760253564654266019259 400318510661675349820882408207627137606517034666581963792616905475268408557171044279171264=2^6*151*1451*1811*396735180707168312592757400469589499*39733989690952440586204752413781204837233759 42 Pedersen 2016 425634140662358185903764387740033565505835388756892624329010992313843062640539539384753216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42246845779726281236036630104479840007943879 425635436474074621529748728777833508890990306174585190935960568672795858799070201456206784=2^6*151*1451*1811*396735180235928714643337740348251999*42246844986257136042820220214116050700495879 42 Pedersen 2016 426646340816701093030500010230394354808252068025115928448039917168934768649864026065265216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42347312964412628703965835498145223942096879 426647639709986167239812774405749434796012274845112150099613486378264333529290481751694784=2^6*151*1451*1811*396735180218250644479134558123398879*42347312170943483528427495771984616859501999 42 Pedersen 2016 428615926675114250048964271150439342077813666793126509989424929911297226196390681146245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42542806657378196737693107735476763394277999 428617231564658054551899056769243391711429917181807528531445717773592662982937829829754304=2^6*151*1451*1811*396735180184091143103593715170955999*42542805863909051596314269384856999264125999 42 Pedersen 2016 432349984772429776118557748879257386467024756940825339706442146894848526467754815500242496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42913435236007576202201462497845530007787199 432351301030037770263444634542404199859217343142310013476151570672636681207600686682157504=2^6*151*1451*1811*396735180120183874956944482376359199*42913434442538431124729892293874998672231999 42 Pedersen 2016 440201170537782444102362379209706111205338613120092890537400583225097323663089541883694656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*43692714439740327656450511570690208675362239 440202510697745843348620615390592850490791966588702661750858207694094219270281696434385344=2^6*151*1451*1811*396735179989349595517750232541714239*43692713646271182709813220805913927174451999 42 Pedersen 2016 440741900487796975788420314631497741072219696373829519342177248656388443444005824224453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*43746385263164392539326523681686994841304999 440743242293972785453866917627485966047490895658354876507148088391873328946838082335546304=2^6*151*1451*1811*396735179980510296482258835995168999*43746384469695247601528531952402109886939999 42 Pedersen 2016 440795569833398435305842378060663463016754225460264912744910232888382795770145806559678016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*43751712280783785799326399803295453651910079 440796911802966605216592150485630527831639194103402676067254060511342794329342515631681984=2^6*151*1451*1811*396735179979634148079977476447751999*43751711487314640862404556476291928244962079 42 Pedersen 2016 452880378400720733982442742714780709252479151805413001539354164885344920250578441795678272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*44951204978965107093970341522957795977284343 452881757161596358809384947534617928445604031627662573476093359816833858092471832459169728=2^6*151*1451*1811*396735179787638235254075007233051999*44951204185495962349044411021856739785036343 42 Pedersen 2016 453203758687672774674341185531964750547305659176277561058838960653063998772231619471553088=2^6*151*1451*1811*328481*9085995379*132928044795118424699*44983302491372844039188295996785462358019247 453205138433055807776081491690680676174424356884970254170959291248899314317427935737662912=2^6*151*1451*1811*396735179782641233888795801951051999*44983301697903699299259366860963611447771247 42 Pedersen 2016 467605651672641363206733814525128991528649490360848687350947510094859621070339390247188416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*46412780284026561694435254617159075072973929 467607075263524289087098389837388627361083044781322183620204079764802681095105034523371584=2^6*151*1451*1811*396735179567105512030476811176251999*46412779490557417170042047339656214937525929 42 Pedersen 2016 476169681598412727886631748642420639727428099239313797478682404917964013754797338916920896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47262813721109397554693623075433176859836799 476171131261852475572895675675893394989175723714015089368516206398461191492439099508679104=2^6*151*1451*1811*396735179445119616798378433408271999*47262812927640253152286311030028694492368799 42 Pedersen 2016 491506752267374430988067752225817043946600204292946910107928906761605102159680495632420416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48785113737400573310553557949418160367775679 491508248623393485669176632909053938748123592937455706692453436916122525098627466674139584=2^6*151*1451*1811*396735179237282014874845909731251999*48785112943931429115983847827546201677327679 42 Pedersen 2016 492406172634219792991593658089827586474427083905751418916215259722367540094724632359740736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48874386824071041252112601339778693355792259 492407671728457749815672607956601484971665270800674693257629553240509923479300985386179264=2^6*151*1451*1811*396735179225495574249908771717944259*48874386030601897069329331842843872678651999 42 Pedersen 2016 498497510527324886161757483277503766504829795686243216123525904291723970103763323750956864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*49478990139401314636385528686940170631420891 498499028166191331599775932522872799829712974339398720053647270314778209290003027594707136=2^6*151*1451*1811*396735179146791151030701694711735391*49478989345932170532306682409212426960489499 42 Pedersen 2016 516550352237108835680552761843681966076126141340860218952582261817610295387906085194096192=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51270847386595351550978576865794954524957823 516551924836519014974681793157543939637953783288174473760439057447336366085946676704911808=2^6*151*1451*1811*396735178924438224551911044200209823*51270846593126207669252657066857861365551999 42 Pedersen 2016 521913563013169140041279554381534407063062093635164627684005338279347385922474448462003776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51803179539715848942573739931659955027723519 521915151940478558146071112125521397225948405852008168767277552059441977503012690517836224=2^6*151*1451*1811*396735178861344443980248023178851999*51803178746246705123941600704385882889675519 42 Pedersen 2016 552336050580329979095450749167588165713486784257003454907615459332157577596816920470805056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54822801364425241192813510185876304818669839 552337732126656685844461315840328462609184022074155421798610017738788470847045521226474944=2^6*151*1451*1811*396735178526636762646830139666021839*54822800570956097708889052292020116193451999 42 Pedersen 2016 563465105300542828977336234443420914518134254039496324250880644277210462121938014311686976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*55927429526318710502446994599798212477071819 563466820728454966968476124185674292176964264885130010087580565858345534213892646101753024=2^6*151*1451*1811*396735178413224297301195721159039499*55927428732849567131935002051576442358836319 42 Pedersen 2016 563661235803603838222510915377491306806326884570296123125093642709473620091574177149810496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*55946896703229435631145364605305108726216699 563662951828620812356193107001788952918295441948440609298773009047179691220942417896589504=2^6*151*1451*1811*396735178411265755355273061143869499*55946895909760292262591914003005998623151199 42 Pedersen 2016 565840118311218474506963780901865394954781065696747931064185130628930659538541549945413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56163164395309051560351180695769532299794999 565841840969682374937406084919878962983246967184204041925171548871974671180121154694586304=2^6*151*1451*1811*396735178389598952224523001403163999*56163163601839908213464533224220481937434999 42 Pedersen 2016 574798143127758602944205581003736224071670061167771345887714283752976112096927445056441408=2^6*151*1451*1811*328481*9085995379*132928044795118424699*57052304285089515447433991072157920450840327 574799893058267681258957216201050439782001971668341583862762276031983381894758442456134592=2^6*151*1451*1811*396735178302246299535742458619967327*57052303491620372187899996289389412871676999 42 Pedersen 2016 610467321773226568482441795358872055363989063835174387829514884500984684158862335773807168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*60592692955461647004906961612196314999038767 610469180295916557158146041357016805989186489526837624647996623361173597084688498447248832=2^6*151*1451*1811*396735177979851327759116859368790767*60592692161992504067767938606053406671051999 42 Pedersen 2016 611884819784078838324161675475440426372333642011169977485139011983411490382445738787773504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*60733388482762050540053754404855043160260551 611886682622236866354462313812987294520825892233255336887765070346042486258972303084610496=2^6*151*1451*1811*396735177967815851351442304038387551*60733387689292907614950207806386690162676999 42 Pedersen 2016 631878278457491447791370497911036328476145985842967473304507027946543197513157919687436096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*62717864079255695663561183464366497755543099 631880202164258278589996674330198738306967029286300211720592176234549894360250406507763904=2^6*151*1451*1811*396735177803810600899190723890197599*62717863285786552902462887318149724906149499 42 Pedersen 2016 635152723032887024300707039341637786929170275121345246822233351101782056333722447642084416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*63042873146375466202321447725465778605616679 635154656708458610783985492703241683752220507859018011148971964205140031212939911336475584=2^6*151*1451*1811*396735177777934491386869288716251999*63042872352906323467099261091570440930168679 42 Pedersen 2016 640181489172843476625117740480136199368549151856242527969703242958620335886986627342520896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*63542009581357966821326611038113871854986799 640183438158122299538767920288483419449410797634583666542688194284067893246179359883079104=2^6*151*1451*1811*396735177738710382131537942285771999*63542008787888824125328533659549880610018799 42 Pedersen 2016 670053435988551255466422123799797003474727098943164885248802866821543212257415577967211584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*66506986799349726529653452945630960841876071 670055475916766695962558454488788849169457604781357358637570225343416667902703284549012416=2^6*151*1451*1811*396735177517846905984574899665628071*66506986005880584054518851714030012217051999 42 Pedersen 2016 779808043904730593827615191646197360465446533658499899169935043240133651910494530778995776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*77400816854978103204888537032857850569496519 779810417972746589944735263784458893892982367189524179592026225363864589500175222216844224=2^6*151*1451*1811*396735176851656247427149233076448519*77400816061508961395944594358682568533851999 42 Pedersen 2016 786904404047294665509830492845236443970744646000105253026344193798882818610072522300613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*78105174903121899715679029640915257872344999 786906799719655187353901864334087470481786780248614889517085104864975172290534271939386304=2^6*151*1451*1811*396735176814978818392591669623584999*78105174109652757943412516001297539289563999 42 Pedersen 2016 798162032790718467044458808131287272253981709827080285836244476430596128229140049322348096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*79222564839532373596279860136448988469233599 798164462736098541103069474990183462164132150338403969462023740090089063306865735048851904=2^6*151*1451*1811*396735176758131915964236260194125599*79222564046063231880860248925186679315911999 42 Pedersen 2016 823572905289640996402191028600159585306628548931429183860290065751588122020424606662527296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*81744752580204858620416923921536860899030899 823575412596546294247144955977743700087148437251942625856029950081133916412198342150272704=2^6*151*1451*1811*396735176635529399265375301713304499*81744751786735717027599829409135510226530399 42 Pedersen 2016 825995101352490835896027970644492324724889261334355188871222911341636070668878667707784768=2^6*151*1451*1811*328481*9085995379*132928044795118424699*81985170661696710922410546117038001170103167 825997616033593214973013961422074976137211545861251252324947191053907654183942192958071232=2^6*151*1451*1811*396735176624236571737961811264855167*81985169868227569340886279132050140946051999 42 Pedersen 2016 837892479704244950140131069062950069504367603386138919249511792536341357772622567298459712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*83166059740818603196027354032009660149287703 837895030606037330915493563577675194925607122360501143119042195709017636458054156753508288=2^6*151*1451*1811*396735176569716247237104389720164703*83166058947349461669023411547879221469926999 42 Pedersen 2016 862702436206776818147600592542230244075764431565058747812681985972714194465006730802027584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*85628602817210679009847393072706134379280071 862705062640650037668059776036546614911904201908933482226245571345353568686679166082196416=2^6*151*1451*1811*396735176460860939733421695982676999*85628602023741537591698758092258389437407071 42 Pedersen 2016 880275281246842090773904504914533672562493742141059110744748314001578923335857622220772416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*87372817398220018793186177094628934566888679 880277961179944621619355424858698631981594444656227703046657627963218655684052251381787584=2^6*151*1451*1811*396735176387471179137000697414376999*87372816604750877448427302710602188193315679 42 Pedersen 2016 917824719321180558796441246244775706099299564327782614729604367238525161760630632175756096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*91099833555742861738447794089574743257873099 917827513570775010575002766878552908921358178076913823575581239687951066026754797379443904=2^6*151*1451*1811*396735176240070967274278456057211999*91099832762273720541089131568270238241465099 42 Pedersen 2016 931942476651056755828710122153403412832562770906182848132985027920202995935110836436655552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*92501109110712990903574404795627579360880913 931945313881121076354287156859853073391188206623009654617745296783484597621231520183632448=2^6*151*1451*1811*396735176187724210702699217332583249*92501108317243849758562498845902313069101663 42 Pedersen 2016 983865873675470697605775695915405071476146876830429975111144208024826040306416876843173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97654830433528648451743728605218211882797499 983868868982483724996698985206889967585999020292114732297588028422987457138356472276826304=2^6*151*1451*1811*396735176008122273789025781656021499*97654829640059507486333759569166381267579999 42 Pedersen 2016 1005071523897439922495551684232492185482530764711333550893980563613612698142517104977520704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*99759623609170586473763976573645107045987351 1005074583763489425443271642848645928480199958009228593223644455096550699759584794200463296=2^6*151*1451*1811*396735175940109317977534449092864351*99759622815701445576366963349084608993926999 42 Pedersen 2016 1008395098830060697704889499202239228172057347297884393146903014954113545260131249233089216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*100089509170975595006203211094941119221321629 1008398168814488701587134763165782835412033292262297860068904948534368015796264878935870784=2^6*151*1451*1811*396735175929708902205746932649654879*100089508377506454119206613642168137612470749 42 Pedersen 2016 1011583480682421745414382859093182831555906058642396782006536679029011645502212678087413696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*100405975975527412238159308139882898754826249 1011586560373642898762495606015314680349251267698127689574377085601994931899229242552586304=2^6*151*1451*1811*396735175919795772356829390563570249*100405975182058271361075840536027459232059999 42 Pedersen 2016 1015920104317322074064272097868032969493109695861315466925396558000765927596616289190088768=2^6*151*1451*1811*328481*9085995379*132928044795118424699*100836412945699134704250050284267216080354167 1015923197211073708474581024991998932354122783925372725606390808520941820817148182867767232=2^6*151*1451*1811*396735175906412467521316496321051999*100836412152229993840549887515924670800106167 42 Pedersen 2016 1016449325215366724393852683259923916251306212254762590406895657250500072454318834995964736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*100888941423861877760607279531689207917273259 1016452419720292310220905359375778818110986033503728043105335409082310360696456566301955264=2^6*151*1451*1811*396735175904787051186821080723339499*100888940630392736898532533097842078234737759 42 Pedersen 2016 1112063829558339309744521655943020041628882973332025296013220440702509276872252330618977856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*110379277920357505415608684359565077086423039 1112067215154564094461531951877701699086369248464188075055246424901917110911138057932702144=2^6*151*1451*1811*396735175636511403851017710273275039*110379277126888364821809585261521317853951999 42 Pedersen 2016 1152159102473946516047864428502582261730768875660024647434635392655165137462739994625656896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*114358984080031874625885801561902892681595799 1152162610137269435504955099853895724371855299020422781518849141590180345912456210327943104=2^6*151*1451*1811*396735175537262910330674710292227799*114358983286562734131335195984202133430171999 42 Pedersen 2016 1158001648453894199153631098741062365573503128474346219191160448703053948119321882859192896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*114938893244723649453580295711788461869554799 1158005173904416996065514837071411493957692058839292726011612793407744651932700239022407104=2^6*151*1451*1811*396735175523374471643524823048536799*114938892451254508972918128821237589861821999 42 Pedersen 2016 1206246383997679497497267719547240316519691525774501335374072154647634391812313015742879552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*119727484448968247558647588243234079453143163 1206250056325737721172011874778632445819305951323519103774004896599114184653993284429408448=2^6*151*1451*1811*396735175413833232925943251680895163*119727483655499107187526660070264778813051999 42 Pedersen 2016 1221746881931443045989806842909424358660449497860513195882534153603448793501591446257346496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*121266005641600075458750929890045998428769449 1221750601449622818420612903621653879171111097141882109919442743677665430183207817717053504=2^6*151*1451*1811*396735175380475133007083109428335199*121266004848130935120988101635936840041238249 42 Pedersen 2016 1229854517536171251648908903236833318177367687751291521994643233978303527636616121919621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*122070739092958438165093085716073835358321999 1229858261737449031322269828434607187477384569758230837396027228669105844215928186304378304=2^6*151*1451*1811*396735175363361896179939272992297999*122070738299489297844443494289108513406827999 42 Pedersen 2016 1248573408468293100189492205830842370476300943366901992425227786514868364446927411132908096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*123928705883747891658548977149961967482623599 1248577209657852296333422596524962643652348116758911836724603747214437754021047392118291904=2^6*151*1451*1811*396735175324699816543157005814411999*123928705090278751376561465359778912709015599 42 Pedersen 2016 1340613108363991363694564902380205382021271266732268708854392699082298374663934171457885815=3^4*5*11^3*79*601*473861*58309019*2182799234136439*868497005550505373633674462589794321808037715517327 1340615960482898335853730759459524800542807971979641485394418075423089282414294711555746185=3^4*5*11^3*79*601*60311678900423279916448522127*868497005550505373633553839360304702902968687185599 42 Pedersen 2016 1493217194191779380539925000516725670420343593023335785958746519371367683272468798687922496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*148211128976841094440595871650070605726019699 1493221740181282021859350501848092855245094495381510430304733643122840547643437248134477504=2^6*151*1451*1811*396735174908530513020230974836731999*148211128183371954574777663382813581930091699 42 Pedersen 2016 1501098712734426758899447739202273041730105805691717729819818364662180531096592189080450496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*148993418898093935422455522908901437140470449 1501103282718630706307773862541077563425774338377929798105813954621705850086443204685949504=2^6*151*1451*1811*396735174897378568895055996065963249*148993418104624795567789258766819392115311199 42 Pedersen 2016 1506271436132007146470391649839361771525337822411672270586564781503556135348847016929998656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*149506843989649535438862441601710603378175739 1506276021864185572698873460395071800185061030953984306922334410602586583675151704780081344=2^6*151*1451*1811*396735174890122862832387256079527739*149506843196180395591451883522297298339451999 42 Pedersen 2016 1584773138776104804782303547321028257507191312047099102970072489376386938612107439324417856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*157298628078891466630382027191744177956720539 1584777963500921105567970335039804926103004374651400306816755110594443757286001898347262144=2^6*151*1451*1811*396735174785823500805199760589889499*157298627285422326887270831139518368407635039 42 Pedersen 2016 1629530613497263075942733562756007626392107445332560262240672701916016282795791604006743616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*161741086874824217877735147721243255441596479 1629535574482906695455148748608141379630979106693389814931142245642727359467965990453416384=2^6*151*1451*1811*396735174730855636039945801163148479*161741086081355078189591816434271405319251999 42 Pedersen 2016 1671791645583560954670677397545001824462198017136531245665882135345670891957127458459320896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*165935758153456884979383410266843660519186799 1671796735229796604858361462759342874731557280620336429745131927593530579289355495166279104=2^6*151*1451*1811*396735174681655269100459661954218799*165935757359987745340440445919357949605771999 42 Pedersen 2016 1676108811289642837622384262657099072894538430519447645361478881681323401230199306553792576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*166364263802713639156481748512518388723205719 1676113914079170741174468868430206832485815770520807869748148067726728637158769796048447424=2^6*151*1451*1811*396735174676768888672649980836282719*166364263009244499522425164592842358927726999 42 Pedersen 2016 1724613386732339914437488280678441528874993650825044627388867923793991302894409493682335296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*171178645739157639474118086629836588084270399 1724618637190466632861676360724871084729888720455165865526009719724372941602626367514464704=2^6*151*1451*1811*396735174623550507161829312038291999*171178644945688499893279884220981227086782399 42 Pedersen 2016 1730200676227010416079356395984445872216924593704092032546295340135708700875770633727894976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*171733219104068412986957085020867136464067569 1730205943695227488263587042796063194182535626713710187845755187008132774282707246269545024=2^6*151*1451*1811*396735174617611882729534393168883249*171733218310599273412057507044306694335988319 42 Pedersen 2016 1801668488924183419494701179131427044730491341975532823942812161537732383818509485873597376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*178826845702097673494498834011921332235798169 1801673973970879738923260848784333169297659578703128004677824122370871829307070128319042624=2^6*151*1451*1811*396735174544898885430825821230508249*178826844908628533992312253334069462046093919 42 Pedersen 2016 1817049800132104715661776202627202401218761848798041448934517861702177639243757631000556096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*180353536868083113405213554084831456988135599 1817055332006067396643483879950611790742376328500275039955811618680228659008536348954643904=2^6*151*1451*1811*396735174529997571548820963041727599*180353536074613973917928287288984444987211999 42 Pedersen 2016 1823842999273071186726037518299906101806102686252865607637023097166108361050505001595200576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*181027804294123639684436020341872267260407719 1823848551828427106620142408790049724547076463590481855279312701062751667439666370191039424=2^6*151*1451*1811*396735174523496379704838009175359719*181027803500654500203651945390008209125851999 42 Pedersen 2016 1916668032874636659886944996982318852262102186836319515406233614730650764378908247147333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*190241268404311401370624778620190541281774999 1916673868028954054669970302465739795235363893222099713531372577238259191256340533652666304=2^6*151*1451*1811*396735174439278620578207083093878999*190241267610842261974058462794957409228699999 42 Pedersen 2016 1929008831449892928941904559327775368336690368965012379131440140478413544248451494961839296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*191466169708976938793307327852135114495540149 1929014704174860457908071293886341031338299749593560596452797200919719617489517683226960704=2^6*151*1451*1811*396735174428692543186584414074652149*191466168915507799407327089418524651461691999 42 Pedersen 2016 1931275342836944560179626348606931005345559813040508502615314870112301302451237734587621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*191691135114425280153467539761289363976884499 1931281222462138669198427368722135451830651740785606399247769617412084217183248237636378304=2^6*151*1451*1811*396735174426763009301009563121147999*191691134320956140769416835213253751896540499 42 Pedersen 2016 1945917709426871376002900573240126246000545045529426881856256299026843234422574041180895808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*193144481413695867284502237887095413471158927 1945923633629669513792490395116301782754759900194722777648670937048117984712528311022880192=2^6*151*1451*1811*396735174414405938764927377674801999*193144480620226727912808603875141986837160927 42 Pedersen 2016 2002535416666110458277138233077580704960886902839446053749730650753807840641831379607608896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*198764142332849573640715946526213983374108799 2002541513237338168371529226868041449984547130839440388625850181709727560245448349441991104=2^6*151*1451*1811*396735174368325084849258971063440799*198764141539380434315103166429928963351471999 42 Pedersen 2016 2008840805646536101866603055327728686554146869486634435376533800770683295500727288740245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*199389991554960119906569790122945314901371749 2008846921414055032408710678389882014975228997251367504951908818071933757758284534235754304=2^6*151*1451*1811*396735174363353909617209389469755999*199389990761490980585928185258709876472419749 42 Pedersen 2016 2012896954902372471350314635735247064144966686378666639543561524123545564721964000196184896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*199792589691952153606372217217168402236640299 2012903083018538343477478338913242048952052038330773313560500243749545856409925695701415104=2^6*151*1451*1811*396735174360172498611922869480072299*199792588898483014288912023358219483797371999 42 Pedersen 2016 2015857637968307767821380158376314082137234825911762133121698085242401856884553196874814016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*200086455970382194279056922468795707089644079 2015863775098054645272245049803045203292342204685170587272743406237124806082677279044545984=2^6*151*1451*1811*396735174357858391621063220973946079*200086455176913054963910835600706437156501999 42 Pedersen 2016 2079326176321415877415310423278505538161610059609502673088440380792427288146031015773819968=2^6*151*1451*1811*328481*9085995379*132928044795118424699*206386104648694928049461868143467887145876967 2079332506676441852583836278822533534894781206315953886578099924667027998731331021621636032=2^6*151*1451*1811*396735174309835430716435438065628967*206386103855225788782338742180006400121051999 42 Pedersen 2016 2120623640964939996304002015846409287585933785124375120123369249248962336539828802337087936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*210485135842888221307552212179470755238887809 2120630097047048063355954932279623042144490365363221860256847378904685551745619997514432064=2^6*151*1451*1811*396735174280131762428756395925758559*210485135049419082070132754503688310353933249 42 Pedersen 2016 2299262792916393228473450207392840188999366265838922387443062707296002617471092072431697216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*228216186953989945925698049729512968271417379 2299269792852210381434869255378575192351393100885233122957721560996552336292089310521262784=2^6*151*1451*1811*396735174163934110069413943852406879*228216186160520806804476244413072975459814499 42 Pedersen 2016 2313887454732276880453402768008589790438365996190487419449433441498804287552991104857788096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*229667775943902307056382708276520164566562349 2313894499191797184764745435002840786656951973177204483486625877574977209287547468633411904=2^6*151*1451*1811*396735174155215888453871536114954349*229667775150433167943879124575622579492411999 42 Pedersen 2016 2324035895901974534038216751320660285141032513308097649771280542464575148807890789336090816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*230675072088740808296648093713422993890817029 2324042971257674714304882722488426256484571921642723971421937177094365562639097283229669184=2^6*151*1451*1811*396735174149230570987807361497095749*230675071295271669190129827478589583434525279 42 Pedersen 2016 2340722097453076071543402730109693522379047042804619296574246992687269862091280704027443648=2^6*151*1451*1811*328481*9085995379*132928044795118424699*232331281767978033203049734844875639693115137 2340729223608684922378535388020022555031947212373440106482422338385262949845334952040652352=2^6*151*1451*1811*396735174139502253990512422479585887*232331280974508894106259785607337168254333249 42 Pedersen 2016 2446332943596383826809076010269604785669618871354587706477740819545440555559112683357994176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*242813817597316181289403386062714556216594869 2446340391276416452048440011607661339855587404533995865957562915485007711281750261241045824=2^6*151*1451*1811*396735174081007621264007298083445749*242813816803847042251108069551681209173953119 42 Pedersen 2016 2546777847123004615807592048377574991342357327668718227222794494785929828266799338279308864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*252783601369936171427029884362908883213971391 2546785600600130123432139127473816908624117976613443382458204882565116727902778044362355136=2^6*151*1451*1811*396735174029875454853332321130223391*252783600576467032439866734262550513124551999 42 Pedersen 2016 2554096939348494859013731174157943662980748271920428647918775592847494580600017200175084096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*253510066967871288852472682336082599111367599 2554104715108056274397472381892990765853550954407039873480952789425653977494744062724115904=2^6*151*1451*1811*396735174026306823438004598432261999*253510066174402149868878163651051951719909599 42 Pedersen 2016 2659197925777784669385128644998511567280424346196638547200637045121040973439300978258946496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*263941996037437084884705369232418666971044449 2659206021509539603078422908587654060074185029444350048099328614242053455355834682515453504=2^6*151*1451*1811*396735173977228279794968906458735199*263941995243967945950189394190423711553113249 42 Pedersen 2016 2775244111395648487322232483547932634999944491112728111835787341941690118259677648102168896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*275460304459534374448461760020559536335061299 2775252560421447778651325658538073773340407634311382826504303023729308948254428731827431104=2^6*151*1451*1811*396735173927356837134443305620784499*275460303666065235563817227639090181755080799 42 Pedersen 2016 3139501419072697131058264637224663103401614248949773092790882146398374972189860663613720896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*311615116377636490043997422068885176364349299 3139510977052976320760283231102054835317063240093277798629909536800908451019100581211879104=2^6*151*1451*1811*396735173794764228769299490106568799*311615115584167351291945498052559637298584499 42 Pedersen 2016 3215771406625722845829826298148945292754802026482355929139378778893972464848179331761548096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*319185388811046292419853186175701610636221099 3215781196804348084116212666506391806549358492937306892905798648389839979116671374209651904=2^6*151*1451*1811*396735173770804564039374427953099499*319185388017577153691760926889301133723925599 42 Pedersen 2016 3281270172250639154792885752335081882444287965871592016832110498749272745963757881239001536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*325686550221200512922710211932842917908386209 3281280161835420526981686732901375075597619327534421327090650764931498369858352993185318464=2^6*151*1451*1811*396735173751117594491075887622538209*325686549427731374214304922194740981326651999 42 Pedersen 2016 3430555532430853703278040673471991517525257621987442909472862729899142946461799475163704896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*340504054237419512068534742093311442525332799 3430565976503892320998057061741888928160028571354719972206096410676013245895962165693895104=2^6*151*1451*1811*396735173709056197809812421703264799*340504053443950373402190849036472971862871999 42 Pedersen 2016 3522623772485361097081956503186070668671607259324556871683633680916162780966668951500012096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*349642401863248428187513694023074509739699599 3522634496853359110171001270959916019395719189216786227487180833347125180993332893543187904=2^6*151*1451*1811*396735173684893131832636762912811999*349642401069779289545332866943411697867691599 42 Pedersen 2016 3541124848419321674080501431195368389993430974973827842966253808146169395871209951138615616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*351478749155607819772418632464700744757776979 3541135629112479423143443284562655770518931312849662507338790662599214597208924347577544384=2^6*151*1451*1811*396735173680189185058506072694564499*351478748362138681134941752159168623104016479 42 Pedersen 2016 3666875020167478384745117546676746773253554127944228723706272142405777206266338584229527616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*363960238785061069328010504513339155222967479 3666886183697749814299979803875339397978665372700344000341009244426007881033250260662632384=2^6*151*1451*1811*396735173649474635269510984404251999*363960237991591930721248173996802121859519479 42 Pedersen 2016 3794240573619039901818927533183230482257911986288991599811298409025905759454468791502040896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*376602065133727993939190382220654249076054299 3794252124904335343330825550774787000538645558055658457894819144737268933351488756683559104=2^6*151*1451*1811*396735173620440832053052238233086299*376602064340258855361461854920575961883771999 42 Pedersen 2016 3871196957676590301546068290799273632387141025365182199125698022170041302933688005249406784=2^6*151*1451*1811*328481*9085995379*132928044795118424699*384240466705522399733867335183834657625877371 3871208743249915272623034949593432117947814475595175984940174102709830116809257641676417216=2^6*151*1451*1811*396735173603824030424517300602989499*384240465912053261172755609512291308063691871 42 Pedersen 2016 4115022219740542916267823014242175668269252273666742681375110607949012083819047490912133696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*408441646215200128370158223649313852567349999 4115034747621876483137818079449641469999423623579591724780736968145639005827854960287866304=2^6*151*1451*1811*396735173555280186729158427305549999*408441645421730989857590341673129376302603999 42 Pedersen 2016 4155063806180943967643674623247864361981079283055096293600084315167268152083375370447653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*412416023657034894756161331870793723863667499 4155076455965931159191640185230663326675623959438831815313063975412644425877731889712346304=2^6*151*1451*1811*396735173547852829587809445935131499*412416022863565756251020807035958228969339999 42 Pedersen 2016 4324114716305052429631108913054451734111244168115796618119210722561819735940143860009112896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*429195381905463071023581569043535374008847299 4324127880753054369090196981404598942898581626894766980276334921873464069679891442032487104=2^6*151*1451*1811*396735173518011681888291467128571999*429195381111993932548282191908217857921079299 42 Pedersen 2016 4498131448836432519513164500567187019621566487856972040019381275563213812545048655066284096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*446467629030434478981351909780576115127292599 4498145143065528896326417536646302704356640878120461896147516594432749560895325625432915904=2^6*151*1451*1811*396735173489636766623219208662709599*446467628236965340534427447910330857505386999 42 Pedersen 2016 4526346185275805751731865202575668626482523659593870552176667195908989227288291062031621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*449268117772279523920480708955719550505071999 4526359965402584108162630900463415513419287385077396527530581355952721530197401022192378304=2^6*151*1451*1811*396735173485241664187376164214927999*449268116978810385477951349521317337330947999 42 Pedersen 2016 5003811151969354439717864679120449846895906526265782322607770487695586306552604280596865216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*496659496625804828767614556581012599878590629 5003826385702972384340330239208263616802572661340247578319626281908158658601074064020094784=2^6*151*1451*1811*396735173418381760448334014591142629*496659495832335690391945100885652536328251999 42 Pedersen 2016 5199153168491680636524653202983347865487268424449715068583383296326174867660835871585037888=2^6*151*1451*1811*328481*9085995379*132928044795118424699*516048411324886654349817737315329054538000447 5199168996929645671078925311977467098881736988469266558374866802189672902467207027854578112=2^6*151*1451*1811*396735173394567611985621469302752447*516048410531417515997962430082681536276051999 42 Pedersen 2016 5333060676131100045995933006940503672878616497017808687307999753782646321400322283922648896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*529339567469425634636349361834216684366806299 5333076912240585621238494985735335399217662960483534352514016824730254907557387575046951104=2^6*151*1451*1811*396735173379250788667722762303409499*529339566675956496299810877919467873104200799 42 Pedersen 2016 5383377379207574424408977190055977612529161713944922186586100759644369418621244219093370944=2^6*151*1451*1811*328481*9085995379*132928044795118424699*534333814386996935793926712503635925992917911 5383393768502547605143770479919035661176649831173843626701885730682215159445455370944133056=2^6*151*1451*1811*396735173373692338204678543503926999*534333813593527797462946679051931333529794911 42 Pedersen 2016 5402443884885672672617899107157807163134769099900257403052437938801633453963350650651542592=2^6*151*1451*1811*328481*9085995379*132928044795118424699*536226284111552863901029480650116767525424423 5402460332227214699353814143005109855165342250382101031416844220504075768519081157954665408=2^6*151*1451*1811*396735173371613125452800838156176999*536226283318083725572128659950289880410051423 42 Pedersen 2016 5592966436811360412972944591140861641880507660527381267858911537215612857832696271154821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*555136836860537855980238396379301946932121999 5592983464184745388989831940734498887391559275121706389232261266102598996917658366669178304=2^6*151*1451*1811*396735173351615113436509717046417999*555136836067068717671335587695766180926507999 42 Pedersen 2016 5701821675832188240600838692106641669068056412697255107716977686489328345895780996791273536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*565941398938362876273252390757861018035447959 5701839034607311571258600211819315111968367164441571453745921447208258550441874841089046464=2^6*151*1451*1811*396735173340789153772313948329599959*565941398144893737975175541738521020746651999 42 Pedersen 2016 5795512964831907651745525083711584183691598128112304561318660308978502619971852308298933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*575240844305022955746930662619407505412331249 5795530608843243060842656345363904480119996718777690798939386360911172737411962069301066304=2^6*151*1451*1811*396735173331796940176972888129235249*575240843511553817457846027195408568323899999 42 Pedersen 2016 5816921428120689381627164457738056836012365535145364293659115038150717712796995592494674496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*577365767943748535611720584472218039992545199 5816939137308510674387577258071901694109087509774430517352256519896191623581582528823725504=2^6*151*1451*1811*396735173329782875893963738909567199*577365767150279397324650013331228252123781999 42 Pedersen 2016 5977209402942769923769055665598042641838775071150513537630922034744584723610909025914961216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*593275350154694405143078830296313210007033379 5977227600115496409918777558198041464087805206421162152623342825445057812475392206509998784=2^6*151*1451*1811*396735173315161703903067072028022879*593275349361225266870629431146220089019814499 42 Pedersen 2016 6097466037991148272934841213091198299085607214773089711689531382015655008355998318185900608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*605211571969447357598982375712668698306770127 6097484601276321548043340177312609005804838561968074715430755730858906330757740475208275392=2^6*151*1451*1811*396735173304696827604686380499801999*605211571175978219336997852860956268847772127 42 Pedersen 2016 6125554229685827148536639579368696840617812774913603740782386794550143933558091808303439936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*607999500355337361279027011556674539800469559 6125572878483426270911226647908485347539821726117509427272237282915624175624044646844080064=2^6*151*1451*1811*396735173302311753298414456030621559*607999499561868223019427563011234034810651999 42 Pedersen 2016 6371613400887726808744985675127073769118185967554525178572518555360277411424805637896863296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*632422409293697445638679522710174686342502399 6371632798794305966608936343201813264110951600775468721687742739589199894945307426243936704=2^6*151*1451*1811*396735173282316925725185045005091999*632422408500228307399074901737963592378214399 42 Pedersen 2016 6884622414205379539432429923495070037041799646939676478657434984589398020165177493113638464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*683341756683250300368737466450006109265273791 6884643373930023995374946385064855275365213148990056813837262391281053390727957203268825536=2^6*151*1451*1811*396735173245225940917855189524551999*683341755889781162166223830285124870781525791 42 Pedersen 2016 7265610162207397117453881323411013446318263618671322464509172733714455655656661355810426432=2^6*151*1451*1811*328481*9085995379*132928044795118424699*721157169255087484720933913828292242908008383 7265632281821111823203219115452574122630083763520031699593335764549359912758521215988101568=2^6*151*1451*1811*396735173221069569221263675568051999*721157168461618346542576649360002518380760383 42 Pedersen 2016 7542335190110741994064428494356345756044218751336853449303043398473824201651135089792773696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*748623855924136819346264618337434886566759999 7542358152193373385194398668656576695121495122374073699556344035693580433298849760127226304=2^6*151*1451*1811*396735173205053961195114022605779999*748623855130667681183922961895294815001783999 42 Pedersen 2016 7582331603183540229845197320541895005492078497900337275722297504030969318308574444913548096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*752593749627210646130784784895061613449221099 7582354687032298263161813745897917521579890181519898023027566273427131157052337957057651904=2^6*151*1451*1811*396735173202835839577716370141613099*752593748833741507970661250070319194348411999 42 Pedersen 2016 7683010197429948550969183008305853678161986154317715489164775596020222073061065659093036608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*762586728662747406822271058031133093792504127 7683033587787253609545239339880421891024075065758571921738435284806208301756162104029139392=2^6*151*1451*1811*396735173197354636766916112677256127*762586727869278268667628726017190932156051999 42 Pedersen 2016 7901804017906177143607937040005722080501476399729690807247465382479932128153632766048645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*784303381318552095981207761675920209924877999 7901828074365114969734345748699545259887766202824965619873272770345461325632351540127354304=2^6*151*1451*1811*396735173185924529651088789264715999*784303380525082957837995536777805371700965999 42 Pedersen 2016 8665550944476659558755887532584359104819595702047414703093505977895565983881438731220749376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*860110032005341335678694504020124964124454919 8665577326106727458317402654858127057926581139590520574015778664598807105711394976667890624=2^6*151*1451*1811*396735173150549244126050752437851999*860110031211872197570857564647048162727406919 42 Pedersen 2016 8698425578663370006032760964790287404151427140680276958806878337068023394868267356366494016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*863373044691282342253366130993571264215126579 8698452060377834534076320714160840194718746978729816222474084097015010065199237056192865984=2^6*151*1451*1811*396735173149166005814672032055678579*863373043897813204146912429931873183200251999 42 Pedersen 2016 8805995418621150165285672301195072632736791988669778722046648956806008300444453128501887296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*874050022887096691888841716336997663423370899 8806022227824050502266097130080591722213049105770956330473676286450620505363025981590912704=2^6*151*1451*1811*396735173144712066173922846677682899*874050022093627553786841954916048767786491999 42 Pedersen 2016 9269922901349998913542687075960298176570043714614313055598168732572376165877090091348992576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*920097721939908175849588532073247397671380719 9269951122945868388334004350261424484707540173709893357777206557969189685187308220853247424=2^6*151*1451*1811*396735173126687349980494911537101999*920097721146439037765613486845726437175082719 42 Pedersen 2016 9283951300011671139391195635062954114756138998211648041708460617594444253907565090127621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*921490128089175040287012574056593329104071999 9283979564315964614983884571034135721493493217289950556002497402105512654321094802096378304=2^6*151*1451*1811*396735173126170372012172674784147999*921490127295705902203554506797394605360727999 42 Pedersen 2016 9295583447185088006821199140953228085529481407164561643203227400703756165831889331208645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*922644691317955717916145314346866403449252999 9295611746902594743833412453845698383417668959503201240914505970968601582722254654967354304=2^6*151*1451*1811*396735173125742884637605714053740999*922644690524486579833114734462234640436315999 42 Pedersen 2016 9565106839994183614260939561463948250397536073898152387331643650632416567365515770463653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*949396570742653941544503366679322444911417499 9565135960255760693030867361952232950244719282770750658145180318375292332878795457696346304=2^6*151*1451*1811*396735173116128911647569973879777499*949396569949184803471086759784726422072443999 42 Pedersen 2016 9908488626514184106378108334362786922963847794505924567373064691924920692146760630815045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*983479356855869251898435597654256142862102999 9908518792176258172499563061982420416308981547648215464868898901065864708475285742560954304=2^6*151*1451*1811*396735173104638041229322700183195999*983479356062400113836509861177907393719710999 42 Pedersen 2016 10034010900697411043931062175136744373097212806478745040507588557910905044793663304390719296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*995938226229193186804773740569765684008603899 10034041448502781479922706537638623720598659612026354604284377702529018115965564236038080704=2^6*151*1451*1811*396735173100633878422776406189691999*995938225435724048746852166899963228859715899 42 Pedersen 2016 10100302341416439008136727981023181524365055243580128616447569406483891869172320284507635904=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1002518065591266988123173093569178672621124901 10100333091041206378400244032122294740734333579988293394382716573046682150873845883239948096=2^6*151*1451*1811*396735173098559340266955192664876901*1002518064797797850067326058055197430997051999 42 Pedersen 2016 10160548673100646525383081651949536638473588172713971265084613166111873525216640089888107456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1008497890140811266574432952535199902204081689 10160579606140922687249209505158424788043526113039744675274515753173710089706407442804372544=2^6*151*1451*1811*396735173096697458986097695457433689*1008497889347342128520447798302076157787451999 42 Pedersen 2016 10511802037463932465223168348903354578782516165670506942575424388735411706830715816346585536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1043361979498805973900745862406660705599082209 10511834039869143195249819173903570005265652416171785987640282158534520460903237738909734464=2^6*151*1451*1811*396735173086267104456463320772452959*1043361978705336835857191062703171335867433249 42 Pedersen 2016 10684123151543789648212313215146225808212410375911146569357409856289317911946195070922813248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1060465925906378934513119858331806122885333787 10684155678567909628407249991359865761539244146719416347170264079502221575529729036806082752=2^6*151*1451*1811*396735173081400844035280253385085787*1060465925112909796474431319049499820541051999 42 Pedersen 2016 10739495516370365198247629235730102937467706384416316328652652022952653560552202132925150016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1065961978816154267896040492861968138218365579 10739528211971561719732557987037355064497136720918988103370621003324576201456912826322209984=2^6*151*1451*1811*396735173079870309205511851026730079*1065961978022685129858882488409430238232439499 42 Pedersen 2016 10877367378927247737707153147574142781313593243669861996320602997343427255092547092584809536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1079646621936511341730335675716258426035281959 10877400494269150655516361873518012105808831608515835387053288404888137590345409542223510464=2^6*151*1451*1811*396735173076127127785077358706651999*1079646621143042203696920852684155018369433959 42 Pedersen 2016 11028212310599201129003262663532412990157864829183384657395290805170387569604412523427446336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1094618923160001866028953853471260187822076159 11028245885177361554891476672269652796644156335504854919901637560833018632361660285307273664=2^6*151*1451*1811*396735173072138948079811792557151999*1094618922366532727999527210144422346305728159 42 Pedersen 2016 11051056689277529270979422225849000163366236599754019695268248780074763285668597721587973696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1096886370365846618259847561410379454530559999 11051090333403713969554276040259185080140583102970129700543795967841198689274872337932026304=2^6*151*1451*1811*396735173071544459744896662054179999*1096886369572377480231015406418456743517183999 42 Pedersen 2016 11110798125254397120180820146028470468965094315246834959424289330298949287626758690105221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1102816080864272649197983296109618128387221999 11110831951258972906100182219465801938315369045238069442486154298457390728565095646918778304=2^6*151*1451*1811*396735173070001340436242680286987999*1102816080070803511170694260426349399141037999 42 Pedersen 2016 11372452292494141850501721166378747602019115501520461529291961146374042141934916777689264704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1128786890522065198173976224641754456234098351 11372486915085511721693878120921024170376391810067530999157483103411481343210593634000719296=2^6*151*1451*1811*396735173063433823714853037671600351*1128786889728596060153254705679875369603301999 42 Pedersen 2016 11641640100937483398908548909396827859995011289238263259631566350507364082881725674639548736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1155505461103342082046713247466380514207594259 11641675543051261786704963286391650059953182752179054777164934761815624783553217335490371264=2^6*151*1451*1811*396735173056985304387547430489746259*1155505460309872944032440247831807034758651999 42 Pedersen 2016 12522887042395484972200148830437773670203558175694918223952173072373665869280176589414805056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1242974721843788527728677898426694924573419839 12522925167400513665490491416362190210228185546790071710800631000477590110737583964282474944=2^6*151*1451*1811*396735173037813989426774246818451999*1242974721050319389733576213752894628795771839 42 Pedersen 2016 12839228390604483847275543631257874094650980399459356003676748992366577799434569775666892096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1274373575635777530968789340743325481705232099 12839267478687391501027923784319843729130390374461699980155804260630383305699345455616307904=2^6*151*1451*1811*396735173031573976558689111015224099*1274373574842308392979927668937610321730811999 42 Pedersen 2016 14030299935634049754045696637787659167811737192298437511602948166908846647494452367170426176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1392594862577608702261974125498951626580071619 14030342649846338760051220127085588659440020397046274334093500957116545753175524060564613824=2^6*151*1451*1811*396735173010603665077314894776961119*1392594861784139564294082765174610682843914499 42 Pedersen 2016 14517752293654549182188411387128591272244470735310284914436950701824547952841079856881964096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1440977552373613529130346881711905162875962599 14517796491879553296499557642994761660562655796464516794058998724211146232472064712257235904=2^6*151*1451*1811*396735173003013717963496392602754599*1440977551580144391170045468501382721314011999 42 Pedersen 2016 14656458333411825471201419420893143472532878494952531065335159392409304075287335133825171008=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1454744992789044623804574693626760112612617727 14656502953917126880658004423880626295688040502761238220034491243054114326749923798628204992=2^6*151*1451*1811*396735173000946244880653243647369727*1454744991995575485846340753499080820006051999 42 Pedersen 2016 14755287529799751289622163280586157878402887071104496368204764901000743300557900432908495168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1464554407540966632550306335608872936775873267 14755332451183244486284983940407017941658645210041159590155928914985515880457691803936560832=2^6*151*1451*1811*396735172999496867561047237421051999*1464554406747497494593521772800799650395625267 42 Pedersen 2016 15138206545118244827709037199313221875978688891222778204660222627284131354986109780236462656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1502561510451251804296157125799801929567404239 15138252632270409032624271497322811934572468723527039992608457822194763924244644944545617344=2^6*151*1451*1811*396735172994059887482322874729451999*1502561509657782666344809543070453005878756239 42 Pedersen 2016 15567741891569125584032416665966043613908869026234080152257081871775858357724038827524972096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1545195575261496198573452324237956826011689599 15567789286409939219486233009942561773006718785697607689731675680470983798249057207598227904=2^6*151*1451*1811*396735172988279302765962416508681599*1545195574468027060627885326224968360543811999 42 Pedersen 2016 15717191609964979633459885956164272500717930426871573119612864460738452122003326874311089728=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1560029392856738599272194930471758495805601407 15717239459794426967298746640211688336976206566208509298801341243877053811167135445984846272=2^6*151*1451*1811*396735172986342134070210357872853407*1560029392063269461328565101154522088973551999 42 Pedersen 2016 15747042563252407438804513626254166757128950640868950161824199660539065412203377108543132096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1562992286335981779787046901855154081541510849 15747090503960878143341625918052143897573205172213687780113930484926510274075051430260067904=2^6*151*1451*1811*396735172985959611410088372394811999*1562992285542512641843799595198039660187502849 42 Pedersen 2016 16264316816917752282651864998578679948102463429510921731433919329783552257004922745123126336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1614334985458790816272718126188417512400121159 16264366332429497618693061113632107121047193809821974244875857829082586361650850592251593664=2^6*151*1451*1811*396735172979554024213067849810276999*1614334984665321678335876406728323613630648159 42 Pedersen 2016 17084490652267971140579390233596851058500785209363937381713303250658454919403790936925973696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1695742359126435218739996492997365758773653749 17084542664738404299163596829544745913341067972140964297145692371484736680634082946594026304=2^6*151*1451*1811*396735172970192620793129931525179999*1695742358332966080812516176957209778289277749 42 Pedersen 2016 17392193003761012644413041172614189245732977881562529337667413027018883344201139544690245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1726283738559382774525992768941581282658402999 17392245953008537083772887895015183815283654264197673490366960367883564861972347878285754304=2^6*151*1451*1811*396735172966908286576024197689450999*1726283737765913636601796787118531036009755999 42 Pedersen 2016 17407408677029558283216797879982513158646336554683106519441508640784695024982950789540018496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1727793989125774428369217487670640897151243699 17407461672600076606843967455807577245533589884278405791177314887789802264433470577090381504=2^6*151*1451*1811*396735172966748891238483099021103199*1727793988332305290445180901185131749170944499 42 Pedersen 2016 17599504223400087484154605777079232508847026563716738352080495815407757892105624360287088192=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1746860671393928558710248756078027809507605823 17599557803791314209307187940184446888098182432976452726242404217422976126509219463627919808=2^6*151*1451*1811*396735172964760253631127342428051999*1746860670600459420788200807199874418120357823 42 Pedersen 2016 17823276374886142834336146703769485808062885193540298181794628980092620606198647032327468096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1769071454483173781305538678212157202720138599 17823330636535163533443967982700051169336360431148485671668645333887092713037624021803731904=2^6*151*1451*1811*396735172962497741203095254600411999*1769071453689704643385753241762035899160530599 42 Pedersen 2016 20751137587093383565774180389142814579216778760824069143416302000565965373521796254712613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2059679959017313876733260772201331364101907499 20751200762399699169664091729151983198804465990404824743954272257260195803062448715527386304=2^6*151*1451*1811*396735172937390791865780103128251499*2059679958223844738838582285088525212014459999 42 Pedersen 2016 20929989315999040687085640413057875016342740394400158906265166427725892423954268835149471296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2077432109718280738003488261963348376491254399 20930053035806240219281206999842593437648571432384926709236463647883626145902394875775328704=2^6*151*1451*1811*396735172936084755897841366541891999*2077432108924811600110115810818480960990166399 42 Pedersen 2016 21725056437963872744395872153225353650072510916643883877489914664554065475142237788747320896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2156347485336197197159457397229830136722436799 21725122578294224840267118486871333890619669973302095118780148643450980374818156588878279104=2^6*151*1451*1811*396735172930539178308146551430771999*2156347484542728059271630523674657536332468799 42 Pedersen 2016 22062712143655398608891082726061341867995612848653372785686892338933333673729752231585042496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2189861922178119645296726732829298431810862199 22062779311953617369630342134636580179386125897455331244681076772491972756063992300997357504=2^6*151*1451*1811*396735172928304951841865279412559199*2189861921384650507411134085740407103439106999 42 Pedersen 2016 24462755446716209726143484548240627380430320466231504951735913564492656094483929236656909888=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2428081203956805116860806541703787463956368447 24462829921769068092084959697494147631748540524057581976157766719375737778874939487038706112=2^6*151*1451*1811*396735172914201425420364118338551999*2428081203163335978989317421036397296658620447 42 Pedersen 2016 24756479577526479048102216606681484071156208181347551122528804707953222800218373458599816896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2457235157718162786040560366527407447408229549 24756554946800767846110395007670029464853707292671533316070554086879656787641528338033783104=2^6*151*1451*1811*396735172912663206043953500144392799*2457235156924693648170609465236427898304640749 42 Pedersen 2016 24938922608831887369257406070867609237293439628700655641698347392385840062999838661595351616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2475343767603523423112208114539778101030598479 24938998533540515103713024258440248907197460373840688582584983514219343610291832907648808384=2^6*151*1451*1811*396735172911726003160587807638400479*2475343766810054285243194416132164244433001999 42 Pedersen 2016 25307379620823268978284278382228581856533917995700913029511691888777146868024396309688172096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2511915426394416273849142343830241496042489599 25307456667272066329539067654366053488536363986612387631342400823217892594537076199035027904=2^6*151*1451*1811*396735172909874455609926633081981599*2511915425600947135981980192973288814001311999 42 Pedersen 2016 25666122632656100027147600383575807742463815466322220363342625191935620140366900507946060096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2547522910023129011759294173250857676308874099 25666200771271510702656378103857382253639013843090010065386743952484454404332491957001139904=2^6*151*1451*1811*396735172908122799224891591270066099*2547522909229659873893883678778940036079611999 42 Pedersen 2016 25854041573567144374160067366835725523175470126464100287604240795768904011646071568828242496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2566175038124046848271601328915946664971037199 25854120284287896490951483181236445203951043177420320629029170031438547598096109277354157504=2^6*151*1451*1811*396735172907224637053501601577109199*2566175037330577710407088996615419014434731999 42 Pedersen 2016 27326148611632547922463452468610025923787168641589898156271719939723474281531353357336852544=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2712290852310422368626753386344094334367908311 27326231804074490928668137500886555916605875223535544568737885795964332394480197016137451456=2^6*151*1451*1811*396735172900616098445103270528926999*2712290851516953230768849592651965014879785311 42 Pedersen 2016 27346822968050658827880131194537499483914897795481663898353186128288036855616677294914949184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2714342911259057991742427829049965244473380471 27346906223434153549518969792019666163101999317149623220705931663410084569767235006526074816=2^6*151*1451*1811*396735172900528354005378109162757471*2714342910465588853884611779797561086351426999 42 Pedersen 2016 27399225720048327225589981167337360651634578204404154094475303749909463886649566926318764096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2719544211555678033246412199002431957776412599 27399309134968131479116779431804887978567173786422870368496303575870579706923997969220435904=2^6*151*1451*1811*396735172900306543640132660853386999*2719544210762208895388817960115273247963829599 42 Pedersen 2016 27437902498548169167630709920476692391310704775715055019809806364401535604870050248993733696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2723383123288643629259160461588174785192124999 27437986031216570035350522644762180201645495371979187459182307582054664472927256439006266304=2^6*151*1451*1811*396735172900143376009996291285124999*2723383122495174491401729390331152444947803999 42 Pedersen 2016 28250535391890212738548041581788380915360064954536118833014865019790339801759996337576978752=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2804042011382368902012630919793033971501982963 28250621398559460236962812066051039518666374232644489184891233803443121842190201619196909248=2^6*151*1451*1811*396735172896818390803039924013051999*2804042010588899764158524833742967998529734963 42 Pedersen 2016 28430078173204609771249475207628894215224511870441403809324367673471774140629026668931064384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2821862753349281468249408522774665288498924271 28430164726478599235585799814927091821522352361672984750892390405534779780074182429079559616=2^6*151*1451*1811*396735172896109407311046238591426271*2821862752555812330396011420216593000948301999 42 Pedersen 2016 28510081110229666775600757014001585939240799407958959192212020242125380352805831396980588096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2829803544323339820451332873000494159576793599 28510167907066691350335979390707506029529333630581375781669816293903005408913353630910611904=2^6*151*1451*1811*396735172895796365508694408734911999*2829803543529870682598248812244773701882685599 42 Pedersen 2016 28595835302363572844679023442611569688753010733103825605094913985310361578943640298838687296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2838315183273186260269322727812908714134758399 28595922360272904090265179155187120173806203132398070662137119782652020098599282337654112704=2^6*151*1451*1811*396735172895462764748825988484070399*2838315182479717122416572267817056676691491999 42 Pedersen 2016 29783749723647320166401111514841597192577388748751925986713066254774200178408858804426984896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2956223105972690558658704981259842656381684049 29783840398074402612339269023896717037644170947971516507338639647484035823502680129870615104=2^6*151*1451*1811*396735172891039164182098999505116049*2956223105179221420810378121830717607917371999 42 Pedersen 2016 30967735905129747111348647387178803184709516217697428590580486262559656001619006691531935296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3073741126347127818092255431064414438016670399 30967830184115344706699843176577234856254561132584097358309070156596795146221495870464864704=2^6*151*1451*1811*396735172886967886575552978959182399*3073741125553658680247999849241835410098291999 42 Pedersen 2016 31027506075957699412693939387711585302088458739470797620319612668023949750385336421018979136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3079673688958921397812015780241745063651106859 31027600536909169228005843341970262309273941213484259715699274597471809550632590287850140864=2^6*151*1451*1811*396735172886770598387430632822651999*3079673688165452259967957486607288381869258859 42 Pedersen 2016 32707615408326585699477889865795660664778794605843217536462340377014694919028988224882150976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3246435029454802401644573411530918198094800319 32707714984246874483349736201093889201482683651857453035611827291805484469456519910603289024=2^6*151*1451*1811*396735172881519928636170807276851999*3246435028661333263805765787647721341858752319 42 Pedersen 2016 33194045617055445785377334520730211906884680601937508683916601465164840597808960091758128704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3294716264552129757754787635650987677692364351 33194146673876591625022949241244721985257905166201391451563124259145118401379495398203855296=2^6*151*1451*1811*396735172880098960366316853572051999*3294716263758660619917400980037644775161116351 42 Pedersen 2016 34471084079594732043086171758685134298599756904246615472742545200927086215894367893774139712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3421470304765443962765539475338488094617645203 34471189024265192606866840904291311524708051038896412978933222545809956461201994798917828288=2^6*151*1451*1811*396735172876559298633569610790084703*3421470303971974824931692481457892434868364499 42 Pedersen 2016 35547853110560155136688851408730195700462970415000416862092116328302289902546579803150940736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3528346353572974571693984137507701706823279759 35547961333374432004126960512139560800860557377837854089017367926794139636004602032194979264=2^6*151*1451*1811*396735172873772361650372752091681759*3528346352779505433862924080610302905772401999 42 Pedersen 2016 36650579404364312290426341871910543510257476994367366939341500309069426262331128182388617536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3637798822773628027209251453716262187404021459 36650690984347375734554585055624908901083700533689953619457885810308143263765531796803702464=2^6*151*1451*1811*396735172871087966660076284358173459*3637798821980158889380875791809159854086651999 42 Pedersen 2016 36686861663535319585692846163901785182586781027121086855415983716709885462729572062025272896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3641400063513744159415231906588633195048324799 36686973353977042336102296954280222854731967746199613771960845646420113203063203247696327104=2^6*151*1451*1811*396735172871002385961830067381556799*3641400062720275021586941825379777078707571999 42 Pedersen 2016 37895764517727692136590836997959543925376145232139803062739700531290098688631078950273157824=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3761391219214409914283255855586749140019624381 37895879888584900489711199804774333281281437900614247530504224180270301230029452746910586176=2^6*151*1451*1811*396735172868244583982783322646657631*3761391218420940776457723576356939768413770749 42 Pedersen 2016 38177376899245528156981525677241816022265789440315273388389200969003390082714565396457224896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3789343006242422665166316169855146627849431549 38177493127450840438701023610344895888902597090436696059813654339260328332698757037360375104=2^6*151*1451*1811*396735172867627239035571881275144799*3789343005448953527341401235572548697615090749 42 Pedersen 2016 38430965056598138726230732070909623035265167842926727029962132727117223306488731499541934656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3814513214061205732644909472642603450251672239 38431082056833873509945110798992729311955292905801573792950880483560164111379098982296145344=2^6*151*1451*1811*396735172867079069995720614105701999*3814513213267736594820542707399856787186774239 42 Pedersen 2016 38609216285933050182819527395134776077371684226280003942507105535228174698875183689898696256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3832205761430737279128925449658333997707232639 38609333828841492286929564585167157570896516423989270563013222584018311748379541668816183744=2^6*151*1451*1811*396735172866698062808350755767951999*3832205760637268141304939691602957192980084639 42 Pedersen 2016 40444240187149211469431322199506011445940952680910141491292074064183093957081321739543020096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4014343340047317527338405036630749074803551599 40444363316652439966817398992331515027262652886306132669421668802448819852705346771484179904=2^6*151*1451*1811*396735172862970997786816428467493599*4014343339253848389518146343596906597376861999 42 Pedersen 2016 41109427179825141566028903642957240859215076779458317039780991409034695362690846214741545408=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4080367301965711626329458762140525446485072577 41109552334441058130916291548604820031744782087367527661372098760484841009592737578563030592=2^6*151*1451*1811*396735172861702123627194556469333249*4080367301172242488510468943266304841056543327 42 Pedersen 2016 43594919438223260958258573645841395579410804200164783190016367926732247347595760766587898816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4327067926036526895320506306930144244862181529 43595052159736852907763594120973253921372558920667742568039464158244774094646017754361861184=2^6*151*1451*1811*396735172857303588941187560124908249*4327067925243057757505915022741930635778077279 42 Pedersen 2016 47117645752857415859537801919923506624567280222978757251076560480525461906067795503872090944=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4676720505848234232710543017786234170886910411 47117789199051187823389380170396575731095944676493533815164774867653343006470409208725413056=2^6*151*1451*1811*396735172851864422451202508970662411*4676720505054765094901390900088005612957051999 42 Pedersen 2016 48885621144402253671182721973987863232734592076402852591914600449432167886837753401591045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4852203101282692609040816385156131202271727999 48885769973066574563606541663957122617205128604207333299450831538932881030995445419784954304=2^6*151*1451*1811*396735172849430064675909819902735999*4852203100489223471234098625233195333409795999 42 Pedersen 2016 51167520086671421439932446550640075739287791571755202661517469383915355771739430987609535296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5078695817653956320831564679947670688160757899 51167675862408598172818497659542778711291805168097681021743147380327025619926898819187264704=2^6*151*1451*1811*396735172846536762380074337626082399*5078695816860487183027740222320570301575479499 42 Pedersen 2016 51471267180443543193918496575689740363561749782919976263023842737286199270679191085435692096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5108844613064638329303826590925919481158994599 51471423880916321095169318608039281905740841627184893382884915997485405706884746808247507904=2^6*151*1451*1811*396735172846170977446430208910811999*5108844612271169191500367918232463223288986599 42 Pedersen 2016 52431915570764071460161658347781152897607329836315233741125969391616476872538943218086763072=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5204194963323801210174134699057897598724790543 52432075195859948474695247042482207964297520549017096373248276420636348190702886445198484928=2^6*151*1451*1811*396735172845042022046056025888792543*5204194962530332072371804981764815523876801999 42 Pedersen 2016 53826680010089559620794300609888155873710756479016086029777393682663726699286354707317816896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5342634041719942167105958648780887935957260799 53826843881442795909165759553862295905977025895949148974652973076909006036870229153315783104=2^6*151*1451*1811*396735172843474619821507992161392799*5342634040926473029305196333712353894836671999 42 Pedersen 2016 55026164681543208314312880118973730632873564415097516453802466203861052377517965613907608896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5461690383984192869432674839072968709175671299 55026332204638968207143947005032257085289887070882680708245105459051062305609420515141991104=2^6*151*1451*1811*396735172842190218404125363038971999*5461690383190723731633196925421817297177503299 42 Pedersen 2016 57299870084727324722065930582510196093132902747615517845561099701357769291515017444167315136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5687369840447363553092216383711777960681672109 57300044529951315644575685695507749258335406600180953932856036990074182505719394052029804864=2^6*151*1451*1811*396735172839903123301199369009355359*5687369839653894415295025565163552542713120749 42 Pedersen 2016 57741331339616139419895271228568818413011368284721642393628903529435162456076149569599340096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5731187626125902216191024091900219857297881599 57741507128836327515623963827214820448077419040963580141167063509008113091165652908787859904=2^6*151*1451*1811*396735172839479943359851048392611999*5731187625332433078394256453293342759946073599 42 Pedersen 2016 59089736891241846266766413085062769574299954201670223399892265775850818668827110895694968896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5865025295490040876818022115274531394232323799 59089916785583182737420288898849179377427551372456095868275006216964200138373598498634631104=2^6*151*1451*1811*396735172838226529208797703654846999*5865025294696571739022507890818707641618280799 42 Pedersen 2016 59719434709772814448890855617500834235559489790403015634231548531837198263220213348189650496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5927526735308542133651376112770914340150739199 59719616521182668488641011407198320725185291374496698962197224516984300503252081127176749504=2^6*151*1451*1811*396735172837660580132466613326431999*5927526734515072995856427837391421677865111199 42 Pedersen 2016 61343365700622316861878620063260694482757276740892325965338165223014972126894216132018358336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6088712024676013040444340288522334142357579159 61343552455970176793361866406794696831130018781110882930032871559349645619435235222892361664=2^6*151*1451*1811*396735172836254671193550964561526999*6088712023882543902650797922081757128836856159 42 Pedersen 2016 62756558789692212339722821591699579708377705509272070163309558686101740598020038834232698816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6228980261613029054878944328128512373039631529 62756749847402095094189743628349421898760450134924170506535795055174160304681715597117061184=2^6*151*1451*1811*396735172835090417313220473531158249*6228980260819559917086566215568265850549277279 42 Pedersen 2016 66581572974489409523346608739092356809430412164057067843231779769292440971238305293168475712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6608636799781992700393614248819213353788616703 66581775677172574917992219179978510057795793049496219877546495270315165170414851194851492288=2^6*151*1451*1811*396735172832187111466683121031368703*6608636798988523562604139442105504183798051999 42 Pedersen 2016 68432990806976748614293477665238556811723570960247776065589474959115370282803291279867538496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6792401578427825986135797980147664127654936199 68433199146164813784036948359714529630297561080373307004696971478086403648522811311722861504=2^6*151*1451*1811*396735172830898393801978723811756999*6792401577634356848347611891098659354883983199 42 Pedersen 2016 69047662251061647265629886021869328006357364161221261154273377976946368713958914468752415296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6853411556769896715860013272762304751789040399 69047872461571542409190991285221010618822574928396605892528338333886884076684258772284384704=2^6*151*1451*1811*396735172830485820188946325928552399*6853411555976427578072239757326332376901291999 42 Pedersen 2016 72819433000323093200782703037542972948029029592051108502452098570929035266192477978457888064=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7227783351552530289494417612143324993264618691 72819654693710562489085525358219345262758906911140107887868428416428861696319860491825375936=2^6*151*1451*1811*396735172828106669626291143151114499*7227783350759061151709023247270007801154308191 42 Pedersen 2016 74459223542996298907105138372640446089189708782369050216426636363229867733306934895769970496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7390542800452854722258211494495075203318256699 74459450228605008694665558564761615825162339920926396966028102776162389901208439498956429504=2^6*151*1451*1811*396735172827147499835361526646191199*7390542799659385584473776299412687627712869499 42 Pedersen 2016 83117476898846042784310039673703835693011615989251677055331810492200736591584934242783628096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8249928501226670728347266696641021282697741099 83117729943867850681910108812742926707133830838045094392659234814822941006118169939027571904=2^6*151*1451*1811*396735172822710470026577802887445599*8249928500433201590567268531367417430851099499 42 Pedersen 2016 83400997933776705945785347438829416144666467284954104917079638261076944356080437656352245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8278069734022011202317043865049028360555934249 83401251841957372170368695372512494246192949192978112602867597367063983664347741942623754304=2^6*151*1451*1811*396735172822580753713005537800582249*8278069733228542064537175416088996773796155999 42 Pedersen 2016 86344298836796296185816650097705319198232149721844925686680002237730730086642944870837330496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8570210724262351773166288983510252324882409199 86344561705639256072217497716640881444286171328406037576442932268189401269509686229169069504=2^6*151*1451*1811*396735172821284462251824796097281199*8570210723468882635387716826011401479825931999 42 Pedersen 2016 87377771588401599634638716279016298247849113770554452452651245569187715605984666056538138816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8672789347036067318764731640075907975434929029 87378037603576049901766972667546814994627532862803183071905681422439826742715980123931621184=2^6*151*1451*1811*396735172820850014744493631752251999*8672789346242598180986593930084388294723481029 42 Pedersen 2016 89925777866907331033177476682750063756470057626624633351925257708452865846964202211114114624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8925694877890081701843950225105744749408904831 89926051639298775456853623344865361811221776949249531217966805485892026271262565243356029376=2^6*151*1451*1811*396735172819821552775033971789551999*8925694877096612564066840977083684728660156831 42 Pedersen 2016 90092616044745765360354545455568844005253315345109022445799788835465989486566736706538355776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8942254608644626928914909565989982484011336519 90092890325063724455491296450188065582509582730451633265723929672666567944884961367737484224=2^6*151*1451*1811*396735172819756240479545777949476999*8942254607851157791137865630263410657102663519 42 Pedersen 2016 99467140881704467369254940699287969719539317499644897403597690946126700026788053652681656896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9872734725744483679752827696931560811317470799 99467443702071166079422507452908113236118601949215111912930072210580725721498340440271943104=2^6*151*1451*1811*396735172816438416493321025559352799*9872734724951014541979101585191213736798921999 42 Pedersen 2016 102627602558402412274822758482820749902104413115986949928281012631244339168220688825644846656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10186430278550502489996967781053829886862050239 102627915000561347007005805588872141036087232317741201664188405172138585475480463178369233344=2^6*151*1451*1811*396735172815456488545436477395902239*10186430277757033352224223597261367360506951999 42 Pedersen 2016 102672523451615928763285473875132778128363622138838823343307649737076295031788453042786435776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10190888957652056095182333974178291052200450269 102672836030533206348899535122057812445564477952182804678011797902323266825763954555329404224=2^6*151*1451*1811*396735172815442967730314873607402269*10190888956858586957409603311200950129633851999 42 Pedersen 2016 102934660224573475369160453247821308153870460989029355803808238008920108691493261235738931136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10216907668940344407260906822005490123436713609 102934973601546804516840221203038553156309880696695069359369139073326639792504324021226188864=2^6*151*1451*1811*396735172815364302106983085534865609*10216907668146875269488254824651480988942651999 42 Pedersen 2016 104184835658607892869735645953166682827586909361972785742711240360538641862739963158372084416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10340995385863295859910748276806000666409210429 104185152841648029771165482732029697712673739769086269142279309567670082598047960240606475584=2^6*151*1451*1811*396735172814994578036808597602970749*10340995385069826722138466003522166019847043679 42 Pedersen 2016 109620645205026847825765321876735409833185884602703767367217273216089133692463411243727132864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10880533420190518823235316080053838416547571141 109620978936987819886222528517761036073985432750946713047578862530180969539684613199266531136=2^6*151*1451*1811*396735172813485053147811643151323141*10880533419397049685464543331659000724437051999 42 Pedersen 2016 111021091515104364926139988000110361140750610115813918665169641667096691188142109470388878656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11019536459731853066879734360690872966324520739 111021429510620732269234795282189003772763039303557903650879309311320101256457867053561201344=2^6*151*1451*1811*396735172813120096290803577491014499*11019536458938383929109326569153043339874310239 42 Pedersen 2016 115007600417652440230736769318612071404132604699409504646607025209413809695636634596335582784=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11415222356881382968583874433174462742167183871 115007950549800835159606357097278691658422711038862176256875841633279256477746004422238241216=2^6*151*1451*1811*396735172812129871912023128079551999*11415222356087913830814456866015413565128435871 42 Pedersen 2016 116246385663803584419368565571573260579013716304105956761245242915727181044638079309656259136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11538179526545700686374461723500127435420489359 116246739567342201035418610971017032899385861536013812415083210280746511589427349444652860864=2^6*151*1451*1811*396735172811835996714265465716401999*11538179525752231548605338031538835920744891359 42 Pedersen 2016 119046698309303594552823001381041047081164386327273431655695914561593841714005840569787305536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11816128039522960377409073909982788156312480959 119047060738187311716786441850526210546441103124292116004494846461213854263242846284029014464=2^6*151*1451*1811*396735172811194221975158688711632959*11816128038729491239640591992760603418641651999 42 Pedersen 2016 122283252921284000124494495073656992339312686407423883742387653787271597275138869333105598016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12137376291219162706531720496474323226707390079 122283625203619276793192426711813465811537391163543752556426064024604347357346882377245761984=2^6*151*1451*1811*396735172810489088208293099872751999*12137376290425693568763943713019004077875442079 42 Pedersen 2016 128227929130557648804283026356041704645322321210805933886344185367126950000694440771351678016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12727422518790968208963788169410964056828035079 128228319511020745777701165071594820419525040836317230592255489479617406218024315966839681984=2^6*151*1451*1811*396735172809286681185709368608587079*12727422517997499071197213792978228639260251999 42 Pedersen 2016 138197396622783561132808098621711820559615822361451021574337634049590559660674032671813859776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13716954408771969472635717740166893943035668769 138197817354554386727332798037824739796648686984461649931270899120466462263135669727453980224=2^6*151*1451*1811*396735172807502403754821886956839519*13716954407978500334870927641165046007119633249 42 Pedersen 2016 142185984786763288281739821231081050116207480753220519773886689461167427186061816090739361856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14112846685599835400383379016792978567474694039 142186417661496299377648094922927219358472889979452265772148063933816104423549220153044318144=2^6*151*1451*1811*396735172806858626757420795031451999*14112846684806366262619232694788531723484046039 42 Pedersen 2016 144595202014648528011955677186012441166005842793702169837566462224395135610169291644838936896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14351976536691991156719523646539728315154353299 144595642224065515524946470325785276049681850460853942845935527643753936810030277453554663104=2^6*151*1451*1811*396735172806486973281987104882171999*14351976535898522018955748978010715161312985299 42 Pedersen 2016 148162589548070614357223705774202240553190799306260421029897786860048035291684170186927787584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14706062021297313458474075186533906431689595071 148163040618135565121209079509726923297429843970997911195704708696666457694511674898436436416=2^6*151*1451*1811*396735172805958855538512755904551999*14706062020503844320710828635748367626825847071 42 Pedersen 2016 150492066934997704590026232954354589039324476960289950523185750199545106880925184775682245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14937277195342612748291980238710289989650152999 150492525096984573211862729843469978820309145910575730441957568229589123274233588663293754304=2^6*151*1451*1811*396735172805627511437681418995675999*14937277194549143610529065032025582521695280999 42 Pedersen 2016 159303550790321524253120112181036932962455849711721527983443108670084836607264682340638786496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15811871979837856381564755101625575392238379449 159304035778220433538807931759550380073039655696251583392812150124302179388863683520455613504=2^6*151*1451*1811*396735172804461821902696534360851449*15811871979044387243803005584475852808918331999 42 Pedersen 2016 172554398979177493654799851120654804494290042829166243297112185433311752742852875906852232256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17127101390274741171429567919595278992918941639 172554924308305396246843029607677353018682134661281801209633429623509709284320197928790647744=2^6*151*1451*1811*396735172802932971127213206078668639*17127101389481272033669347253221039737881076999 42 Pedersen 2016 173026487758174947249164155954892753945219918908369493959495901147381294797343707660303232576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17173959148934815021321271586098012092709190719 173027014524542282915635849950959978242921706200653725378008485713239931824190751303419007424=2^6*151*1451*1811*396735172802882822625602846543351999*17173959148141345883561101068225383197206642719 42 Pedersen 2016 174744594255398223279275743943812670388715252163074005175445061139295954771805504754295660096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17344491945266386706497750982170951272545961599 174745126252413940961183531397942319631444932646728317704527205393216719375235382411451539904=2^6*151*1451*1811*396735172802702601105192476364611999*17344491944472917568737760685818732747222153599 42 Pedersen 2016 194765186073394933647215235853462260691621870038411930855089725490519928577403031592772836928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19331660675757647027868005443095290871128078207 194765779021624309528231898272603947569361650324539605576896003267966093888987478040828699072=2^6*151*1451*1811*396735172800836931473501161586051999*19331660674964177890109880816374763660582830207 42 Pedersen 2016 202089888419679980325486582351434678726459960886790938899436921888479231653716633623594994496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20058683113206753792857023333795381278665062699 202090503667424862527064357695106176314077850480529117618335359104975206356072937377083405504=2^6*151*1451*1811*396735172800246720910711050025647199*20058683112413284655099488917637644179680219499 42 Pedersen 2016 205827484023568612711652449010817694869439596304169790820970625393088873374394281823186692416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20429662811448874433672617906821533513782056179 205828110650147362140880269593495017972095395147999748467147683015969583689709147598575867584=2^6*151*1451*1811*396735172799961739014600983136251999*20429662810655405295915368472559906481686608179 42 Pedersen 2016 209071100729870415797762902142837079437237502818340816537758770151841760217070107350534373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*20751612020096541410213069465709327693379972499 209071737231400749494775666319385309018587654673173500209239036087104564593356941416185626304=2^6*151*1451*1811*396735172799722680031182847487483999*20751612019303072272456059090431118796933292499 42 Pedersen 2016 212671753529639378107457271375893021773276990302977000248836575202481357608830450157564225472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21108999290068495775271177884802703943593492393 212672400993091322454975801335965754761089252470055454904076438553432752968970179516396222528=2^6*151*1451*1811*396735172799465847318478819701244393*21108999289275026637514424342237199074933051999 42 Pedersen 2016 223573948713320095713788354345816464544295226932314655661390508417941106385673867318424031296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22191110226631734986288379028079144070748769399 223574629367700361500095404630540623767039524590307474850050910494123867299228888483380768704=2^6*151*1451*1811*396735172798738643995636247012891999*22191110225838265848532352688836481774776681399 42 Pedersen 2016 224332067202220014791670159851500447031270602796889377224892085572587479738616531994733678656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22266358219740259804513184772301436352778533239 224332750164636047714139788222690132299201468595728804656656876889497248952818682039616401344=2^6*151*1451*1811*396735172798690704060339526179885239*22266358218946790666757206372994070777639451999 42 Pedersen 2016 244586928354788429721235986773459307691820007131026363267766761723857181040384522680579889216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24276779644278027506160869286961486567478177879 244587672981633813708025372947842586650851293081878863532315696870870956794229047453989070784=2^6*151*1451*1811*396735172797519917900223103730729879*24276779643484558368406061673814237414788251999 42 Pedersen 2016 244695994175028241878157282998917921437547279999773953300468099547359120903056801581044783296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24287605107856537348042179410307505095163326149 244696739133916463193454049954664518664111768890501948686122779252743497200091892167256016704=2^6*151*1451*1811*396735172797514138251041365711935749*24287605107063068210287377576809437680492194399 42 Pedersen 2016 249668055152587384691275969006293206674198533557425186025874583888421413128609937893872438336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24781113201449445744132466061746790520620849159 249668815248548162092758349659174983248448007505491109923824246045918157156364773272878281664=2^6*151*1451*1811*396735172797256019521335931205276999*24781113200655976606377922346978428540456376159 42 Pedersen 2016 269808656653250827599843715867965803119565498642528209301665972005184379156271939779773279808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*26780193642189807608642140968282402987236804927 269809478065785881696108014205643256119251485270757951900878880363238489320769469483662496192=2^6*151*1451*1811*396735172796307761577377616956051999*26780193641396338470888545511457999321321556927 42 Pedersen 2016 273513236478197955186416328721203108565187599135701979347204990991053590243490150335467213376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27147896318247878996730147503396479041556495919 273514069169052775096674823842559554928926139628487997648284910676249090084131992495493426624=2^6*151*1451*1811*396735172796148548902099068743197919*27147896317454409858976711259247353923854101999 42 Pedersen 2016 276615747903637186237301100603334437734997009868111796820424666102147874973210698306600902208=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27455839946821472656753130412087965911032390527 276616590039858980712462920762536928612635659140316977037995111969616140783072813807190073792=2^6*151*1451*1811*396735172796018492705046657767142527*27455839946028003518999824224135893204306051999 42 Pedersen 2016 288140423716939857761876863630085689873045742105329323150064186912693885435644086049557888576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28599735972145641014455384530098960277477054719 288141300939186292460595538868933875706546045455828531138157853073268273552531932068852351424=2^6*151*1451*1811*396735172795559906974600422570851999*28599735971352171876702536927877333805947006719 42 Pedersen 2016 304665722944696257317381741567384247160258553412459612004010609964815907666584478785544893504=2^6*151*1451*1811*328481*9085995379*132928044795118424699*30239975091245506019587147912021272900296040551 304666650476996118670430730210507301358307779979692716570189241347370119812529015022087490496=2^6*151*1451*1811*396735172794962879308396703439792551*30239975090452036881834897337465850147897051999 42 Pedersen 2016 314023877629510341103298447877417181271176127969746725007212165130478441307438724566671707712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*31168830368542878609822721030950929118341824703 314024833652021222484740625428953804073088009686822449661489362944601559495739988722884260288=2^6*151*1451*1811*396735172794652654258829187360551999*31168830367749409472070780681445073882022076703 42 Pedersen 2016 327136061175568532591415523582696324907524814528978789049222914727171001132249949787727032896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32470296447471012008560376421798805043499514799 327137057117154139970899337824060965053324300567392643603708507331262931998929839558474567104=2^6*151*1451*1811*396735172794247839033291550857496799*32470296446677542870808840887518487443682821999 42 Pedersen 2016 329451180764637761596188467194930573684291077470627948402921941848455700477869542089817042496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32700086520440317675547416210477212497596987199 329452183754434031299654801172187018669937362849829601691806987768941314773037043978765357504=2^6*151*1451*1811*396735172794179710843149581258059199*32700086519646848537795948804387036867379731999 42 Pedersen 2016 335526105437758185182404876219910800859001611260090662677579795024857753030523476066324478912=2^6*151*1451*1811*328481*9085995379*132928044795118424699*33303060721216100670703402143676799250056513753 335527126922214107053859864279675076588763949233836593965626296234314948256705715910489089088=2^6*151*1451*1811*396735172794005411229764848373051999*33303060720422631532952109037200008352724265753 42 Pedersen 2016 346117584906063905442965010602398693150916627907770112181390723005909272327248465062527011136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34354331183168075385415842802573845637768639859 346118638635497093612189265591389216462865557618440303386035565452933211084657483638278108864=2^6*151*1451*1811*396735172793716157106151761125464499*34354331182374606247664838950220667827683979359 42 Pedersen 2016 363674662965346494442120407783260600946350377987789424362233685717940496429278915344575020096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36096980792898322350601525526532997778695926599 363675770146007585028623605368141014465896700755525030448041859628028553619149801102452179904=2^6*151*1451*1811*396735172793273784280314090941118599*36096980792104853212850964047005657638795611999 42 Pedersen 2016 364658437418394483602951746724329151414463450618575068872214982660901598987655186378433327296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36194626549263816212165348130091808422233762149 364659547594084263866115302665079210420237640459907929544871286598842297919975035728779472704=2^6*151*1451*1811*396735172793250257140158130861730399*36194626548470347074414810177704624242412835749 42 Pedersen 2016 384390643645161158202005220153292215008414850516476727462773707931551142610946689851295951296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*38153171209376626351519227981116898910089655649 384391813894095955836815499521924358610084184204078665152119522300763585817974898186668848704=2^6*151*1451*1811*396735172792803790019093221135673249*38153171208583157213769136495850779639994786399 42 Pedersen 2016 412965650896780275865223092644500062579862920698441846929352153937922982984111531587656306496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*40989419078579742929840902105146214079582540699 412966908140214942000969839688358884367894880968075082204230698187709424933983174618398093504=2^6*151*1451*1811*396735172792232873614528716766331999*40989419077786273792091381536284659313857012699 42 Pedersen 2016 413649004405195313274162199544597579680685172942323494950434612185871356757305731505068821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*41057246180602431088078985567266733100112965749 413650263729049283400923045521215759281679180458085410826958521425619302157063633804755178304=2^6*151*1451*1811*396735172792220186220554062146861749*41057246179808961950329477685799152989006907999 42 Pedersen 2016 428371880887775554230319545906636578878245109437159880313160743675770243321991525854512930368=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42518583589358217392110968268413079474805309567 428373185034339977220012200641068333848370237290647281347857272554109787317634445082261725632=2^6*151*1451*1811*396735172791956666791498463312561567*42518583588564748254361723906374554962533551999 42 Pedersen 2016 460939396025080387687496330239678111246986048017849000522139212686295003363486283138484690496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45751112792240125091581195198608008666802499199 460940799321040168018106360927738180560521225114792210734288773790513736240290164506801709504=2^6*151*1451*1811*396735172791433557118343987112431999*45751112791446655953832473946242638630730871199 42 Pedersen 2016 461993233160357290783764589406406949282569732055671969188404757681792847364372072516510609472=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45855712707232163225002890648936676370071857143 461994639664646424069247003513332236832653077674873650693459658818398172632117711860681838528=2^6*151*1451*1811*396735172791417861914294502917426999*45855712706438694087254185091775355818195234143 42 Pedersen 2016 475170667616331833710924532480669765467892436513976233962337813081250875100546596072565353536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47163655346343963067632865022382699275028717959 475172114238347270722953321866985693587302008887833985025819153334941600461258171737154966464=2^6*151*1451*1811*396735172791227483135166616187276999*47163655345550493929884349844000506609882244959 42 Pedersen 2016 484691830974107056265140877136071652191929579216107974800346971785317403825808615766292049856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48108690252128445168331431120746727166436497289 484693306582601383112622402655029134935753029638590637602184196145708089322442909544115630144=2^6*151*1451*1811*396735172791096369576968533277858249*48108690251334976030583047055922732584199443039 42 Pedersen 2016 484871206968174352186507205488184457681198935290486520812857043920556034999722028792693304896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48126494439419796839417812796524582729627732799 484872683122765649540108359043196629317040672736542263768371656221150401883464880188964295104=2^6*151*1451*1811*396735172791093948853746842302871999*48126494438626327701669431152423809838365664799 42 Pedersen 2016 493791555515562945737006675306458069207012100406665680914488616987990453034425722187817918016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*49011894724266494381609342032877773496909470079 493793058827496801203470188449969824354213093359057809274201005731653795263745278177893441984=2^6*151*1451*1811*396735172790975784990594021172751999*49011894723473025243861078552640153426777522079 42 Pedersen 2016 514266988368587706276418081141224061578650292854692002025683683040091473527288628237864243776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*51044209267147753345115252283117052883465033519 514268554016465169912326863794939659269919160273599427477419486900569931362581590656635596224=2^6*151*1451*1811*396735172790720059690670445810101999*51044209266354284207367244528179356388695735519 42 Pedersen 2016 564735570606642672806340077645154981547470058968564058418055585699020779005082075764583087808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56053531139717880995307726273133607109545325677 564737289902392636041614645201778893216043905934560782645435115135736483572530998331236688192=2^6*151*1451*1811*396735172790168921856489065186520749*56053531138924411857560269656030091995399608927 42 Pedersen 2016 570748248665197122137231772999895408663892893369313949970823674597588624502492900724782213696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56650326975379938650609217925350754307378369999 570749986266101515197377493641897907225438530639140576826237945964425874181868321506257786304=2^6*151*1451*1811*396735172790109758728022874059513999*56650326974586469512861820471375705384359659999 42 Pedersen 2016 572693271635197654799274714719237636676731247862765730577689968770760853159826734913384466496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56843382648319533381664512708138264607450018199 572695015157580877872843042563490025053666111426963617810130915585192439030319391876349933504=2^6*151*1451*1811*396735172790090886160968045897206999*56843382647526064243917134126730270512593615199 42 Pedersen 2016 589963960237903002768559366521662336531570100335659078914083944174476514227266547623627464256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*58557606316497887532989321563847649809237024639 589965756339622572006620230109272041661188695487544256884577992246036466782426014469551415744=2^6*151*1451*1811*396735172789928766755800635160451999*58557606315704418395242105101844823125117376639 42 Pedersen 2016 601839823974510705742491055102911458437297765995929166823639652576615426358797434376870682176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*59736359935746457237204727084981222734402773119 601841656231420619301964087738947195174779163527894815553971285419724238362484371714352357824=2^6*151*1451*1811*396735172789822687195061685148725119*59736359934952988099457616702539135000294851999 42 Pedersen 2016 610149940853048420841408992603524809046865315386202267653193470429637214922093086778646431424=2^6*151*1451*1811*328481*9085995379*132928044795118424699*60561190917661464463642752454103468751552712781 610151798409495630448768105606893398147837952255212387601429299276562286354263415890390112576=2^6*151*1451*1811*396735172789750913955737490123496031*60561190916867995325895713844900705212470020749 42 Pedersen 2016 619717069665847023866235498440142912760997410739080743939889867267917235457240616737106821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*61510788181828537265375924655690877537007621999 619718956348711557472016152057125754349968143347922611025880576080305691696393293996717178304=2^6*151*1451*1811*396735172789670667751259392418717999*61510788181035068127628966292692592095629707999 42 Pedersen 2016 641909057238041156566882838248551445436143183754474997608144894515308155958206111490380122816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*63713481497381457499699635938670725017936100029 641911011482773406641091690854829881768716266801383507912264582920986580764503663502121637184=2^6*151*1451*1811*396735172789493737477621115464652029*63713481496587988361952854505946077853512251999 42 Pedersen 2016 655886166587400440001076514455367897082361969596682810379526316892500021749150503589951173696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*65100796862191837380525406222930399867751984999 655888163384410166259031508175141267811911913171478591006683633344243294518681120543168826304=2^6*151*1451*1811*396735172789388447193172235331704999*65100796861398368242778730080490201583461083999 42 Pedersen 2016 704070841606555256710459555824730605392632698317021844603170221514021500588178657922388116416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*69883426684397004064034852362378946049449055929 704072985098250576796500246740675364476935399293630855660125729795690223245877669452526443584=2^6*151*1451*1811*396735172789057516525843878593607929*69883426683603534926288507150606076121896251999 42 Pedersen 2016 711770051510392361924535988106305203463232116758590944374142535150884199617991818485939038528=2^6*151*1451*1811*328481*9085995379*132928044795118424699*70647621335058665775458491642035764422733061107 711772218441763797192194476665886275585629926183268853527788001279698558866355642765659297472=2^6*151*1451*1811*396735172789008790274467692280000607*70647621334265196637712195156514270681493864499 42 Pedersen 2016 757133509336738019833234428351303725163837703838361310211122929415785942950605571406296555456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*75150227737454873919162051554301107335248543689 757135814373807597492991135269886560156355445083730858609372075209059102568656937421499924544=2^6*151*1451*1811*396735172788741817555997333467451999*75150227736661404781416022041498083952821895689 42 Pedersen 2016 799690876120367091614906078895455022296672667691534171022454761205577011523764897141544972736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*79374312084874388784651941587726710627491219009 799693310720197807415338204460008141652531202277275964796489166757506585383790134413736947264=2^6*151*1451*1811*396735172788518895494560670295089759*79374312084080919646906134996985123908236933249 42 Pedersen 2016 839783260810473856538650841174453847708403009909814589739320499388683183362319864228754943296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*83353731570136070284821122684060487326727084899 839785817468609717782402559546283081470562889878567460057540277182856562124595101639225856704=2^6*151*1451*1811*396735172788329554155202385188091999*83353731569342601147075505434658258892579796899 42 Pedersen 2016 868189621677610707753939062840970489465399411745688300791883684244345111219447488170162670144=2^6*151*1451*1811*328481*9085995379*132928044795118424699*86173240232786245918121867302893634112115557711 868192264816814971200945699885054433528274954592395396196448746798939502084159953406076433856=2^6*151*1451*1811*396735172788205985958995232725801999*86173240231992776780376373621687612830430559711 42 Pedersen 2016 873087778447497832881618374944581758082893426208807702725277121040405420006029270105350523712=2^6*151*1451*1811*328481*9085995379*132928044795118424699*86659412872368971068575775641791426162069916203 873090436498778748547079722699488533981661959926248604410576420609785726645054699530573444288=2^6*151*1451*1811*396735172788185491658821266937668203*86659412871575501930830302454885578846173051999 42 Pedersen 2016 879149688653369992441366918106788167157129847101800898583882925448785039206600708884049625152=2^6*151*1451*1811*328481*9085995379*132928044795118424699*87261095306018444373290510022174865378732187063 879152365159688975603003316556469260722349827254570441327861852643613725185208159889031462848=2^6*151*1451*1811*396735172788160444315179449000564063*87261095305224975235545061882612659880772426999 42 Pedersen 2016 885183118602730092568567437246065542928541615012924746185400860968817657239214558668205100096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*87859950896401163659639989726332999030134446599 885185813477381104988966366878910774880848068510021080107968394449069014040910738038662099904=2^6*151*1451*1811*396735172788135855294277889921013599*87859950895607694521894566175791695091254236999 42 Pedersen 2016 913125922298965935717272008604813572094310978718406253931875100815800514716294832831984898496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*90633448615759371730824919448458139954946432449 913128702243419768222642847559642593852613837873972264047214550193348103152324634864885501504=2^6*151*1451*1811*396735172788026212752287810703413249*90633448614965902593079605540458826095283823199 42 Pedersen 2016 943894243815381139662945554729297467911765497317104448414349331830948206648763657440842255296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*93687396619042706881774614682343239419940906649 943897117431718186200088620901969641390789520239851978131386382870140677410606954080514544704=2^6*151*1451*1811*396735172787912992868070752633762399*93687396618249237744029413994228142618347948249 42 Pedersen 2016 955059389192851544984319671737918625557136873209914209426838959432529658474815279467129813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*94795607003990173196766346637424899700765738749 955062296800649364190447444994147004212734595591365662998918843572100506653029444968710186304=2^6*151*1451*1811*396735172787873711773856619323963999*94795607003196704059021185230404017032482578749 42 Pedersen 2016 986707816803029023326970624788893760203843792464064731427654049256482611186936509128977400896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97936911031757613750947908772004440928326581799 986710820762128080290158038432793433452895357373740382790524288080809045978368582308488199104=2^6*151*1451*1811*396735172787767197919275640719613799*97936911030964144613202853878838139238647771999 42 Pedersen 2016 1098072486410626251425476609610173610401850199665248172596794392102385121004993793330889935296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*108990549762196066162190300600620812260506951649 1098075829411239811760109051781441939975738860709894750227971596354983165872440270015106864704=2^6*151*1451*1811*396735172787441210556009407824073249*108990549761402597024445571694817776803723682399 42 Pedersen 2016 1105570975390191236588391928744939258219773174353635387603707067963673225592456555367894383296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*109734821607982883152331152075992815124767601149 1105574341219400877498284413744644308454184515285437803409929064378902166621369677081206416704=2^6*151*1451*1811*396735172787421620799864822093810749*109734821607189414014586442759945924253714594399 42 Pedersen 2016 1119362481257493942032881160339473775543350194676745450909641582170374525113918458261521423936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*111103714668439523268959482313516595436751890559 1119365889073924961216014530579858888208836006698020494175512363517466971344589612253658096064=2^6*151*1451*1811*396735172787386275861830327729542559*111103714667646054131214808342407739060063151999 42 Pedersen 2016 1121085702305863403139778039863023958096734654297835508581704665870172428506243750301443325376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*111274755115903518580545543430560566992144705169 1121089115368513677692685074209219696181973772029297702670330898030703019194234202605293314624=2^6*151*1451*1811*396735172787381920699556043777851999*111274755115110049442800873814613984899407657169 42 Pedersen 2016 1126245191350017164888981917578898560421043147553941087515212065707406838041953042022279822912=2^6*151*1451*1811*328481*9085995379*132928044795118424699*111786866615256813150782615913024255523493493503 1126248620120350906354530282229358712600175836728978904549110008376875521335297202879845745088=2^6*151*1451*1811*396735172787368960614795476536245503*111786866614463344013037959257162433997998051999 42 Pedersen 2016 1129686595556695054091470976295246285641321060028643674156150370944597228357195501200550821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*112128447468143691962501334181079363520035809499 1129690034804129821956043001050925509299475431004349676264041268399426902200411343645273178304=2^6*151*1451*1811*396735172787360381990052616122505499*112128447467350222824756686103842284854954107999 42 Pedersen 2016 1225712172846696115238980694741604324336576066065687700087941852309538302232664931111156710976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*121659585521042441704930716744608869485680440319 1225715904436911319471997234669656130041925809777865736851982605011010948523778613115208729024=2^6*151*1451*1811*396735172787140437360173155356892319*121659585520248972567186288612001670281364351999 42 Pedersen 2016 1296805573484222929612276760915978576488818482842831429662815978761506142156782691556573151296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*128716049384622517321323947170815827854195049399 1296809521513047508552320554306790920970927942190159710474701949568787990427175605226991648704=2^6*151*1451*1811*396735172786998584259962614464266999*128716049383829048183579660891308839190771586399 42 Pedersen 2016 1315175068670665849459740417652613926175979295285895479570976868019820259897667458489977151296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*130539336466305883186303836023686747077885111899 1315179072624062293237673761434674570189839934897712506478698749957015754577456322485587648704=2^6*151*1451*1811*396735172786964424744910491421023899*130539336465512414048559583903694810537504891999 42 Pedersen 2016 1342033699982391261874815238300968994365978466245221409964874700107290603748241429011448821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*133205223307796603175277606726492086914778278249 1342037785704907746160094333604791838436218317084621395622605558420719704365379518538375178304=2^6*151*1451*1811*396735172786916162246596394924174249*133205223307003134037533402868998464470894907999 42 Pedersen 2016 1474780157259139427439783411285988118203126790979633990537030969671592627087082413091425466688=2^6*151*1451*1811*328481*9085995379*132928044795118424699*146381137955171055823406418179224179730354580147 1474784647118444344270025644200303226346323783753294884089067057426584458270895385434356549312=2^6*151*1451*1811*396735172786703443804771572294332147*146381137954377586685662427040172382109101051999 42 Pedersen 2016 1528567096083552253984110033883137346714796843076977386723102117600547748167495969343054610496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*151719827436100419262081198302780730285460854199 1528571749693221301424273501636868783744809049944311101163436072564198277351606891642391789504=2^6*151*1451*1811*396735172786627771328396489014351199*151719827435306950124337282836205307747487306999 42 Pedersen 2016 1597652899003358520897064406547344631899721638321257302060109673675100574940675383310438645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*158577024692363035437851536439537964037870034249 1597657762939653913526496159271155567551980866137518657856383842755076298875180609715737354304=2^6*151*1451*1811*396735172786538050188687586611515999*158577024691569566300107710694102250402299322249 42 Pedersen 2016 1613882180992111269560825634621817354980009055815907200373034158953221893072805652578618732096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*160187882252397017009747002871037197245992129599 1613887094337257459819254218512722228139635298738476589327360819779745152308456754708984467904=2^6*151*1451*1811*396735172786518087549425417040621599*160187882251603547872003197088240745779992311999 42 Pedersen 2016 1618548395199691199351031699464589667520202143386767191204915496152643018005066317860337042496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*160651033144606991486232530245000131385867612199 1618553322750782035335081497239949716686358386265555561383488821710636135673811357168245357504=2^6*151*1451*1811*396735172786512422025648873504731999*160651033143813522348488730127727456463403684199 42 Pedersen 2016 1707156118457523262864741760819438837246834907669066934390660893335213430172749232547871596096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*169445902873668064474678211851722563220515145599 1707161315768285598664987414780860071623159669485891343589387010106989936666982605450003603904=2^6*151*1451*1811*396735172786410716263148651029737599*169445902872874595336934513440212388520526211999 42 Pedersen 2016 2047330115455919092605957491303863046374084736576125917589468284717234156326958580305148878656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*203210295849993171855728275710633402158186395739 2047336348401300050158947002745741489204707122028974523588150824532084825857948416698801201344=2^6*151*1451*1811*396735172786102033122614199314310239*203210295849199702717984885982263761909912889499 42 Pedersen 2016 2069751498346885436951339855717284465635316217793261947153958482340648509733168545752855125056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*205435758083095045272188200045649408887260624839 2069757799552511222587773573315112614193356365918197459243010233100726214462191028000202154944=2^6*151*1451*1811*396735172786085251682571233892351839*205435758082301576134444827098719811604409076999 42 Pedersen 2016 2254501746360224122632094770738670335287520134641500588396105754725745838319691761863483802176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*223773373631132689665882117005760006252733803119 2254508610024339768886891571183067460701292303254767753610066178288095932089907204281499237824=2^6*151*1451*1811*396735172785959680738549521023505119*223773373630339220528138869629774430682751101999 42 Pedersen 2016 2262738421413292418124177608115349083015620915440375828864684748076881252223587634629123874496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*224590915053357865986608052645332964759976563949 2262745310153357145036998178930362858213779600941954977010358241630867128461593827533794525504=2^6*151*1451*1811*396735172785954559913761878697531999*224590915052564396848864810390172176832319835949 42 Pedersen 2016 2463520313325569369857665996773728963518002540175912728746400373046365504359514974673114783296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*244519771347121319255132879864622377106340982399 2463527813331280182310342812794098517733175701771857952491203550135441945951215552435186016704=2^6*151*1451*1811*396735172785840322870466537697194399*244519771346327850117389751846504884519684591999 42 Pedersen 2016 2505103785377799781022772900475258506297731239201477390353529550471781636166562099023812216896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*248647190562230112466981488352655783878770235799 2505111411981321125075371520734926659614680011837306053734285913644897279688422575448021383104=2^6*151*1451*1811*396735172785818952512922903734171999*248647190561436643329238381704895834926076867799 42 Pedersen 2016 2512711351051088409997124534511790287444765197466810405633747253105275717401786746595188751936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*249402288950856594922934663861273833449708322559 2512719000815281775472220548861798092986817377194400135133370203089006411050788585417334768064=2^6*151*1451*1811*396735172785815119411628858855651999*249402288950063125785191561046615178541893474559 42 Pedersen 2016 2518785070263389102700020754245605273087859264138361512180539344774898232383534904924423045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*250005143502120086864046958055789369788973477999 2518792738518572183877293351847447581507246910821144853326386119751230487517003956232952954304=2^6*151*1451*1811*396735172785812075767239068409995999*250005143501326617726303858284775104671604285999 42 Pedersen 2016 2628116433889765108466580871889995316152200177941041485967230360669687631334766571677967416896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*260856963919586811983256905380704756595339660799 2628124434996212753325465147789204673024025204436062448077218292171425762909637133283466183104=2^6*151*1451*1811*396735172785759693780854615841292799*260856963918793342845513857991676875930539171999 42 Pedersen 2016 2667935256717541756184877219307134697150813966228943632666923889437520810659462706626467372096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*264809230682110861709249716216442559518505414599 2667943379049455653851077002550747936955155912665251746716329064397360876814354127123855827904=2^6*151*1451*1811*396735172785741682631009066987406599*264809230681317392571506686838564524402558811999 42 Pedersen 2016 2703435669730655260546655325225865895636018203927889752119315706289455931154956308571122044736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*268332868309834248701552899211701255253898543259 2703443900140955560933367612584153288368476215569408726180298670517472608457185346098015875264=2^6*151*1451*1811*396735172785726072196536423220695259*268332868309040779563809885444257692781718651999 42 Pedersen 2016 2731395002817001209348856843610628757482000480682326966785752502017903832901272750711186924096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*271108006674357169997112993948135076063077327599 2731403318347426837636475501397242966978636461371465125493667286136401519592316101488032275904=2^6*151*1451*1811*396735172785714063408794363176869599*271108006673563700859369992189479255650941261999 42 Pedersen 2016 3016861160258130982525117644977379344287985635163425537171627540042672072509686015823191621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*299442305022649948061730836673389896828966946999 3016870344869196811409286058424594428457065810955292821652250733616167570404680443941032378304=2^6*151*1451*1811*396735172785604191237868048497947999*299442305021856478923987944786905002731509802999 42 Pedersen 2016 3050077997263946929588974555814543533342429344087858888933266450508243607974058259340676082496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*302739283474827751610466638482994102471806934699 3050087283001220604692927138799491690929555561519726293184805379233207535759828699769826317504=2^6*151*1451*1811*396735172785592742307419667065419499*302739283474034282472723758045439656755782319199 42 Pedersen 2016 3136830683955348371847268835600088036098818661776772241070434163849044873396216204304141860416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*311350029243306641481697053384329919219028135679 3136840233804771678675184084160620460246315570890437358721366626565856127167560373999284699584=2^6*151*1451*1811*396735172785563984629091492550187679*311350029242513172343954201704453801677518751999 42 Pedersen 2016 3496423053362396132155955914892374872759358855677358094832902874860234225244420746094608914496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*347041816913969436206688329978740577339304730199 3496433697964239189387384153256984899912614696528424778443214571853629141590535316358229485504=2^6*151*1451*1811*396735172785460000196665418372002199*347041816913175967068945582283296885871973531999 42 Pedersen 2016 3621499055229836438902041835162857897923582407966469558641752323579768048263635181194116377664=2^6*151*1451*1811*328481*9085995379*132928044795118424699*359456390973784309705318488301865959416985523591 3621510080616332749130404705011995642182413272496539734939570759546933748334126438981587686336=2^6*151*1451*1811*396735172785428672061069646248650591*359456390972990840567575771934557863721777676999 42 Pedersen 2016 3680005800154917853522740048563643162875251433972366913414998524114388262066390519591540472256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*365263550676897593844868251162947301431881657889 3680017003660879501875088302726187534586161636137623868584655760299826771841640316927622407744=2^6*151*1451*1811*396735172785414748767896855407009889*365263550676104124707125548718932378527515451999 42 Pedersen 2016 3712026657823377976712642661752962359602507516507564186730388772153650218276388491684949171136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*368441820713104856987357303100993125568988523609 3712037958814476678540331071257696622878338469608627086372048199281203825817497457711535948864=2^6*151*1451*1811*396735172785407314361780769690308249*368441820712311387849614608091384318750339019359 42 Pedersen 2016 3757370065570476433368292895662797843055050106562810626682453830533979325974203785392439695936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*372942437019959129407393796030303285010768108559 3757381504606232291628740870165411008222803884619086062286656174152604247446454640854195824064=2^6*151*1451*1811*396735172785397003570172564020651999*372942437019165660269651111331486086397788260559 42 Pedersen 2016 3826535440633918076609473222097467163887316617727541017201060544240729303120954645992720680256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*379807532308262348918524871224921540349508091139 3826547090238551796500426776630856233958741542487935417588659030919884155687662715218026199744=2^6*151*1451*1811*396735172785381746472163873553443139*379807532307468879780782201783202350426995451999 42 Pedersen 2016 3870085425867031952463622083597147245512853881823199226685866339156455356192358114444246264896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*384130140233908548422764383173706626853366097799 3870097208056380394366502494722800503604898947390678228360824538932203928642166219671491335104=2^6*151*1451*1811*396735172785372419629912426209371999*384130140233115079285021723058829688378197529799 42 Pedersen 2016 4009681058381380561367564401045713708887062042646898351323277145109819184092639926249487415104=2^6*151*1451*1811*328481*9085995379*132928044795118424699*397985878284384405115239578343324462421231603451 4009693265559325768182851431643798198789133005004454308115071629549188358182285351703501768896=2^6*151*1451*1811*396735172785343888802852820797051999*397985878283590935977496946759274583551475355451 42 Pedersen 2016 4109129769917932344949420501463195074570699691644670516832590405042535571259414269473397247552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*407856783782564400725002179723859344843485897663 4109142279860137469806573968841602273088661725100372813316488258234412324208128207110039040448=2^6*151*1451*1811*396735172785324745697662516500551999*407856783781770931587259567282914656278026149663 42 Pedersen 2016 4306568846304048613353636090883173738920142515597337906327870441164651036551420776881561668928=2^6*151*1451*1811*328481*9085995379*132928044795118424699*427453844765491139596979669646061846198961748707 4306581957334944756327845169547997642970873313401493606079529941589860499334479480382375867072=2^6*151*1451*1811*396735172785289360243801296461051999*427453844764697670459237092590571018853541500707 42 Pedersen 2016 4423584922520792209268423718568094997403368373880412023392613791653391709692474521083618143808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*439068420884748052320842910152131577796682820927 4423598389798493030592830596760127690796157595386461771751521043047240961590535297706089632192=2^6*151*1451*1811*396735172785269879179555534767572927*439068420883954583183100352577704996212956051999 42 Pedersen 2016 4444623591549190765499620198437880710891258871534821912824081090136301313577332217456973100096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*441156640134431145065712282466899873473363946599 4444637122877566146871508651028968017867215825820031289394547502434859995554444693713894099904=2^6*151*1451*1811*396735172785266485414167353241138599*441156640133637675927969728286238680071163611999 42 Pedersen 2016 4626744792332312960991007969737617516716015589020304058896817875451189864882870323565317045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*459233306331202627730538770060541036357047759249 4626758878115238014640908827262566718429376178675941346567304111207088653124542479304058954304=2^6*151*1451*1811*396735172785238397280448056174395999*459233306330409158592796243968013562251914167249 42 Pedersen 2016 5165101180131618385402209355112785454209764296734560572507922433972404106648131049008753438272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*512668538886783126776778788585297831200426849343 5165116904900818935433769862388332598047792292974797326090857685627246065248547646789981409728=2^6*151*1451*1811*396735172785166949555721562359601343*512668538885989657639036333940495083589108051999 42 Pedersen 2016 5205989205292935058386321825232276461125461667269333294309651497776023627638711810332356241216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*516726930656154832428836261345585303447972728379 5206005054542709425870810318090852510414806360105489818834916346999496688115275608337508718784=2^6*151*1451*1811*396735172785162126892341712368251999*516726930655361363291093811523445935686645280379 42 Pedersen 2016 5529169908960316014247480103143797799833659991245394018253521484156824992653394098173154373696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*548804633176850973453759184904274240782449034999 5529186742109882081731035056688071206481002888392730794437697828551855359838986960353565626304=2^6*151*1451*1811*396735172785126518273086063262354999*548804633176057504316016770690754128670227483999 42 Pedersen 2016 5777876211009712546207664745145894290302608769753217644518463194786565507123842250367478366016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*573490286378391933428867799592038395154159119579 5777893801327253075207296621246106559345817803754989557013663853161684314097748297789336993984=2^6*151*1451*1811*396735172785101827679429019519671579*573490286377598464291125410069111940085680251999 42 Pedersen 2016 6094683391349837818697879587325082573140011484400440095030376407454933927021675088000282245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*604935376917678305376794293388340231353690777999 6094701946163448838722421309106657371047057651431909071907269976484240094785383386238693754304=2^6*151*1451*1811*396735172785073294606635051969425999*604935376916884836239051932398486570252762155999 42 Pedersen 2016 6262002280560069699235137535078969718807674724521556749357115985950250320028702923712263861150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1122663194570470780866510873024085387472383 6262006969454133231457515656900503479178953149843231784076710013354441401653637479401359690850=2*5^2*29*31*149*4327*449694982685654551175920143612149393329663*480499173358409346298175850962533889453567 42 Pedersen 2016 6262103223744287160563600694342797219511156199849719930138672489045981966137839661667963521950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1122681291848719225535796755128278028024319 6262107912713935446036653329732623615243127344949257691550038126093286797611260484683181438050=2*5^2*29*31*149*4327*449544685676797877204806066064349889067519*480667567645514464938575810614526034267647 42 Pedersen 2016 6306618377193406888758351250194090253702892664195834863513794454683632780456496907532395393950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1130662049781869272903194809525118015106559 6306623099495339225417508633587924677807319472828733590915824193942006266395967846164700286050=2*5^2*29*31*149*4327*419761619151340009251718925641581478940159*518431392104122380259061005434134431477247 42 Pedersen 2016 6352380689091783079066552154423543168402882099599399818074522993049639246313879902315603857950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1138866400557379733234202617379496539013439 6352385445659853142940762403105783634515372837627853390794195489874310237370477735426660462050=2*5^2*29*31*149*4327*404494194565209107525260706923225618923839*541903167465763742316527032006868815400447 42 Pedersen 2016 6354611650913034748190999209859477260082866745156559412186228073460812011323123101640151357450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1139266371463328867268107502942095583454229 6354616409151615803750505332273591369086650149232885915594796028886208139849780296590438082550=2*5^2*29*31*149*4327*403881545668129455653497092201025386401279*542915787268792528222195532291668092363797 42 Pedersen 2016 6381122024476423015423607392709862776185634797391943995404886846391117498515590536392648192650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1144019199606864470074114174109791458358613 6381126802565577043351164141154569137595316653915295920853863180383118744829969539746060799350=2*5^2*29*31*149*4327*397203539984652851410830207151113766522367*554346621095804735270869088509275587147093 42 Pedersen 2016 6398445527802252950982414208278958274124931821672174788655556458762978278451987892649722481950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1147124988891755779975428558021351388067519 6398450318862988314201293442440744737695482766568104817360968157834413780594629475907272078050=2*5^2*29*31*149*4327*393329243709642299883451425785164867155647*561326706655706596699562253786784416222719 42 Pedersen 2016 6409859752228519435018041706194944569124579644173646608766653353473164248583024419575781249950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1149171351873404282997750616877876478574079 6409864551836056085469700340229264852714260325206400753025734811347781070705315255369508990050=2*5^2*29*31*149*4327*390945445890454148084182961606448316730879*565756867456543251521152776822026057154047 42 Pedersen 2016 6419286341544011671299939214582860427767322808770651065683307798147389911521915414225700635550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1150861368005734380872965356832792723256831 6419291148210038034855722779912944113598107650837335776900216368042254969365046987345017060450=2*5^2*29*31*149*4327*389065052108271373374669176257679236658687*569327277371056124105881302125711381908991 42 Pedersen 2016 6422419329569562541889719732856514702234172136067633317402380129943007724481559052622508251950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1151423055815436262327492920140430671950919 6422424138581523687316762655629881035839695563998914135357962413275527909219048331939401508050=2*5^2*29*31*149*4327*388456420929277574747332416619462603650119*570497596359751804187745625071565963611647 42 Pedersen 2016 6439465029643841600783537609241455799444499125877169767420032829237013371819379628130694883550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1154479040026506954428690352072160485304991 6439469851419369143361326138181253069105504836555140196902953689579935859282552404597803292450=2*5^2*29*31*149*4327*385275310827790502793229681384921109883551*576734690672309568243045792237837270732287 42 Pedersen 2016 6455239074923274269046062161333997301874938561166552354303834480026849499755776909426477245150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1157307039645683595305189769983558742005663 6455243908510172033929985581629820833974590342222179315877817100806858419818689617797134146850=2*5^2*29*31*149*4327*382508279854624949291436070790573407686143*582329721264651762621338820743583229630367 42 Pedersen 2016 6457864067847160851869826692492793832084186647372664499577281767592003948083964088448072731550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1157777653166666186732253089901691953265151 6457868903399614230784130332105820344966398154575940391083991650354914088537451211446141924450=2*5^2*29*31*149*4327*382062748102747503663533256490578600218111*583245866537511799676304954961711248357887 42 Pedersen 2016 6460039761849386843755211027846538904914177132582110621060076882991427941658578532202648981056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*641199277682582391319174651577288466327275163839 6460059428963493380821194794847555624040910819470827384268827602507999136700558414426696298944=2^6*151*1451*1811*396735172785043863726200177278451999*641199277681788922181432320018315240101037515839 42 Pedersen 2016 6468074562886244001922498168918206546095202538382317644998787388074927340865544012990179379776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*641996781848358792076594146545514375545371517519 6468094254461709081765244188040000436148843305503271264876949134855503493432579724058048460224=2^6*151*1451*1811*396735172785043253855416075743851999*641996781847565322938851815596411933420668469519 42 Pedersen 2016 6471965279966809358722922900694499405154228375916396650198923017186745605237643278872373569950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1160305744204688696868225725581028829108479 6471970126078040399167375112823428098668654139684625430592978974914221427079907127466759870050=2*5^2*29*31*149*4327*379736425376079937156873873826518525890047*588100280302201876318936973305108198529279 42 Pedersen 2016 6531025442534015272719142402959096767478907959437326042336185047413671565130013673077078757150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1170894157911497580118960100042223213856703 6531030332868616609964511638683957466832095850434955813339946337484449652423000909713769754850=2*5^2*29*31*149*4327*371026744026477970545482893297485245664767*607398375358612726181062328295335863502783 42 Pedersen 2016 6551421352425173381117453990705974708271407207395006095325232488105327479346581197750498913950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1174550773851364511177611676955643801944959 6551426258031928340197007522468923991164980910581520243007563377534855297561614185337751966050=2*5^2*29*31*149*4327*368336726341776325243317929280941071093247*613745008983181302541878869225300626162559 42 Pedersen 2016 6592834403139342751555649691825583082962329183973224747320491214053548024682986876876896906650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1181975381146065145537267098465933393670493 6592839339755573425655248796508345325460456507578929079319368841965505030436947159694820725350=2*5^2*29*31*149*4327*363273648165737732097631012707053173485917*626232694453920530047221207309478115495423 42 Pedersen 2016 6596225076946167587982927618055600680454234245575124812365623975239067213157067291678191903150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1182583267332809863803712550136821904006023 6596230016101284319909580680775855300466834875495099629568947976389038145658827710615801568850=2*5^2*29*31*149*4327*362880294768344516182192490320444366867967*627233934038058464229105181366975432448903 42 Pedersen 2016 6682025889484172396888185408364164381990346464713405281726041100933668400620022109216640155550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1197965793557639551161197206880710149215231 6682030892885659942929166333683691959467824116880145559535531893234659325811388476064592740450=2*5^2*29*31*149*4327*353803978585521258948954469899541107643391*651692776445711408819827858531766936882687 42 Pedersen 2016 6697938767731252994552246654489991413507577955994847769697778233020570816564393663209010433950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1200818683404572126834083614016425904143359 6697943783048066821786123946231226622254088490129109956102107778073337620541792435972475646050=2*5^2*29*31*149*4327*352281237707766139533274175051356608744959*656068407170399103908394560515667190709247 42 Pedersen 2016 6746932726878473553686413489274471799919934707284086515870405444111779313872083675389249231808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*669675195591824761145578298523929680628309849177 6746953267417030650867324134722470187286683343828185296474410713914939487490688491910282544192=2^6*151*1451*1811*396735172785022987536296868769601177*669675195591031292007835987841146357710581051999 42 Pedersen 2016 6834356039454433177590472807269942901010182263405151783549526482032290242993647416588035453150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1225275820787415065382588886316106772197023 6834361156918468753979015168510263812080531261089011212320903508160656540651051610796006018850=2*5^2*29*31*149*4327*340777007491151677749646966254023829179903*692029774769856504240527041612680838327967 42 Pedersen 2016 6858713453762044243090933212055681390709671102591565772534874736225710551301456531257995957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1229642662467264053677464053574560908680703 6858718589464548959694724389851601869278470305533698596332270176818727579340727020572724554850=2*5^2*29*31*149*4327*338965089008122579281974354013076372704767*698208534932734591003074821112082431286783 42 Pedersen 2016 6910765698711135834227910051115432877759980234447436047877523874939325018917127535853365039550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1238974683916781193661618893156747665578511 6910770873389586486369019845355206364705107312382768789021871029776307294861483868460095696450=2*5^2*29*31*149*4327*335292529739553701828349349015033432591871*711213115650820608440854665692312128297487 42 Pedersen 2016 6981554157696327723335790560020885450793898606566143291335537042225193595105978960766487871950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1251665768004972931074101111458591196551319 6981559385380122390230879118090632980907236500546992227422114206077925697026464771831313088050=2*5^2*29*31*149*4327*330682954017327714798177460960954185914519*728513775461238332883508772048234905947647 42 Pedersen 2016 6988654947151710840005440337379781094379677411472865587215018132811445049083280940934976751550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1252938810494705101953327764716629545313551 6988660180152470917005781520040117423883964666096793729453162991426631125628687629113273104450=2*5^2*29*31*149*4327*330242572243558483426367743635675348591887*730227199724739735134545142631552092032511 42 Pedersen 2016 6992191601185005367541264988159588746476807985747353340562346089824623475868631298892339847150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1253572868282808280008931639813833013134503 6992196836833959322235120483100921392188721620600609349962864734918083774797506365935347064850=2*5^2*29*31*149*4327*330024637338731668485673936803483633667583*731079192417669728130842824560947274777767 42 Pedersen 2016 7021762235347627373448973865569798178379280442358145071902030903829355600973435330648355425650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1258874345530356443239713470757853738590473 7021767493138631868501361721796110453816531723910975162962396065009427044974742022268767646350=2*5^2*29*31*149*4327*328237892224897083700364429117511617241353*738167414779052476146934163190940016659967 42 Pedersen 2016 7030689361564104152191885619446810075599226460733953393798114810459737208108595824093924810050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1260474817006969710288127067676459967051121 7030694626039607829045441954877437314986302044933004040629186017654671530072827025403966005950=2*5^2*29*31*149*4327*327710553115447713970420192644621486912881*740295225365115112925291996582436375449087 42 Pedersen 2016 7049532832373845993736792477242397726151151303443590849644068851656874861727361746966360149150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1263853108835724539927514634219775249097343 7049538110959060024806128337213521437783041540914591175906898123784679519641108249242554282850=2*5^2*29*31*149*4327*326615059645640174714973356652995105345023*744769010663677481820126399117378039063167 42 Pedersen 2016 7059603341947038086526584285084023505349385134225109616128673005909455425670253162838128107550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1265658568166758376609918591179990389291071 7059608628072899731391028848440415917328380422381152944137063896432201017629820428139596308450=2*5^2*29*31*149*4327*326039139128206725485194786876468667960831*747150390512144767732308925854119616641087 42 Pedersen 2016 7325577862730938328184096915212804017155196209522767349665995341921080719978303108778972979550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1313342965552652802623550753296770903833311 7325583348014560650662876991161907220188066083895859616360544529811103769262986468355582156450=2*5^2*29*31*149*4327*312825285759074879855639463884836696488671*808048641267171039375496410962532102655487 42 Pedersen 2016 7367256597492622175558692373249386426200815609576013947911248613952642777899935748070204816650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1320815205168161588781758115231350435372693 7367262113984660471676271415229821713779959871069983188054453170649794058979464447358114415350=2*5^2*29*31*149*4327*311042593294822031135514205542761950170623*817303573346932674253829031239186380512917 42 Pedersen 2016 7370208166869406867701431157282321485550865836538021993639582638431718672861346099742824731550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1321344367911494398299662829960973285105151 7370213685571536362902929915932257758723268546467755281800534517924358949137987083010909924450=2*5^2*29*31*149*4327*310918815610423989368425184868447973658111*817956513774663525538822766643123206757887 42 Pedersen 2016 7453292360258221249559210887563974217639376277653205633134763361702538667204915147843754365050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1336239853698486898763123157977069582454221 7453297941172557591694610908570200520697302746299250372771078181226201314285945914900293250950=2*5^2*29*31*149*4327*307559988922438560415599768036730702745087*836210826249641454955108511490936775019981 42 Pedersen 2016 7459969358930964288306226124820507500513331685401865368069057717603049673995197673261601269150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1337436918203454478192112444645803510527743 7459974944844937812949521547725284952064061175916366111775226797070298754463698143505444362850=2*5^2*29*31*149*4327*307300096273287095046669388520261469927167*837667783403760499753028177676139935911423 42 Pedersen 2016 7490855540486054433842184418019056965639252619156528848884777258580782521580601879165989269150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1342974249187885190113863032520070337487743 7490861149527140797206422098382368156868982520174259645966750143832081237513422053947936362850=2*5^2*29*31*149*4327*306116201464238980847040693893531989271423*844389009197239325874407460177136243527167 42 Pedersen 2016 7644501591093363964031735017982529571508752341306807733051344134519752796992599462110374069150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1370520193484876198337942441637042705503743 7644507315182325160387927197761248154981295941530768151637858576275877949584776527991199562850=2*5^2*29*31*149*4327*300636552918441481853064487473818818727423*877414602040027833092463075713821782087167 42 Pedersen 2016 7648406037400968100288900900557665612399465300417224849869100599505177596749154799278169207150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1371220189742995045898994592385495749945703 7648411764413520552742164490866343598984621512514606506270074212828224535789994165498471304850=2*5^2*29*31*149*4327*300505466427136971279584002116575698151783*878245684789451191226995711819517947104767 42 Pedersen 2016 7658750719669907080660513113349468395285088369914402478709424519170219440726349922414887451550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1373074803255180612978492342213068200407551 7658756454428403578924114099413004357137067918889320429808740505559128926940031786339794404450=2*5^2*29*31*149*4327*300159973032421151143021124607632983936511*880445791696352578443056339156033111781887 42 Pedersen 2016 7800327450928201443381379744604794523392905703165133059762920043822106765044450116423919131550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1398456937957480020657594533439189443953151 7800333291697246163920614524695241585388623432535211972679688991219240405899741920787159524450=2*5^2*29*31*149*4327*295680039224103350935865995300390896026111*910307860206969786329313659689396443237887 42 Pedersen 2016 7879741335166423580544566046960222344277230671872652544797493130335019225440720453125542939550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1412694404023071751583141829520475082496511 7879747235399402308679044837377284281755037752999298657519753603442759523703512174710221796450=2*5^2*29*31*149*4327*293351971198131316675863482253027619327487*926873394298533551514863468818045358479871 42 Pedersen 2016 7947782937884681069442031878860698429471158095279315678582208005190152483999819407559929181150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1424893026707786216729588699129061502666783 7947788889066198741628241695425264005999947413752089243228103771856107037509745694840017570850=2*5^2*29*31*149*4327*291451735661286660584580580939675465240063*940972252520092672752593239739983932737567 42 Pedersen 2016 7953185468380624255075640652522733744866295934516895461663983061854593265397397509418847515550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1425861602232609803477590254508088568786431 7953191423607476316410959357071498204950839737813857601514093902759501823689682647780618980450=2*5^2*29*31*149*4327*291304384434379151231559382073458347314687*942088179271823768853615993985228116782591 42 Pedersen 2016 8420860156799621235045811746351644533416878540390039275309908615190634057840504201562286337950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1509707173696256945508287598198338110295039 8420866462214316089052092376214940917754050504318449062292262657783142686185042107540182782050=2*5^2*29*31*149*4327*280192099157996975582806292553097783741439*1037046036011853086533066427195838221864447 42 Pedersen 2016 8746421128396217073579038480943760037439901525490067363584863212982423674333954439924402896448=2^6*151*1451*1811*328481*9085995379*132928044795118424699*868136902648074512792693958926378281499881657087 8746447756229589224514300901843992073790699387535875989418325017784345059957372760043959599552=2^6*151*1451*1811*396735172784915525507351823518909087*868136902647281043654951755705623903627403551999 42 Pedersen 2016 8773673797684170988195357296764209923197076819745643377777702296757740440647989150421629109150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1572960246981318310035303353215720663340543 8773680367280466575952027313263805055031522183047959227945951445765898417225927004850734922850=2*5^2*29*31*149*4327*273481137067927808717504507980216444276223*1107010071386983617925383966786102114375167 42 Pedersen 2016 8829878150463216513383617260095522084961778682751911344471229217287984123665615383652037872150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1583036665898566846981678865336655675755003 8829884762144494552913972145762809227273559780178505570720280312241180598404285680011873039850=2*5^2*29*31*149*4327*272514599584208080419486343465452193795583*1118053027787951883169777643421801377270267 42 Pedersen 2016 8904408498262358534639490088269203679516546560958638876687943782581748047161281165406320321950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1596398602640811121900329259849527360280319 8904415165750851214330105182229232127405889375879707355481005918704343906622173011979192638050=2*5^2*29*31*149*4327*271271131043230547974195250082145054283519*1132658433071173690533719131317980201307647 42 Pedersen 2016 9288950875326031067681156264456498725427168875594848796593736748391698100790036918123403161150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1665340061640633318583966211736609873378383 9288957830754129676285186425744688431577714360156854334513050189889292233577280709931788390850=2*5^2*29*31*149*4327*265467760863383367472781244968984412863567*1207403262250843067718770088318223355825663 42 Pedersen 2016 9292392183934711197136393331162015619917905275940051871738595967728626284318423594464158548544=2^6*151*1451*1811*328481*9085995379*132928044795118424699*922327938516661692756027799969386588591989907311 9292420473936652581159007743987973452723777082159893407211136066269919939578567631689923755456=2^6*151*1451*1811*396735172784894220356423141638301999*922327938515868223618285618053783139401392409311 42 Pedersen 2016 9375731392036458145101727808266514981738469305951680035296137077306340794937651938027804065950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1680898231017072850274706660518669394844799 9375738412444515463875221618952636711370465029920100582106746036644407789970998780820810334050=2*5^2*29*31*149*4327*264283083805899134921775987608987815582847*1224146108684766831960515794460279474572799 42 Pedersen 2016 9502103898339714439995165777794066831317939644668857105463716053286403283189919986919224105550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1703554524527652914050137938662073695574231 9502111013373622732752930100800114347024589862353688164640272037871637492153754756414360790450=2*5^2*29*31*149*4327*262629880949964064485713897600723883497687*1248455605051281966172009162611947707387391 42 Pedersen 2016 9806708369979485162493864293898806893115080980546644577315461423812611252668482622911304097344=2^6*151*1451*1811*328481*9085995379*132928044795118424699*973377030960321855062719872582377500675202704511 9806738225779082703009011627348469422487588261746087207892614452505151492260181210538880606656=2^6*151*1451*1811*396735172784876320386069079561456511*973377030959528385924977708566744405546682051999 42 Pedersen 2016 9847814952823261437488456401110961107451229547804771966489695778607885797501773792745893765150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1765534233163292693965085104264443714304063 9847822326720459527768734949085575770784543783923813737723462119801509998264365111703752826850=2*5^2*29*31*149*4327*258496049476415837957400699954816353914367*1314569145160469972615269525860225255700543 42 Pedersen 2016 10040434351076822990904840965675999976799045356989102982977787670078256596891674314822095381150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1800067390337461624324147522623484804070783 10040441869204558300263637164595338302353906250806253749776047674552219455867369674067963370850=2*5^2*29*31*149*4327*256409355153083156393291081704530261704063*1351188996657971584538441562469552437677567 42 Pedersen 2016 10144563164387317508413279681675771763296464163990576889863602036590637009812015080337178498550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1818735793982235820569078439503350128493291 10144570760485157697798422693262501614989567515450820145442311706866561555436747285173502077450=2*5^2*29*31*149*4327*255338345246080081302789554106081394380287*1370928410209748855873874006947866629423851 42 Pedersen 2016 10223472450113306284729570215551410932648388437744639274986166058528228913297002109473307009950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1832882794705858888913404062712377063073279 10223480105297244629458146375206035818304959290889215157836298535370126363892928051633800830050=2*5^2*29*31*149*4327*254551621342514959777345599160873935982079*1385862134836937045743643585102101022402047 42 Pedersen 2016 10305107609216760364813862892318861270825533740731464206752359243288794219650116750080764353950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1847518494982249621030444960986258331349759 10305115325527890260398726767950387566262870402054327553770216500566876501337228985335780926050=2*5^2*29*31*149*4327*253759269892262233815177280174131412815359*1401290186563580503822852802362724813845247 42 Pedersen 2016 10651236989241157325149521521265343678828205740928695545554227311725351027554964765030725435550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1909573201784133926020353854247998080072831 10651244964728812954181832406001551643559659191737545945800129087696999102054162358974040260450=2*5^2*29*31*149*4327*250623069718513320064535270324289090964991*1466481093539213722563403705474306884418687 42 Pedersen 2016 10792865425201341716995727769860165037344189708723600535560561502962659849248594508684270775650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1934964606199729091597316620052424649337473 10792873506738261279171662957812382601473951092779181671661934154368690652285697640555668296350=2*5^2*29*31*149*4327*249434592725961506275977775704229543668353*1493060974947360701928923965898793000979967 42 Pedersen 2016 10799258568484837068176884767389347103161505759202491647225738352855450969796343251472998709150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1936110780592586978313837831021960491372543 10799266654808847124131935543651486899461873776345851527472890985150986832165146008750661322850=2*5^2*29*31*149*4327*249382141743762609216408396161465799495167*1494259600322417485705014556411092587188223 42 Pedersen 2016 10866221318112274284506556267255979419975510533775034262394398922781580621796869363923015566550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1948115984526693102023431789402018635285851 10866229454576994154735677723131048560049295662582721860687457056198516087849404454694168689450=2*5^2*29*31*149*4327*248838768486771359936319961349656434789887*1506808177513514858694696949602960095806811 42 Pedersen 2016 11046696822240146771679933782653190702339088021488652744845261518057694030131720516128595841950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1980471962204138455805006428835991995358719 11046705093842236767951240851728721733768000267871765503884459017790194232625631344246792318050=2*5^2*29*31*149*4327*247426799518625599539212213639456444763647*1540576124159105972873379336747133445905919 42 Pedersen 2016 11110201518058720059888557649527424789693908623853436396111869201994632562929148878056543314496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1102756863875363768700478012305972851301477705199 11110235342246969286418021837547073543675756032787409645757682530831957824774531344127495085504=2^6*151*1451*1811*396735172784838376966633893364781999*1102756863874570299562735886233759191359153727199 42 Pedersen 2016 11165162039785184627298427516211283127006868656947073778162242526603183800583418900644533121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2001710622558427380286398347548300040056319 11165170400092265518638571665794652511203417551551384203480363673587359007974428108609907838050=2*5^2*29*31*149*4327*246539360935231158531009915259931085147647*1562702223096789338362973553838966850219519 42 Pedersen 2016 11267474376764668910687131253898045586773183368558916283471717694029577182041614632869473787550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2020053365012217276156842773770116656716671 11267482813681704253577748223403052877139492482949565535903000236663895324881779173909287428450=2*5^2*29*31*149*4327*245796581264802635786536156816001505090431*1581787745221007756977891738504713046937087 42 Pedersen 2016 11470942832613552722844890583930731368566167124250906590073213847127547262370403162880570293150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2056531561027374006267597833848631703949823 11470951421884738064634973696856574153229376143713073211674947772969540389177827920057109578850=2*5^2*29*31*149*4327*244380678966933884733046245361152024595967*1619681843534033238142136710038077574664703 42 Pedersen 2016 11735449829140895430190106112069585288498804497127311428988219261750206230365171750839885505950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2103952857986893438682901491153014974969599 11735458616470981138408767337857849770641534787626597497473968893276125354066441643501183294050=2*5^2*29*31*149*4327*242652496601836049932314556896657336825599*1668831322858650505358172055806955533454847 42 Pedersen 2016 11741243102133140242740394645777642735612475770758963678063833369402664854219093255248151352550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2104991486539406627335760603375970062463971 11741251893801142502999774789992854748339695334234953211547613089570177345819042035158744263450=2*5^2*29*31*149*4327*242615977647470468280096254441118993305087*1669906470365529275663249470485448964469731 42 Pedersen 2016 11984214390551552575937987984809869063372991284108512351162856870395459542962533236666618809550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2148551822454889748941080442554896370021911 11984223364152837647453975810838622911027460300554108826900522124525529748793209959339437126450=2*5^2*29*31*149*4327*241132339734310737350718905555483209846271*1714950444194172128197946658550011055486487 42 Pedersen 2016 12190008062398943367772769731912745902824838701573020609262064139516573880267340823788017495872=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1209934404849146231303897167160610452996266121243 12190045173978494106197173464743744531876665845556218817786036569863354557311244399897002152128=2^6*151*1451*1811*396735172784813090221171060973873243*1209934404848352762166155066375142255886333051999 42 Pedersen 2016 12449773148529772941483097183094543938017914665393060421567784694919522547649441872571828152896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1235717711412968125768220649955471591499521294799 12449811050944949801021848300409399859190876135829721064532966274542726929443840853852133447104=2^6*151*1451*1811*396735172784807661615963256654571999*1235717711412174656630478554598608602193907526799 42 Pedersen 2016 12484928584602687632922556966110783185473702101765624546163432057251072986299282317954300317950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2238320776772477290353738764863388187806639 12484937933131305340718413377355841433786268302736674698781005250870448246390361414953813602050=2*5^2*29*31*149*4327*238343455784681033837327646817487769128447*1807508282461389373123996239596498313989039 42 Pedersen 2016 12842091216452095901204375746705259996690133911706890768058902926932975404206181155171343341150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2302353545092930671867409513222956311493983 12842100832418774018721311092334061324566267911054939760015992856168894338227130536677205010850=2*5^2*29*31*149*4327*236546839818601867278035623608352717229567*1873337666747921921196959011165201489575263 42 Pedersen 2016 12975835161442978204541968140986348045342627190183729681809746336634221943357278748816853147550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2326331403581428693986657106963973144527871 12975844877555130821157887514990977238605846194795092101612519537481743331369346975638861668450=2*5^2*29*31*149*4327*235910698759309516314165726676076792729087*1897951666295712294280076501838494247109631 42 Pedersen 2016 13051339418468574585125945449078878043787936071331397842398127302652899973410436920191290609650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2339867944546796170412779994925205948679753 13051349191117190568705954007865771667807330350328441252280680741467395316201460116932588302350=2*5^2*29*31*149*4327*235559819887086857190905773793756474592767*1911839086133302429829459342682047369397833 42 Pedersen 2016 13121240158504617679966684422772084822919998555443352238711910484884836950674532826373288219550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2352399876762043685496793764174951030554111 13121249983493866947729593145577448820421900613551946183150414754569465561015066069107609316450=2*5^2*29*31*149*4327*235240123558813297695191019054763094441471*1924690714676823504409187866670785831423487 42 Pedersen 2016 13328159945406554440894752305736512000021635286706372771092756072851891869663055352997255521950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2389496833705724724798844720917935586664319 13328169925334259008144943956030133656511097468725270170149171707302340271926523064923809438050=2*5^2*29*31*149*4327*234321626921259675379062827296723710107519*1962706168258058166027367015171809771867647 42 Pedersen 2016 13334101268329290758380614144034075520212660454246446913308922725062877608508186267549931333950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2390562004919909806573364072242022567121359 13334111252705769461090655578517973323082192240122195892148931509123784464784033037305538746050=2*5^2*29*31*149*4327*234295850309121266986004636291150059752959*1963797116084381656194944557501470402679247 42 Pedersen 2016 13439784088149709145730783282686644161554343756510852031116596077632284620756081733612119393150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2409509013687238892950553225243139938371823 13439794151659909663212323736415439308710987899728440706694369314183027832361684284758776478850=2*5^2*29*31*149*4327*233842714280890956403889194765236120766703*1983197260879941053154249152028501712915967 42 Pedersen 2016 13666026669137313140986756932838295129418989044513759871046523816720477189158330061385403675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2450070196411160684329025410853427093253631 13666036902054589443835888222551493838113895927623166834716000736210395670869328548128584420450=2*5^2*29*31*149*4327*232905641521648975264299592948343375457791*2024695516363104825672310939455681613106687 42 Pedersen 2016 13690173516857661222276546487701776855936458021769863963208405458381192661625513138339705106496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1358835192036858165925784376727114898360215678199 13690215195580179990703327167762612647147366288027815080478272410606825396441021275968749293504=2^6*151*1451*1811*396735172784784580095889690870150199*1358835192036064696788042304451771982620386331999 42 Pedersen 2016 14027693348837583281138918218150441394532086359789899554766123816184666960870671240107853493150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2514910458648447101480968697648009460493823 14027703852565483957049369292443405285823731936996395855561266906303823022737801082041858378850=2*5^2*29*31*149*4327*231494526136522806099000744735307122568703*2090946893985517411989553074463300233235967 42 Pedersen 2016 14295036490576306575255531296804020732482348961399007289606929547788816359447225863715230003550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2562840224896321614857111463137151542215391 14295047194486770920343848819848452370957756479003649744600812305839978326297890931840839372450=2*5^2*29*31*149*4327*230514379122595358802248600327998232969951*2139856807247319372662447984359751204556287 42 Pedersen 2016 14606946377801285247606673403366285990975603185762803294911948212600664173594160748249050745550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2618759998591899199184316869592309342283031 14606957315265228662236504611340529020200806047348288141860789238137003584591574934178140550450=2*5^2*29*31*149*4327*229432432821740707484879012474179626290687*2196858527243751608307022978668727611303191 42 Pedersen 2016 14719471243113777109148680284694518384207461804975109093034876892166805197720604751488981851550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2638933661759111494050638739368563419255551 14719482264834664121747980720520825789657682902638131325852247461878817517748826987403044004450=2*5^2*29*31*149*4327*229057335442223970567441383073502812261887*2217407287790480640090782477845658502304511 42 Pedersen 2016 14891283402990199646314867919846032988241932563002882077413829087022155624165083595680095413150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2669736459271932788382239306508912876660223 14891294553361473610730088325446393530650053865153774583471766911538356401641388262987555658850=2*5^2*29*31*149*4327*228499326105061132455005786451104960751103*2248768094640464772534818641608405811219967 42 Pedersen 2016 14916797062712133139767507334480681149832136520879107102788656385619664506158698458937027099550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2674310594739358387966011778217285180723711 14916808232187655593606052938414256996630992361749991803434969871458037362376273128830539236450=2*5^2*29*31*149*4327*228417937009349385148076143298126042239487*2253423619203602119425520756469757033795071 42 Pedersen 2016 15135942207436342610803139750399660555903130845124088003675642522944115094120574598482840185950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2713599336139925990782709394433516080175199 15135953541004486260134480062586170603569456504056939797716245426642791834171998179823105414050=2*5^2*29*31*149*4327*227733967957204355131539376848716353738847*2293396329656314752258755139135397621747199 42 Pedersen 2016 15212241026569585101005730000663173880200938629826986096203797481641090098371673528684098485150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2727278327649718188414543837825122965246463 15212252417269148392104093144658883196282097729565087349364357001792174791581610675992415306850=2*5^2*29*31*149*4327*227502003690864018891291135383282402938367*2307307285432447286130837823992438457618943 42 Pedersen 2016 15829431984000461057790375582256929760111329834331924176455530247907165015633945012150335621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1571169950718842278243525200533840209128662321999 15829480175537440371937657432189042042257492983428856793638899267552824010820186579325888378304=2^6*151*1451*1811*396735172784753271622870408208747999*1571169950718048809105783159566970312671494377999 42 Pedersen 2016 16357935170042386981803798676156899630787909613515857764643859734995724194884875599868146887616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1623627191484495496418387591026979791310230088729 16357984970568296509486139607891887294584445328283859572701794338244093394418910840482025272384=2^6*151*1451*1811*396735172784746798308377665966640729*1623627191483702027280645556533424387595304251999 42 Pedersen 2016 16640905815835071973767052854058229869064224262120548556370775701978870874258567479624734187550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2983411957825222889644334981530304953284671 16640918276297555978032755010914481088993757293018423133323101517853084264433778095111531028450=2*5^2*29*31*149*4327*223666982067064965034529366786640461778431*2567275937231751041217390736294262386817087 42 Pedersen 2016 16756895975355579794731497217500468631053808637832999055280043158630874234660555971141707957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3004206885260858573715967983087810883720703 16756908522669768100072860927456900837229744776177804425529294260861150645982476930198132554850=2*5^2*29*31*149*4327*223392629317735920792546201382005807926783*2588345217416715769531006903256402971104767 42 Pedersen 2016 16933260288662699912710409487711193893601621566934117114141165195116047584367607758349361704896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1680731801377234325290782326911862827146491239049 16933311840723456498888525042436429281112220542413121516443423173529703129917917804395495895104=2^6*151*1451*1811*396735172784740210860685339406671049*1680731801376440856153040299005755115758125371999 42 Pedersen 2016 17106354662494375338287437199339817390370585491872837827369344127587624044908473608992824709150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3066858476316899140762004357023541686292543 17106367471478024969393357828445575465359614466262246562632964160140007321847310490772595322850=2*5^2*29*31*149*4327*222594819423097345291708511478030586695167*2651794618367394912077880967096108994908223 42 Pedersen 2016 17118214762829480392140633106085627497560223721957747064934367853091688012389186135204943304550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3068984776745033841847169807476610602219811 17118227580693796551716232936114803117715114660630380907108005026873866040836477217625483831450=2*5^2*29*31*149*4327*222568473528858453714348646720445011835171*2653947264689768504740406282306763485695487 42 Pedersen 2016 17332610687601547669679106672824212251287353598840355323476903554051877975959598928573540369950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3107422069327107417762203042438123121564479 17332623666002339842696141882117053685876634490026903210909715264159995572758516923225561070050=2*5^2*29*31*149*4327*222100132620946999955198655069428234345279*2692852898179753534414589508919292782530047 42 Pedersen 2016 17635675462779879169981209092509765268983661075293125507995265920753163852425444303311275329950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3161756075196082657155410264397397559527679 17635688668111062219877541384564374120849018387447844745219742705130633165359848296059435710050=2*5^2*29*31*149*4327*221462704270665198573089250497212274100479*2747824332399010575189906135450783180738047 42 Pedersen 2016 18226371538855692259218640338731064265707627083829653074247836073767011302214163815320951791150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3267657145504891644061036365348398549142983 18226385186491301333044286103630015567285824738039754251733306508155742331383649615769068560850=2*5^2*29*31*149*4327*220296754711111580810588866763275581869567*2854891352267373179858032620135720862584263 42 Pedersen 2016 18536106761595604320539336179616386176282896060416249294509925392736929482539375746369684011950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3323187041383672031272318173641491809450119 18536120641156336079262829122595197463309347656150441954591593369900971622655657007938043348050=2*5^2*29*31*149*4327*219722456991684155971525121488629563739647*2910995545865580991908378173703460141021319 42 Pedersen 2016 18612027207126383132011032391244963343402302318559449155115460237116994313751936604945093109150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3336798197383630301104324037714866870220543 18612041143535214013137162844397061304470258159474935153445867959162571717724795729895910922850=2*5^2*29*31*149*4327*219585323669322581911717685856300815175167*2924743835187900835800191473409163950356223 42 Pedersen 2016 18664256130548306462632157126543500761411903615100856516696541282307122207363385357448791553950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3346161894072126014638062459342132592373759 18664270106065377488926680990950699710299844989867874141838368125007916989572736352601225726050=2*5^2*29*31*149*4327*219491790239885093767349183108746664079359*2934201065305834037478298397783983823605247 42 Pedersen 2016 18682806785805944842823287173775833592615771170909334483153801246744585992597617907747756413950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3349487689394425566149387182840350785094959 18682820775213470298079435035195843198548185687905714461088193228960103760009834242623694466050=2*5^2*29*31*149*4327*219458725703796838014446649850227727093247*2937559925164221844742525654540720953312559 42 Pedersen 2016 18748185270216006546822937745651370585451192087509634382010613801065564168722852351626687094650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3361208863369694530602653971385103836933453 18748199308577967612034561025718900258290652206739129184307135564111626385769062061718785417350=2*5^2*29*31*149*4327*219342844280783085365868764977293061344767*2949396980562504561844370327958408670899533 42 Pedersen 2016 18952409187120832633970214006902343789263458700687799725997227626249649586272848269137856219550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3397822499821382350493418306675562373114111 18952423378402621687601405976149744509199459828177388539297741018010264383538843195246721316450=2*5^2*29*31*149*4327*218987248267971811404713439434722239401471*2986366213027003655696289988791438029023487 42 Pedersen 2016 19164586834385355602491842545843181724426424290670293387513587051975225472331454647027259675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3435862095564412172880745758336246080773631 19164601184542607503107864572843818769646606806352051872746568150796807978107795869241288420450=2*5^2*29*31*149*4327*218627727141616731291841138356393920306687*3024765329896388558196489741530450055777791 42 Pedersen 2016 19279945115938781517084758537314506677934154271512888608827407671537299114113935468076688312650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3456543738765178587515349548702640397369013 19279959552474596905984823654161060359867780239493657358463984351453285202206009484758391879350=2*5^2*29*31*149*4327*218436358322159094884646774508884363853493*3045638341916612609238287895744353928826367 42 Pedersen 2016 19909030175962675328671971090265380745686194616455484261835300579447479125221709384531698815296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1976095541017759700371075717905863694379607202899 19909090787535151014705867493682567162869273938018934831215377665673691273407604999416537984704=2^6*151*1451*1811*396735172784712215790119271456714899*1976095541016966231233333717994826549059191291999 42 Pedersen 2016 20004482833018189154576158955764489984523043186994652608795719127296288452893860799029813973150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3586440182681901764576771105306067652535423 20004497812077058386083996840698221202805300478879386623170803984249750154395535495313382698850=2*5^2*29*31*149*4327*217296138015188555607622067876850945314303*3176675006140306325576734158979814602531967 42 Pedersen 2016 20819276353941166298493099175923237753851662623394642954086836648298563234499162549107077696150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3732517851793337726605913393461847093313083 20819291943105291339419723899394942631396400400639986057138056235681523686083390111010475455850=2*5^2*29*31*149*4327*216128740915198324636424303263751127780863*3323920072351732518577074211748693860843067 42 Pedersen 2016 20925409955474388269901835244857373190305096975117877679830837334999260164578296575950998613150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3751545677528639037521257191994774113604223 20925425624109773759796139339524211578529146495184309249718071055234009580674787582459884458850=2*5^2*29*31*149*4327*215984770572922600323163619883742371859967*3343091868429309553805678693661629637055103 42 Pedersen 2016 21247001092752076694964935045648586355513380051688705227951129845069021081896745576634791707550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3809201123398171590804406848344852532803071 21247017002190117135515527942207220218485868551919832250566091935111667435668280032123668708450=2*5^2*29*31*149*4327*215559112300656269540577426198159562552831*3401172972571108437871414543697290865561087 42 Pedersen 2016 21589802364376032239555473895770572898201493436205461621505538252918958941792111478405627747550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3870659160853525060135333528887476972659871 21589818530498560400398117816233684763970027422153570167328160475200854647730015524774183068450=2*5^2*29*31*149*4327*215122142974396515325982966230383990121631*3463067979352721661416935684207690877849087 42 Pedersen 2016 22584357036357944534320654741607202258528181057820722329029248042472450873719951994496861314624=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2241638434512143707247546994145231775015385704831 22584425792765525788554319231853405976474379404018133338626153069367736680716630438263208829376=2^6*151*1451*1811*396735172784693344920026882136956831*2241638434511350238109805013105064722084289551999 42 Pedersen 2016 22634796847880903515721103063365120570840851361454136540469148194282688800318513102262674101150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4058007678563609588002855411646971784093183 22634813796479740466995956249092382500187510292352483413285305384233491426933563391984491850850=2*5^2*29*31*149*4327*213887176488247433450041936421002791341567*3651651463548955271160398596776566888062463 42 Pedersen 2016 23224640519870625410972127726832045745747089870364633265792690454076794678463672204590740353950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4163755928312559169639203703850548089269759 23224657910135620899207871465920878864632083421312463884568512014481123503457713175231564926050=2*5^2*29*31*149*4327*213248119353672497634500336059977049935359*3758038770432479788612288489341168934645247 42 Pedersen 2016 23472283216038947776615304400704647374665937662452047564811913547774644741572406206243362997150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4208153762732943217970006869624768009557503 23472300791735106639787762106206801114104598794984649292009907840906421475036666350571267914850=2*5^2*29*31*149*4327*212991104783752417332524718469000805635583*3802693619422783917245067272706365099232767 42 Pedersen 2016 23634759781251552999408633041052964359489771621563517042754413515220027860830880931238623925150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4237282857800616441173949864763528363851263 23634777478607744541514022711811754561374359422834840931831117488486515050440120314943784266850=2*5^2*29*31*149*4327*212825925023795256861251342328196660575743*3831987894250414300920283643985929598586367 42 Pedersen 2016 24420523004905224004030147996350211204866704314072660761982639946181013292266482020410602245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2423889370441491982774995192116054492529489527999 24420597351384531321647912010389571250575815135635743200357435547649174795954094213188373754304=2^6*151*1451*1811*396735172784682785935511403583655999*2423889370440698513637253221634871955076946675999 42 Pedersen 2016 25903614895452185780715675681858550210509721967253494778634111527735397415854544682669983413150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4644047342450119992804259475238274613620223 25903634291693302519395017177740769415943790449892002465791284367593733784482395856824547658850=2*5^2*29*31*149*4327*210770205939758282639366890971739120111103*4240808097983954826772477705817133388819967 42 Pedersen 2016 26161726539287616919637434362277904771899434479301961786199500706883741288354746201767341953950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4690322068910009370498308789940326690741759 26161746128798889158843302555030011058451148671840727037454938245085364996855029770550579326050=2*5^2*29*31*149*4327*210562461399927650806910511140884359925247*4287290568983674836298983400350040226127359 42 Pedersen 2016 26642018405511908542553961975157584773192210565061396291638513136505392042665528126984855425950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4776429671032017887383963086764316040895999 26642038354658578439339796317013589449792823355418649927659253694451667386755911586819432574050=2*5^2*29*31*149*4327*210188238414933874956808739303045956750847*4373772394090677129034739469011867979455999 42 Pedersen 2016 27225548077491013054913373211016540709196615025831616433668272607615818985544328830495422159550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4881045935338476747544695210658380277728911 27225568463576012299131549765625463041705278218325478277048103903379966223815230579940329776450=2*5^2*29*31*149*4327*209753977448534282041595971903534264831487*4478822919363535582110684360305443908208271 42 Pedersen 2016 27474914853045994804010350539998432351931939751857829978274952919604916391300274160275204545150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4925752865857073491827045888382371598871663 27474935425853122395545038365598013202247378724674174841678015502119032850857186840268854846850=2*5^2*29*31*149*4327*209574849451079198926424943118372814892143*4523708977879587409508206066814596679290367 42 Pedersen 2016 27771880896507564952403637526157039508765978856587917826803119774603175951530506991709765673536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2756532564379985222774237309455697739742843422959 27771965445948540592244832352725673961251970608295141743814379564889946247958245081779314646464=2^6*151*1451*1811*396735172784667113609231248496651999*2756532564379191753636495354646841482445387574959 42 Pedersen 2016 28003822823365290167364204432835916770526430703397182049348037237751819460701145473274411678656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2779554248680408749070431359984149517474973814489 28003908078936337721042704243752491622260590589078364965792430730355498068539514100903938401344=2^6*151*1451*1811*396735172784666167743358370139451999*2779554248679615279932689406121159133055875166489 42 Pedersen 2016 29165173395209265238986878665547997762974520037786285482449719466419666976294681856135075311552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2894825543479595806574762936731381810647696619913 29165262186426385597758008180015043941832496182373240439721278773474217962448145572608232976448=2^6*151*1451*1811*396735172784661657973652538879458249*2894825543478802337437020987378161132059857965663 42 Pedersen 2016 30052604772796190562179777826778043960625051004492044160300195321169208307175591482189284877376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2982908648116508415740594350805725231789752586919 30052696265732620420512923079860283359170655456327803672679738295913247133845646663422347762624=2^6*151*1451*1811*396735172784658446820579701882413919*2982908648115714946602852404663657626038910976999 42 Pedersen 2016 30192306738146201778669291553327747419488867271840013780572267687579262974648040783964116129150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5412931841198107360095165318072205094248943 30192329345695909693473639693373975625146666994425283295043411164624851161731862428772363102850=2*5^2*29*31*149*4327*207839801006149108006852968862227682119167*5012623001665551368695897470760575307440623 42 Pedersen 2016 30314952374245887915854447032611922216155674578694913528981144352268004567266856690589190837150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5434919974618506914100751124284847598370303 30314975073630821891055156044516613668656268927070196246920032373615106089493068670138758474850=2*5^2*29*31*149*4327*207769781881309062794868704402468215520767*5034681154210790967913467541432977278160383 42 Pedersen 2016 30976751264136642957804344626252970872976860361672683141039972432070235619960894385224391775296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3074635957013249893478662809866404151505185255399 30976845570568835440561918277489220860483139113422476266315741647559788466702497626577925024704=2^6*151*1451*1811*396735172784655298378259145347291999*3074635957012456424340920866872778866310878767399 42 Pedersen 2016 31271078841156194014302002455571697564504799941789559777831334428708352346040628235993304092608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3103849806578314035530165376774690322563470874377 31271174043646964360507340025738925671307142770656101038577242973276093388134993500111706083392=2^6*151*1451*1811*396735172784654334715373232730626377*3103849806577520566392423434744727923281781051999 42 Pedersen 2016 32609311384159109179400084101335180894319398803317684463615048428775869490524907217495751025950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5846256844226025183111787803260166337847999 32609335801525905695791204708055292919659912497467141426999371537596636261035208610273592974050=2*5^2*29*31*149*4327*206568567775504806695556453219625891127999*5447219237924113493023816471591138342030847 42 Pedersen 2016 32619394616123195968130831293094452041450728887576905670995179419693018379169408130848163256950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5848064584450512021883435615083268442143019 32619419041040166435176641047851716678224563181055924032112315541881881302669597317259295303050=2*5^2*29*31*149*4327*206563705933977523963070761514884170075647*5449031839990127614527949975118982167378219 42 Pedersen 2016 32620267561482865129847157992587284522820257689685705352770896977311756115069910266632370434496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3237765210325502086939241631716736097864588016449 32620366871479083139272335616688157118592086766223460164206635033457727177297568240677427965504=2^6*151*1451*1811*396735172784650139877029591099813249*3237765210324708617801499693881612042224529007199 42 Pedersen 2016 32953902423115331129919518452660565312375884480219737868310187342458570073441623261505844076096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3270880553291629967403867673270365165838844265599 32954002748838252927610945065491992333098107658950263523959622085145618624291772073667071123904=2^6*151*1451*1811*396735172784649155526080355094211999*3270880553290836498266125736419592059434790857599 42 Pedersen 2016 33189033609217465064820907411338585256179962683211487695251810333734073523789521724012974901312=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3294218791483243776268605704941873262382779518103 33189134650779923081126290210733844349796700665210434034806516194597336339462861886868593866688=2^6*151*1451*1811*396735172784648473687317941000395103*3294218791482450307130863768772938918392819926999 42 Pedersen 2016 33205851333711279977631065280252212807164013284547802468190695338975725893254178034342872650816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3295888055635669314978444623724760922117492738279 33205952426474058553182047830180703642423753618437731653453716726749771905242715470796573109184=2^6*151*1451*1811*396735172784648425288927543510376999*3295888055634875845840702687604224968525023165279 42 Pedersen 2016 33627214281325075424941719858761138692333264466701783429724285094412629126609367398805870462016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3337710958839414103924503779932867063075899031079 33627316656896238544383843807914224862780637928251191785940637686172323474345412654590752897984=2^6*151*1451*1811*396735172784647228482966183523376999*3337710958838620634786761845009137070843416458079 42 Pedersen 2016 33954457856899750896378991341511567952493548497449172731217044151439052796847634051835559693950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6087417158226604393655865562561678601512559 33954483281492196339040827700937554698138410878564047050450493238876405600660459816467103986050=2*5^2*29*31*149*4327*205948366257183566161471978938355292917247*5688999753443013944101978705173921203906159 42 Pedersen 2016 34091977557302383994422384845591975602367495673660670595117918007924682664680591723670995869150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6112071941034601987348972167928243159059743 34092003084867533365733096377753811720137702302963654643638235267581799376507743515871345762850=2*5^2*29*31*149*4327*205888028487974403877018513420639327047167*5713714874020220700079538776058201727323423 42 Pedersen 2016 34419763340712446301095851672698083863975389144524035069739849627985853356691672989353946245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3416376401025749729059678608708111987415031777999 34419868129140706377126745279065722347772806299913170628962892667868838987455177193557029754304=2^6*151*1451*1811*396735172784645056780650325799705999*3416376401024956259921936675956084311040272875999 42 Pedersen 2016 35327410142584566340858019373180666727537943392639679368147593441822294514823998732605653701150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6333562549106578006771217330430773068325183 35327436595223239400790767346193768088456352424750255679148961781430330840729633122106408250850=2*5^2*29*31*149*4327*205369314123654162255258711848710199861567*5935724196456516961123543740132660763774463 42 Pedersen 2016 36462109209858308394778945533341821903465539963041618203681641897772842247380741143325400347550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6536993468270621699171758398504295783951871 36462136512142746827945971567222180204922455057124656797372263486703679075734533728038986468450=2*5^2*29*31*149*4327*204927085481471544318396597545834268569087*6139597344262743271460946922509059410693631 42 Pedersen 2016 36785841875510640452701219732170678397354034816812896899418970078030709930810474842909609426496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3651224467505535613661950090296007894310568883199 36785953867290310796574339317519018548854980016566617642939902686443509525350038187670204973504=2^6*151*1451*1811*396735172784639130073249180279331999*3651224467504742144524208163470687619081330355199 42 Pedersen 2016 39018906435328858706466002341383259022796192750552896977589334747677934419450984982025067425856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3872870066535735218521705128611866874800219010039 39019025225508712989143884063150384985240447530326168874472057800446133572058795623578588254144=2^6*151*1451*1811*396735172784634195854527480703987039*3872870066534941749383963206720765321270555826999 42 Pedersen 2016 39559654939658084093264603808299822268183281179973166454058975408311234851047483954006255001536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3926542731591371745215380477191411471927628011209 39559775376106836036340207229485324054132521419307757120185554964982068774140941160836169318464=2^6*151*1451*1811*396735172784633084786502212518058249*3926542731590578276077638556411377943666150756959 42 Pedersen 2016 39914323252511742430464523208409793040245355126263702251277979879412495966419241946080894499150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7155912700781617498713154257916793321824343 39914353139762650916162381383660322778277804437216213566413455904871089921931159338032275932850=2*5^2*29*31*149*4327*203750775618305364281854209909721453383167*6759692886636905251038885169557669763752023 42 Pedersen 2016 40439107126104997882693732292456376307310070768709056106339040764915955357771298313567151513950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7249996911165293145282879627006063142836959 40439137406306256636992914502105836002120270815205775158176364517444763641178921206454475366050=2*5^2*29*31*149*4327*203591168085799280818371757838662068673247*6853936704553086981072092990717998969474559 42 Pedersen 2016 40978859426884457754497284078815626362531803053796192700797523403578986582739392181901584117150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7346764688486452684342332943178242362587903 40978890111244202167525896974295285717655673902068577392401545959284660574517004187355977994850=2*5^2*29*31*149*4327*203431659223647791133000174140469259881983*6950863990736398009816917890588370998016767 42 Pedersen 2016 41047981054770105195768594205789693120826979863401237250809796880171593176512626624589871035550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7359156940053801485691235507227967142024831 41048011790887095316109204826157561674365940202627238718368142346503585066882681079299950660450=2*5^2*29*31*149*4327*203411562642437799834792331530341922196991*6963276338884956802464028297248223115138687 42 Pedersen 2016 41555525598020321397770235422172531002644368888667068150884736478398732036070374372287738907550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7450150451838523398258884877994655020227071 41555556714179107927559317567444860157850897565630382312052757712811849296586749528723393508450=2*5^2*29*31*149*4327*203266228376364973623372748889785198136831*7054415184935751541243097250655467717401087 42 Pedersen 2016 42568305447842215438422630382100463332167417774879475906845396575089982670552940339880488845150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7631723471242782647461072617620117235677663 42568337322355472747836422988672526138683462850283110543129864867097546223333236268760338546850=2*5^2*29*31*149*4327*202987477915435729030215567447298973350367*7236266954800940035038442171723416157638143 42 Pedersen 2016 42984014447280926517518531439369544721794221733468363053316142965079305309995463853789324804672=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4266431791683575217426742143411863885027552920943 42984145308939377006362855905273118758985233293884329160658433718446703975015480449308277243328=2^6*151*1451*1811*396735172784626697847102978179422943*4266431791682781748289000229018769756000414301999 42 Pedersen 2016 43122125435002976320673940178572394119517147497073474946875643789787092739364369473195965033950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7731013329046422361766064787782244207875359 43122157724208393376686676020351666924744261445415405104863408249436751720326205808146417046050=2*5^2*29*31*149*4327*202841059625688806037490859520237872796959*7335703230894326672336159049812604230389247 42 Pedersen 2016 43523544749905246216728619095025697417918366675334395912312152109157030868340271863497765155550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7802980516255776981880775043730693471715231 43523577339687468949675909180242648562832492706723492198997269396218705834368178563063467740450=2*5^2*29*31*149*4327*202737459104118991260005560462794267643391*7407774018625251107228354604818497099382687 42 Pedersen 2016 44307617992844245317109646186653874374760027950894665602735048209325082287736852605099298997150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7943550597877720516052943716540270350677503 44307651169728837144421531686662705394136973857227613982703137487653817538717143631090691914850=2*5^2*29*31*149*4327*202540964257559103243858986143558711555583*7548540595093754529416669851947309534432767 42 Pedersen 2016 44771169156612655931887099768804669747643481153097115011994408671423057795509007108603563349150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8026656896318186432313198955348703732041343 44771202680597456694727068742326545919946421487887551790834927184247285175898042124436583082850=2*5^2*29*31*149*4327*202428297161051457390557088153857246103167*7631759560630728091530226988745444381249023 42 Pedersen 2016 44947795174807313118416769594923856048809679405229583441409284338497036186342674017713252091150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8058322731133714614890631541164737020668983 44947828831047046261158458993981249461200252308327954225425245393734119035926140251389696260850=2*5^2*29*31*149*4327*202386029098961206157476609299152845229567*7663467663508346525340740053416182070750263 42 Pedersen 2016 46246608866834751116081523270583511773139645256481460721343399773922972888019608194186743319550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8291176419668778010600966554889053973496111 46246643495606836903884253755134967198478525206135072807165181561424224622035453325369930216450=2*5^2*29*31*149*4327*202085911654741977185653785976872166313471*7896621469487629150022897890462779702493487 42 Pedersen 2016 47311529246502071291853734342161484334478158925548001495448365798390720461467208248418417790016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4695964653045857478329361015139902413623012963079 47311673282959825128142888927799760331172419146730020932455512483079139799194356228715549569984=2^6*151*1451*1811*396735172784619948876862426730876999*4695964653045064009191619107495778525147322890079 42 Pedersen 2016 48780307472297853719354432800222005129114463335989358224335172837299825409515704624371170827550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8745422528667886225239486811176084556193471 48780343998265727317258437317003921578712563030531912426660586851357788655815137904972300788450=2*5^2*29*31*149*4327*201549871474285240979829261606085168025087*8351403618667194100867242671120597283479231 42 Pedersen 2016 49537021201110501593523095590128748658151263285407091315873111201760300904539563445371602744150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8881087546676815838076783752777600212697243 49537058293694347503978254210003241673268314623930676646522832832760723059716856913556338887850=2*5^2*29*31*149*4327*201401189208015653821449382571531359047167*8487217318942393300862919491756666748960923 42 Pedersen 2016 53338338377332783411512015328483173899127296864228229531848254435314085776697404015423843597248=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5294163085854442002811530679756449484612781048537 53338500761965973312643244974542992747710487713331935234687001448601876366024521169038317298752=2^6*151*1451*1811*396735172784612374378425932280800537*5294163085853648533673788779686824032631541051999 42 Pedersen 2016 54615006721686602229419322931391511708066958706498725028974371860423502897364341983569765045150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9791478056148600649737086651363037903281663 54615047616590392361021579826968081830543787450538439270064816903446016260468465579554774346850=2*5^2*29*31*149*4327*200517038535604828615324470787697120890367*9398491979086588937729347302125938677702143 42 Pedersen 2016 57462779963481230841859043579223338711944955344728692245450569981412963382958487719800036635550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10302032039012931012043593941284447992376831 57462822990755219749957159139903739904948489750982499101707139444764721673435891868730041060450=2*5^2*29*31*149*4327*200093834792813539797971686764646887828991*9909469165693710588853207376070398999858687 42 Pedersen 2016 60834937588975152390557997730157169945847054009133983338758208553784886202239856045321782278950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10906598610983834186025975356162942806528259 60834983141270558259746066385620347405851774088179536770755279884246273636059078550359211001050=2*5^2*29*31*149*4327*199646924181315441475266484723132384153859*10514482648276111861158293992990408317685247 42 Pedersen 2016 60951326852767595716788969513242861405824263955553439344370450116543400018363791690617113781150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10927465090561552092725525714844263442998783 60951372492213549223028196570484390835782613220499341373269220057799443888697260383588528970850=2*5^2*29*31*149*4327*199632433246470717477331105919464675757567*10535363618788674491855779730475396662552063 42 Pedersen 2016 62614637342795194709493963643042948019704375839453090004718546041493633351717135408709847839296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6214893671964549379733390121760064180163202196399 62614827968435710527212628963455157049294046121647208925634868589518619076228310852196340960704=2^6*151*1451*1811*396735172784603565263089817275058399*6214893671963755910595648230499554064296967941999 42 Pedersen 2016 62700933749633531516635650090979157152685296467447360467972356872272534296063521759938794789150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11241137807381827843783151035937795735166143 62700980699159076928737891183370054948074104702441322166242433481589157972793510135537806042850=2*5^2*29*31*149*4327*199421447562833312799460234255908524871167*10849247321292587647591275923232485105605823 42 Pedersen 2016 63428213207300446642679897643550420123262318257531620094115933594420889660066242110295888645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6295646155833380471898008896708499408659291127999 63428406309812615177383555650669486322836926891979399604913836870593755319560331274330287354304=2^6*151*1451*1811*396735172784602915563458514911015999*6295646155832587002760267006097688924095420915999 42 Pedersen 2016 64546465369564346290485613799699197810882476841490443511121689300759904131963351323465026944576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6406639664409762428699791522500132990640003518719 64546661876512661643857990840049031580852047746293234902728150951387226312591122354979271295424=2^6*151*1451*1811*396735172784602049284600684633470719*6406639664408968959562049632755601363906410851999 42 Pedersen 2016 65975555740272655947624475188669703658633636478924999538004121364673177779383343465938490811650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11828218012771473256853874967145344058400593 65975605141786387292896791311123059634649547272586529086228436667761166881479965360948439620350=2*5^2*29*31*149*4327*199058233243617388876279718960512160583167*11436690741001448984585180369735429793128273 42 Pedersen 2016 69268564847491255384259607540493509468897872860445937648809780261899664965627846601545041589150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12418594693970802792431779192474061601222143 69268616714761171764622513712130436989072915033203758187293543708417539762733581676172327242850=2*5^2*29*31*149*4327*198729360175850177072222550597816914701823*12027396295268545731967141763426842581831167 42 Pedersen 2016 69733234908189089107951812629590393614434036279693546234324341769280492893018791023665376309056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6921458923156879839588214605618432937780707533339 69733447205874322656429490559936600354335547023754412096795904865144789990943279191341312970944=2^6*151*1451*1811*396735172784598394535355044316447839*6921458923156086370450472719528650556687431889499 42 Pedersen 2016 71059117449462030381821763403757233625416419229162121079536502001897657983051948126977034653888=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7053061043127852502891867121708953110313428948197 71059333783698770172906791020168376193440356799952888823790358288632350806174763931427172962112=2^6*151*1451*1811*396735172784597545905431987053395749*7053061043127059033754125236467800652277416356447 42 Pedersen 2016 71342423512159293349197136237113651597517752948318958493173813295808499024180740421105741093568=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7081180938586913400312926075632898054580092309117 71342640708900424374200929811734209908798699939493115097624261392898914620574234787215507162432=2^6*151*1451*1811*396735172784597368665688947112061117*7081180938586119931175184190568985339584021051999 42 Pedersen 2016 72044896793526408591651008701172532238546314654656138372050865662710999497991362462024322075550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12916340550978875395186986335911730370181631 72044950739672345278218081053235556433742053284076289750358538210965437297640373415269250020450=2*5^2*29*31*149*4327*198476576695084028302161028484867998305791*12525394935757384483492410428977460267186687 42 Pedersen 2016 73152806648739984554077044321117752803333543156603755397681734406304783529801334019279071595650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13114968651324909661075464851531238500441873 73152861424472323527159115879976594436434147448921677397238688753856000862065066229459670676350=2*5^2*29*31*149*4327*198381313131370755016421754030971265043967*12724118299667132022666628219050865130708753 42 Pedersen 2016 73249464336107609958975712458262170533981599771916195594747525254801290954701821659606188033950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13132297617878755557561240985218663515535359 73249519184215785954633369920415197054953944999434480938888461380071013217725928775932674046050=2*5^2*29*31*149*4327*198373145188609447147206589874793388789247*12741455434163739227021619516894468022056959 42 Pedersen 2016 78316373042572397784089359167433594559027526917186883253469141329599014940973480273415691653696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7773388969240815567217540975067550525961951229999 78316611470987983487609542653047858316429227599271986987980371794438686094737522054356468346304=2^6*151*1451*1811*396735172784593409977582574058443999*7773388969240022098079799093962325917338933589999 42 Pedersen 2016 79304443684496956553192448706717635561524832554960597462960798343471526668807196557546113537950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14217845363433557399742044423811515407319039 79304503066483507140199419558828238505591850439103972446106153581540753282637906748397827582050=2*5^2*29*31*149*4327*197902898943610151283505233625951422824447*13827473425963540365066124311736161879805439 42 Pedersen 2016 79315651618703671301728485346537532458654258543447681548775837142305968365152225258732291148096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7872573606617663729715814003559045936379816746099 79315893089349104730734337048688674993576451521119914969547344914664321349680889323314480051904=2^6*151*1451*1811*396735172784592899768689200791224499*7872573606616870260578072122964030221130066325599 42 Pedersen 2016 83253484311287503928371334011475432660252465425409210609577378847715571275690726487741577134656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8263428086032937617435307365735172866701275472239 83253737770373837499308719287287919869136537580988487986301140860196696729036910167469860945344=2^6*151*1451*1811*396735172784591008431962296366824239*8263428086032144148297565487031493878355949451999 42 Pedersen 2016 84324130517281445805451145997956824932263391707773499290139356905352501116436044714994370945950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15117783977785696366981935350806451636774399 84324193657934751290052903103301421530197444241256361345622095419228756643302211314862192254050=2*5^2*29*31*149*4327*197566349525178819613665783238986597158399*14727748589734110663975854689118062934926847 42 Pedersen 2016 87155730150880315941034918524009414848854257063157531871025914710096914914197034661348208923550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15625438326662164725086000338279430733921791 87155795411793263217760873522605139838471076416116722276626083171703189165172465111498919652450=2*5^2*29*31*149*4327*197394278941063650070425633473030137892351*15235575009194694191623159826356998491340287 42 Pedersen 2016 87195820067740267681671790162321235514224649364900219572265264413123894821591312416975838202176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8654729522650730422237984626253597125410378965619 87196085528976746879732434893512217853434485409474394453377453165559393549483682013060344837824=2^6*151*1451*1811*396735172784589286054100382969851999*8654729522649936953100242749272295998978449917619 42 Pedersen 2016 87330871299749403876780005670152506732330839918519505453081720773735121482283039631196428417950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15656837951395697508051874128471480287408639 87330936691805435492822163711630141196891856577039424164466476574585016322000350363055941502050=2*5^2*29*31*149*4327*197384016805918625619581474362667095208447*15266984896063371999039877775659411087511039 42 Pedersen 2016 88015231176702873389292011207611458110650753100105751442614741904314252552822331534847604398950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15779531238825755676780069352266699369978659 88015297081197390428524417155690640133539544531213846248145203862264924951243550215602080081050=2*5^2*29*31*149*4327*197344324605493292651851700604962740981247*15389717875693855500735802773212334524308259 42 Pedersen 2016 90120385206814557097966021484761182557099430335213678811115385080836613116057701732433091103950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16156947094429165755347694921919684940084759 90120452687617065153893603456235400129157214236957697366329700527924041735972428375637534176050=2*5^2*29*31*149*4327*197226150758607382391364373175475029620247*15767251905144151489563915670294807805775359 42 Pedersen 2016 90362140721822636691066570531820762921363084743855633061862165081579127895992515014892407227550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16200289464269332163141051284980658130681471 90362208383648074532029944346366237014958097343858666480114140440408225946693348305374328388450=2*5^2*29*31*149*4327*197212945529901620385312051984925947887231*15810607480213023659363324354546330078105087 42 Pedersen 2016 91784331765950397989830712572688807494461696776129820540958906603941313651135079639797959157150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16455262469604485638175225792246598230824703 91784400492691312581934134859195920051426850332771250678836561700391718453653972810201593354850=2*5^2*29*31*149*4327*197136723091354350252872102219030686944767*16065656707986724404529938811578165439190783 42 Pedersen 2016 97635196160890855725729027044655580197544301048300056622745374841529124141702553065845204039150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*17504216113874795892625226513757471043551143 97635269268671907134051022623634605559489854695750736592843473905671271362276388219680676792850=2*5^2*29*31*149*4327*196847321144261648354262799727207712096167*17114899754204127360878548835580861226765823 42 Pedersen 2016 97733249466279298352434409366229094141129406750340614262298087394139705812059596346126336541950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*17521795289373872426359693957069159079052719 97733322647481204775912980130231716772062863995835118689338731646730321570798596515176283618050=2*5^2*29*31*149*4327*196842776640331976445130215248576830473647*17132483474207133566522148863371180143889919 42 Pedersen 2016 101239159936591505992929663586694023435815653644947716459740826938366474421925525255855617941150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18150341315410569287281129710117539249625983 101239235742966967934834523753764573044423464805773441225897409782485287449513956176797026410850=2*5^2*29*31*149*4327*196686266084314048161730120011809982749567*17761186010799848355726984711656327162187263 42 Pedersen 2016 103435527132668602351086393843399458823655684528179156703331403343780667647604716103734537141150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18544110033836708641770882382464596141289983 103435604583651115777762543438978685427712700863687641074310108542149463886623481651537499210850=2*5^2*29*31*149*4327*196593799096479874164846387228612767789567*18155047196213821884213621116786581268811263 42 Pedersen 2016 103569163237784482426488302229738338980496118603761299844644676952390609360338669343537057336896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10279886054330630048517635824851556296224831140799 103569478546455389576383825860162445254844041453150360898657006915400131203819883095724536263104=2^6*151*1451*1811*396735172784583535838333128742272799*10279886054329836579379893953620470937047129671999 42 Pedersen 2016 105200534429398784656325117683315809999738744402959692319448060311749961154130549800343192958950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*18860543762444369316495708504893251071253859 105200613201992480088034508435469252671457487344280767816171738772548444955741907999273237121050=2*5^2*29*31*149*4327*196522380725824066176287962631504599272959*18471552343192138366927005663812344367291747 42 Pedersen 2016 105743981321100926486991865469209139916970883366475226452396354035768551212415987912013979141056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10495750326923637382582380817828671193681204860089 105744303250844920236561134702247310655367668820221344672577812670811961410022301884495046138944=2^6*151*1451*1811*396735172784582906028088039003451999*10495750326922843913444638947227396079593242212089 42 Pedersen 2016 108914698518930215085669459918278737001320867325659798835507064370591625716310572149910046389150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*19526425877316313972161894521143501789638143 108914780072634675113087360544783967875158816564496034423696574054339867553136681624846170442850=2*5^2*29*31*149*4327*196379888548285758783045449718965708557823*19137576950241621329986434192975133976391167 42 Pedersen 2016 110213094880540539808461277670627557388459922093397198107756215261799837033491362629610816385950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*19759204746092732068886829161259757601779199 110213177406464861678851459346641151089304237967873914119148325216683761143291662402890841214050=2*5^2*29*31*149*4327*196332411309050314868516553182326114291199*19370403296257274870625897729628029382798847 42 Pedersen 2016 112374450533724569564696113142404716510315595937347690296971855047443460490933250965978788613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11153865791620679845238720944710565082716953719999 112374792649442549830176360931639525774776006581722809191775069501008017946642878849839451386304=2^6*151*1451*1811*396735172784581136351380889313959999*11153865791619886376100979075878966675778680563999 42 Pedersen 2016 112574532810668673135433261805704235090168147844599208124402180243928986573436301005224979766848=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11173725206761016052231610850780625168395773154687 112574875535522373368820906483911982980708772042039244894918880293283230036116404379407241929152=2^6*151*1451*1811*396735172784581086189501758747906687*11173725206760222583093868981999188640588066051999 42 Pedersen 2016 115400264797491414633649971841056703819127705557448430271477383774038938202328762492685779677950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*20689170033365522293199679630128147797617839 115400351207491330923743061934378635729307468847217778629979618280933853147940299304715287842050=2*5^2*29*31*149*4327*196153709052961567216979870363796092726447*20300547285786153842590284881314949600202239 42 Pedersen 2016 115459094585064051055327903911661295658237944037657417790841328571321438762302271211371141061950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*20699717145022960250785774636239617698311119 115459181039114836276680002009712607187882212378788406582932082699428891917959117448464394298050=2*5^2*29*31*149*4327*196151777100573245227228780949488403229647*20311096329395980122166130976840727190392319 42 Pedersen 2016 117602494153819033980074273912194615723733723965521368528240927770248183270753510386111471903168=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11672781760636004822875748645176230783975480294017 117602852185929826186294508688519215485983724442420825569611278495603935357909255321850557152832=2^6*151*1451*1811*396735172784579881685755562236764767*11672781760635211353738006777599298002364284333249 42 Pedersen 2016 117908507833357897308195003643503404212789353259459313038052689701457788489365806176827368218176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11703155528834783766807008659221451778368722357119 117908866797104743706307179924922984540661071341459154253419530782782748694880127896652782821824=2^6*151*1451*1811*396735172784579811693163696734851999*11703155528833990297669266791714511588623028309119 42 Pedersen 2016 122105311934804482353650443630369359887275390684326256762840153687199237793709986153004692600896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12119714537389937120020883508953609262134864131799 122105683675411563169792154515505459565348802892163691197854194270877496898344940915802372999104=2^6*151*1451*1811*396735172784578887182536265299646999*12119714537389143650883141642371179699820605288799 42 Pedersen 2016 127312617581900199979692981802625044776723948137427970848945101322020143825592601803615740289950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*22824838375951735217227840588781541164090879 127312712911692500714620203136590276263940199241624972348251705393873422682360866808811380350050=2*5^2*29*31*149*4327*195799897033288232039769463261969314055679*22436569440392040101795656247070169745346047 42 Pedersen 2016 131080732977149611231860472714160023735349944461008648618806395127071159491012609319413648453696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*13010581111189660987081723209709329273288528554999 131081132042763395022380302730063996271494055618480091869646222936831279972439847701644911546304=2^6*151*1451*1811*396735172784577108680679345514418999*13010581111188867517943981344905401567894054939999 42 Pedersen 2016 143164649415992638674999668391192197724118066442526737947906111983097694710024921158196046658950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*25666819566942823253811468752700742336407859 143164756615550332588919302782708156323935936842640638876942110132245258587586891639270495421050=2*5^2*29*31*149*4327*195422518757205463428648584207450643189247*25278928009659210906990405290043889588529459 42 Pedersen 2016 150999965378093127166460359168042202820781326609974239909124436751119503867638634066636986241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27071549309023656480506643131953642946526719 151000078444618741971385008144002529222137224676859029419955964305144554333314348582444705918050=2*5^2*29*31*149*4327*195265897732458278116958972666531393883647*26683814372764791318997269280837709447953919 42 Pedersen 2016 151811681565991783928782044205519406276660545927308144739364409057788127369244778785235954101150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27217075268255559832102417218727819601693183 151811795240318393397446537449344690389620480470322688690057850458576458524080476299424011850850=2*5^2*29*31*149*4327*195250616765462753922946173588287127341567*26829355612963690194787056166690130369662463 42 Pedersen 2016 153657913964333611714565220554821973015534120796991770876612848175985787181030363765661985516096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*15251507278019781889030068777720013705620718875599 153658381764508024861041969519342016010551463394896978968804463201208133311325004052588049683904=2^6*151*1451*1811*396735172784573553605156801667717599*15251507278018988419892326916471161522770091961999 42 Pedersen 2016 153786186089868516680385773868437717013420724593606047810491416221862799719499417478688925121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*27571068041996779000812080008750349740696319 153786301242674712329443324871578932489975033633103657909078225263748679688149607295511435838050=2*5^2*29*31*149*4327*195214133784820912395625304989324902747647*27183384869685551205024039825311622733259519 42 Pedersen 2016 159052128173033789683377769230598403442286794839075295373909585638677714694797062295675278721950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28515155746956964705923870039867255974008319 159052247268899004858976465300956457419189742559401414787002105009247765908354990160280218238050=2*5^2*29*31*149*4327*195121356968353403957646419704953240491519*28127565351462204418573808741712900628827647 42 Pedersen 2016 160154528299953322915394009817749591612931666284593837640488050099765359087900990034109682561950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28712796053161337929758435417182463132741119 160154648221279337873367152046653811915258557406177601449111715423173682927101005201300892798050=2*5^2*29*31*149*4327*195102722960979924855278875309966634872319*28325224291673951121510741663423094393179647 42 Pedersen 2016 162579223038017572398550699510913185817632285192167194399752752839333385880307809552087145305150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*29147499749923638826566461907855150707670863 162579344774918902377077873415120633565111249741219582087661187078995781896153834753409131686850=2*5^2*29*31*149*4327*195062645414754479869414881812971796332367*28759968065982477463304632147592776806649343 42 Pedersen 2016 169655098755668755319672404936488245986865021573284402758945697314223044177172289811514636799552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16839327742180886729794289487361061525768922185663 169655615258091184425468329203053440530855918299193945665480102017110670874955097900477695488448=2^6*151*1451*1811*396735172784571607373093241462437663*16839327742180093260656547628058441406478500551999 42 Pedersen 2016 171224207451398007357833258957430913157527812878838450148517472609886348180944527542652450578496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*16995071576491130164305402221584315527385697446199 171224728730856012423019698727862782963825123034396635506617126854993984496982487120533059821504=2^6*151*1451*1811*396735172784571436058697372687131999*16995071576490336695167660362453009803964051118199 42 Pedersen 2016 176712536242418889780751848560535768306556563291836345120604958937972975503809213744902767141952=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17539822473733232486832736892692215568956863076263 176713074230688692669805060949519238954385626601257143304646629174948847812074980553014480346048=2^6*151*1451*1811*396735172784570860777066400166176999*17539822473732439017694995034136191476507737703263 42 Pedersen 2016 178440819998696139692274086594301081890961839109533543007670812081928493846317519889978236084544=2^6*151*1451*1811*328481*9085995379*132928044795118424699*17711365426564572898574874866880533461263243553811 178441363248598238393756888894476460644162370392008029215487148734609118284197353371404774219456=2^6*151*1451*1811*396735172784570686946402597357051999*17711365426563779429437133008498340032616927305811 42 Pedersen 2016 184398255533035301346460783750125259170965748893395240953518099182814730396423665999885160487616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*18302678096808146421985426737567098891540417551229 184398816919910043486384426377978789757500845621015648760871882503242293427118569059837811672384=2^6*151*1451*1811*396735172784570112722529812154103229*18302678096807352952847684879759129335679304251999 42 Pedersen 2016 184776283494353772425811432936646508091389844717832033325149151338145497863402597529239024411550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*33127029249512938941283498958936256163210751 184776421852083447467130409422283558847792644077911702861677236857795982953279119727450787044450=2*5^2*29*31*149*4327*194745520196332359038575126326580103013887*32739814690790199698852508954160273955507711 42 Pedersen 2016 194920099618454384248639084321842129838395331791435717804564907558884793412063232197986820461150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34945631112749517027147827643340163320044383 194920245571722526836438255713414890693588157915858427935676120429228253457937659119363219090850=2*5^2*29*31*149*4327*194625051774996880067503067297611987373567*34558537022448113263687909697593149227981663 42 Pedersen 2016 196013010367986442377065548707513840172366564249003844341936391013913022502698032144189233485950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35141570146061451323840615648619113144761199 196013157139609880260778112937507995112678204292500735400877052439206481696906922397897320114050=2*5^2*29*31*149*4327*194612828957139284624377461559879725043199*34754488278577905155823823308609831315028847 42 Pedersen 2016 197029427171680412181100738001522716234182129939299072784212489411858122961248698858971116575550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35323795205191918534779819558449464824871631 197029574704381617747899271185530400337468328882473159520838386213592992768396099293066775520450=2*5^2*29*31*149*4327*194601585366683812817853013594074014595791*34936724581298827838569551666405988705586687 42 Pedersen 2016 209277225488967654576752072973038203293170493778916496746451023185208588257783461472776210937150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*37519602834969837861012417319185876608612303 209277382192637864666447654628991535503761473681264084402786024303818889420226394373121914374850=2*5^2*29*31*149*4327*194474823254689580761594670418518552082383*37132658973188741396858407770317955951840767 42 Pedersen 2016 213513820352935621520982047918334018404148577707610220023343676303748812163548974222307814337950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*38279147292315153459935736841916718736055039 213513980228904980865186490949702330485599303076758643970184811838269489026190925868267934782050=2*5^2*29*31*149*4327*194434413085899493433686083706004852264447*37892243840702847083109635879761311779101439 42 Pedersen 2016 215860658352623394265464990927085252273498700220115486486064742251007792903093288867087705221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21425518002719652721068855281721324696914974721999 215861315524460633529259618397752173335913387725673120978791150924404589947006185592049318778304=2^6*151*1451*1811*396735172784567605837063496007737999*21425518002718859251931113426420240607370007787999 42 Pedersen 2016 218054787483635087413413666754699007092761336367921747145816539470564501734807444781367518901150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39093260165000758254394889415466079825309183 218054950759813017094855545963109840974948297119118972933395232247083653136358614344356895050850=2*5^2*29*31*149*4327*194392869647430738314447771655533469101567*38706398256826920632688026765361144251518463 42 Pedersen 2016 218077054403739971191133986014054297811926246579585573875014938981699724616585636631607557406784=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21645509148196384021240925052052731814573451314871 218077718323231350297073368091398747440763967498628276693240883270225839836212801686423368417216=2^6*151*1451*1811*396735172784567456510590018376426999*21645509148195590552103183196900974198506115691871 42 Pedersen 2016 219962639131095127225951101791013845087819970814739482258072289655402777744518501206991468120950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39435303289442491276661195274392732341737899 219962803835843961719559828481155552894102026641225328774298352086364943938527794887758023079050=2*5^2*29*31*149*4327*194375934896705940147507832907001173481899*39048458316019378453121272563036329063566847 42 Pedersen 2016 227638460202018117498005256930485509981033792860791530153822161843704248449798226054086652349950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*40811438496417057372714928070709801824236079 227638630654307473322649249567873913684947244225026579312078884897238839283512369656354573890050=2*5^2*29*31*149*4327*194310711668777331215345724321465701184047*40424658746221873158107167467938934018362879 42 Pedersen 2016 235864680955677289747586726221322562347313051181623082807711647457253218603837644742445990293150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*42286250362777303195495233465470446740349823 235864857567638253626677424380224020703432748647840830792511960126303981641772524025790889578850=2*5^2*29*31*149*4327*194245590119714853846717602050934808595967*41899535734131181458256100984970109827064703 42 Pedersen 2016 238391735798355613707884844442009950485215208831579098332302600109988151112879264311937217697950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*42739305365862080619420979824425582105946239 238391914302537614752578699659371955307030864332263772268256891323187064064725870885829725022050=2*5^2*29*31*149*4327*194226499950805579938495751680736579112447*42352609827384868156090069194295443422144639 42 Pedersen 2016 242832949579867311212926356518013325012729950380576944140153859830920945574049662013327320757150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*43535534276094348927862048437523954671496703 242833131409564060097215522831315350866167310355968332967511190700858166499995417122505447754850=2*5^2*29*31*149*4327*194193925432963239822626497637352740064767*43148871312134978804647007061437199826742783 42 Pedersen 2016 245267114748542039803768015991831272031215348168767315007655707159380978321160987697863790213696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24344292390397639341458792678002120400642105369999 245267861446164681024734533828221500260860851540578016664967689605759543605452295998351249786304=2^6*151*1451*1811*396735172784565844255385150299409999*24344292390396845872321050824462617989442846763999 42 Pedersen 2016 248581649470934987676886710321871392496947189782416120762644131982461428308362691184011228471104=2^6*151*1451*1811*328481*9085995379*132928044795118424699*24673280654897697210289547838060343512624163567451 248582406259413877237626024516806217679600170814485694307473926450752169391979465629723648712896=2^6*151*1451*1811*396735172784565671835601365070489499*24673280654896903741151805984693260885210133881951 42 Pedersen 2016 256433815811823681617322627524803166464754240433152784250528952543386031019335449926037024141150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*45973922390435328239807334544301774951829983 256434007825646541712844215588739859638464464435672920028747893005070055097187000474488132210850=2*5^2*29*31*149*4327*194101277278758811466785872730946424951263*45587352074630162544948133793121426422189567 42 Pedersen 2016 257816239517024739993146385231476682541664904814619506742499024865195837900979685034573705993150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*46221765834687820165712107846095022963543823 257816432565985885605822413461819521862783468997734230609245522720800161746095838059646405878850=2*5^2*29*31*149*4327*194092414566685186960457770324559241235967*45835204381594728095359235197321061617618703 42 Pedersen 2016 260915592766010704385570800452809784347458634657420770468478082130742883613208865038629855656896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25897501530206430873867878631217341425422352377049 260916387104269333748998445504077395504953126652323269422732267072872349670949366694615097943104=2^6*151*1451*1811*396735172784565068712784365527828249*25897501530205637404730136778453381615007865352799 42 Pedersen 2016 266294427867170559344393629422879614934282075075311657965807742024611702994287383684945306043550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*47741750911488775444548811122633055182872191 266294627264472897345020299528474463480703385082965333778298159010474618840425704016814513732450=2*5^2*29*31*149*4327*194040098447769281677004795608477472218751*47355241774514599279479391448575175605964287 42 Pedersen 2016 270095579032624573695836754754603538573282568669561663990460208391095130268146034595194831131550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*48423228228049605104569213502783941642993151 270095781276172303464640887797809378821663562027695891169975837641637479354584713418597367524450=2*5^2*29*31*149*4327*194017722130052671618363981190414864666111*48036741467393145549558434643144124673637887 42 Pedersen 2016 279009282520485068055670004494186690915904438754910467818172671480044032824447860416704702213696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27693413200858496350388825919181247555298702119999 279010131943646287500779360419205499684272703721371814988215185284829877601293143825686337786304=2^6*151*1451*1811*396735172784564280431230778087159999*27693413200857702881251084067205569298471655763999 42 Pedersen 2016 287462980635415276546142588437734747114985894690119728031310098098580695726615931086923423899550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*51536887676131674250476261475744823409779711 287463195883414717728557265631191784113816878996745417701667947957586240228337600734348910436450=2*5^2*29*31*149*4327*193923099722715208311625539288267833091071*51150495537882552158772221058007153471999487 42 Pedersen 2016 289360745510997409567029638129166552910710337779746479504782108980034454870773463175586930095552=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28720860528918649037004928527657599192328254740913 289361626448423449221166285004692916879955805360312332847188041115475915308390301049142810192448=2^6*151*1451*1811*396735172784563873785349771395083249*28720860528917855567867186676088566816507900461663 42 Pedersen 2016 290948808554331980201984556182702689737749068450806598621865336336587457185602518346325135621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28878485700564499760257589814375122168200331071999 290949694326498707689629557777772491871866816100747746718491837275191454392782688595551088378304=2^6*151*1451*1811*396735172784563813960109396328127999*28878485700563706291119847962865915032755043747999 42 Pedersen 2016 297802345297869143932346364597299345672090553482278353249738082181084562796098403604930936705950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*53390547838124032576588275087274311338073599 297802568287830886370700627607379349734291584805540720360925332768907363662908305973717844094050=2*5^2*29*31*149*4327*193872066704492594798891972587388577369599*53004206732893133098396968236237520656014847 42 Pedersen 2016 298117571734621622043924641735126304435334290333370994465065805941639831555104904257657268274650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*53447062208870309524455687968083591522269053 298117794960620226453033902209011235940922627821890788122497872448704041125743153206197721037350=2*5^2*29*31*149*4327*193870567029193540562402495433953668320767*53060722603314709100500870594200235749259133 42 Pedersen 2016 305135774013655834462327744414549161672512358318659809572300853200384684406617520392263827957150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*54705298318937265227254741521715800334120703 305136002494779801088423583270667685567192113909309164606636483413971438406808107405767212554850=2*5^2*29*31*149*4327*193837989320109531809977035246120955104767*54318991291090748812052349608020277274326783 42 Pedersen 2016 309255430653231608010117988659895533193139682034061071704847221724922417935697649643617467965150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*55443877878046900755003519484111480311068063 309255662219093122730859498875589033547844795146520664897635824042385975494668376775464370626850=2*5^2*29*31*149*4327*193819562351348692580099932919495581054367*55057589277169145179031004672742582625324543 42 Pedersen 2016 323177435179931683314679469908282431221390196686802472487150432207958033157148001952974097779550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*57939840251821659061072190792694321902649311 323177677170382882450900564624227789588284231206150458845987528571810620081587587487970505356450=2*5^2*29*31*149*4327*193760801730205205498776690228543361515487*57553610411565046972180999224016376436444671 42 Pedersen 2016 323992789041925006748073850726904285384231057547043065395707124798479796788014224319869973110336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*32158307064130896266751024643270090985380753292159 323993775414050672820971107276818151315453516934928527352024567414578226872197691952263433609664=2^6*151*1451*1811*396735172784562702194232102059651999*32158307064130102797613282792872649727229734444159 42 Pedersen 2016 324806777495991588014702354073333815883289210487832151137044783982705690877189090763067632657950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*58231951715159078911035950557287889709509439 324807020706470051745248834338484882298943112458780653876935626419597628138833592022027719662050=2*5^2*29*31*149*4327*193754257344005856476289721859406900579839*57845728419288666171167245956979080704240447 42 Pedersen 2016 331641249174374272514651709453371284943021552918605508732542341770841962768149296352493027757550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*59457248267904546812464829355579699290844071 331641497502403360529143440010961730145398912364944634517908328345569673657231148494616280658450=2*5^2*29*31*149*4327*193727513630087726674321640792733748121087*59071051715748052202398092836337563438033831 42 Pedersen 2016 349459473735316358482503627046676992586312018714516788990490963183279133704663849197915777176896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34686034513551093961880834544306423176421675663299 349460537638883353755981712707321797781727795302561266459671251510621682225153954523866136423104=2^6*151*1451*1811*396735172784561988826995687698171999*34686034513550300492743092694622349154685018295299 42 Pedersen 2016 350885742311756405773874700620640806632172054603925828822346069499954531924057423880262769093696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*34827600574242477843158662183385384198493712964999 350886810557492779798087094630886427312003094706532607734117828900537921351990662282714510906304=2^6*151*1451*1811*396735172784561951936738370783323999*34827600574241684374020920333738200434073970444999 42 Pedersen 2016 353467894873425508385859588385570255277989081001610894510559154271459199253484298575424642035550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*63370369133945347171601368608565154623844831 353468159544921886857641455839279819503962448254530701918660278343448074882216442842170139660450=2*5^2*29*31*149*4327*193649094133591304716558543880705818816991*62984251001285348983492395186235046700338687 42 Pedersen 2016 354162267989695200723987733370701544795532672029957190157431657317315083847127512373206930042816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35152816203782401820046873509507222352161722267529 354163346210572093476695385841031503859717699470906083846161922408294212666219920786165731717184=2^6*151*1451*1811*396735172784561868315138010450819529*35152816203781608350909131659943660188102312251999 42 Pedersen 2016 356218869702922885388583982179454525702400603527125323953378575037319217023944692723920602549150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*63863568920833680144760684885458890794105343 356219136434308252882442229572799875202037835008998873669144117422655021380711698412590135882850=2*5^2*29*31*149*4327*193639898541751041408410768796016022343167*63477459983765522219959859238213472667073023 42 Pedersen 2016 358046675828322618315613285784570270400143450576279434989929442955643372413523596206759550607936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35538367932900463305175971076690833957724011736559 358047765874992387727329883541774342403538628374131772389045939588779270785920209710993260912064=2^6*151*1451*1811*396735172784561771162231789330638559*35538367932899669836038229227224424699885721901999 42 Pedersen 2016 360608106135901124240856385206975559843166536414737340157731213665433558165510045657659815605150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*64650479237182482731513074902087241594596863 360608376153881374959555810294549609885318749774064329001017221399756107160834863226060589386850=2*5^2*29*31*149*4327*193625519929166880455800438565523491065343*64264384678726908967664859585072315998842367 42 Pedersen 2016 370535014539097683932822089718204081441071841617846610482395658835677115798262901169109973851550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*66430193488443396784793738320536214091895551 370535291990199130642752582644471589032125228447584332816896445737532326243483527966343972004450=2*5^2*29*31*149*4327*193594268081430760826190770467912898661887*66044130181835559140575132671618899088544511 42 Pedersen 2016 370894885001944183020769515975156788897024794358455414842246976696157833811420111288495467274816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*36813632907319508960780736061301350132693111319279 370896014164038190925418151579845584358807584245032705693137089856736558817635220156110730485184=2^6*151*1451*1811*396735172784561464313014884042251999*36813632907318715491642994212141790091760109871279 42 Pedersen 2016 374657525772759047112357173155038910549431294245826213742585515935777466134965258735613765749150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*67169284824389217590515026123928210060249343 374657806310735519461977968211881818083331342565737301837598558350079258744699506802297804682850=2*5^2*29*31*149*4327*193581780539794835827621606524840301383167*66783234005323015871294989638953967654177023 42 Pedersen 2016 380579317675745883771083684018761628170386420662399228810866342845667530357262007323369374940736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*37774873312042582246841150232342426156700023029759 380580476321380159887244589807651278396838879206638194583170634517423284222600444282017970979264=2^6*151*1451*1811*396735172784561246716934540303651999*37774873312041788777703408383400462196110760181759 42 Pedersen 2016 390324820925647382411252999287308181888556309390997188794463247963988951632353566912295155089550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*69978146086101647508361548014452857488299511 390325113195061171870067692651622143757876450162541607329928648024367175973179132005016193646450=2*5^2*29*31*149*4327*193536748867738707253782296781817246207487*69592140298707501917715350839221638137402871 42 Pedersen 2016 395511407701228920854848186429728830759742206837832162556697528455643516255759732243368494453550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70908006826725737562044247138884947123384391 395511703854281657159255218306773716961443307700819792661139757398323067085880592061351606922450=2*5^2*29*31*149*4327*193522633847171710526348939549784445373951*70522015154352158968125483320885760573321287 42 Pedersen 2016 402576043102774752277870823525249309428084480020333089618445979204761688943078978843306591873950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*72174567551718913615711100816021670394268159 402576344545721281524991030234413596972170085151821666788920448625704922675428883807847348606050=2*5^2*29*31*149*4327*193503997649398395915091486369380665461247*71788594515543108336403594451202887624117759 42 Pedersen 2016 420313336567809268123275539178225336554445500828654409758391807225183446483494856371196534227136=2^6*151*1451*1811*328481*9085995379*132928044795118424699*41718722754499175028591129966764502599869048675109 420314616180730475890575200221068183745495701539632652590670194576825402802286681075293838892864=2^6*151*1451*1811*396735172784560458914984973386827109*41718722754498381559453388118610340588846702651999 42 Pedersen 2016 426069438138670305270259400530703106415695523252563455468626132614200526990812504648141662700096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42290051771899381632396157456982304346816209471599 426070735275617769267995170245438182345865464198858321219886068641445833501456180466050004499904=2^6*151*1451*1811*396735172784560356974239364073611999*42290051771898588163258415608930083081403176663599 42 Pedersen 2016 430433550073882114958384404408440188730100644297264406313045031619308402056562971155447710133150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*77168912230583414146754570069002339859802623 430433872376115052825298303019709186312891744164714178662662192508076366358643635359888408138850=2*5^2*29*31*149*4327*193436518130228746843658901879800684563967*76783006673926778516518496288673137070549503 42 Pedersen 2016 430501213740438385402162919025809153385324306101585078755494896026529406253049332447257658974016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*42729933168835470153001975707626178069227139871579 430502524369599468467079300932081242417436575097956716730660179314514420884600612497689940385984=2^6*151*1451*1811*396735172784560280344753911506986079*42729933168834676683864233859650586289266673689499 42 Pedersen 2016 436556709710817823991835449686356452347390213676442955265349030855280510972581474003350358805150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*78266683462671240651317484908057372600340863 436557036597981521277138348276105039135314869391927625006024186904405363770757163881399678186850=2*5^2*29*31*149*4327*193422849070863945957860942355092794282367*77880791575073969821967209087252877701369343 42 Pedersen 2016 439095501736030140572151226770653042562755415917869841800797324665998313390349745597197714613150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*78721842729256492296377013847532694622324223 439095830524203502532357684481552502444935725047184124526686609799312302658788329995801328458850=2*5^2*29*31*149*4327*193417294220111732091072303425349815059967*78335956396509973680893526665657942702575103 42 Pedersen 2016 443794478287012015794844985789953015752368934962517613034899166924675898666663748557223881538450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*79564283819115887711370382089874074514388249 443794810593709049165374458042988099027281939181070706276923989351351025312265049596201014461550=2*5^2*29*31*149*4327*193407181815892811810584872054907714751999*79178407598773588016167382339369764694947097 42 Pedersen 2016 446345099712138795882654844140132482878342500724507595647954741839902712825279150393377301992384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*44302537768072665711499286048616492019813342662521 446346458576840956668073816638214728487862470784243593212141182685253263411390686403710852631616=2^6*151*1451*1811*396735172784560018834051260917051999*44302537768071872242361544200902410942503466414521 42 Pedersen 2016 448158894123658605855610072904726067872578545027062216760564894662215667972360448337583714945950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*80346744253666445297073306422238451353254399 448159229698365229508163618851010506099751890007682698258265750020709949381383260970030288254050=2*5^2*29*31*149*4327*193397980731304268629025939752731206438399*79960877234408734145051865604036318042126847 42 Pedersen 2016 458854276500416805448901224660679979829391604529816191250732977388550335340594557482382579666496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*45544151661599438867883277380370705801840154443199 458855673448384138502823564853916284520669715623362332704251399248733282089077321804816754733504=2^6*151*1451*1811*396735172784559825122246944705331999*45544151661598645398745535532850336528846489915199 42 Pedersen 2016 460428484490717933260711482698849721883285473174781170025622415786874684817511050325945828992950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*82546458801889494846056382660041777821000139 460428829252711123811656636701256305667071907255801355189522700279090137540192620505516652927050=2*5^2*29*31*149*4327*193373055026907620341024380928022831255039*82160616708336180342322943400664352885055947 42 Pedersen 2016 467199149027010224893249811695396097391973976302144153035087242253444929182637375737435241774950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*83760315893777850841736483380789659266444579 467199498858776201849128585391696437642349153810926158006380869901953242915286867386778272465050=2*5^2*29*31*149*4327*193359864870514982785702065923668169018879*83374486990380928975558366436416588992736547 42 Pedersen 2016 472333627264895154552705161308248574466975251823838209318470530830029880430050778383090070081950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*84680834520685936565899625067977834190859519 472333980941281981247523495497367962822925602595547571836611773130288900889238631794963500478050=2*5^2*29*31*149*4327*193350116078116685713923900456959705435647*84295015366081412996793286289071472380734719 42 Pedersen 2016 472859419542932013386986574708012713823673129712415917747245775433775955891769328150292336693150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*84775099519658206207172249630035658841037823 472859773613024268582161286748634836165099664310256665861736995719510292359299219961341407178850=2*5^2*29*31*149*4327*193349129793055048200835013044531961875967*84389281351338744275578999738541724774472703 42 Pedersen 2016 477996287499177350433906261189396154254157997526397888988513010634686201879251465974174520859550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*85696046579634249663358367705550835975782911 477996645415679840892266298500697982501042230433145666089691105183661136670032699320562543076450=2*5^2*29*31*149*4327*193339608947651388977569408760464994422271*85310237932160191390988383418340968876671487 42 Pedersen 2016 479105811614121484880573883290582440436853377708660532405828194831098190616391160387747786188096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47554242956014855610498387696606232755062924756099 479107270216392289241516119715035697007327835459152880539402504694954365504561746197068905011904=2^6*151*1451*1811*396735172784559532959635600433148099*47554242956014062141360645849378026093413532411999 42 Pedersen 2016 486135933313044719918251480676233080994800849027791046714342005865570555978297804242879630619550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*87155337132823124612133651627666716257562111 486136297324392792656417900387548045912509081309503995994389822694361444175971792955399090916450=2*5^2*29*31*149*4327*193324937423264881265813844948998511103487*86769543156873452847475422904268315641769471 42 Pedersen 2016 489184306633677201536467500204959689944557757692646174257436359338963880030404009087206289409950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*87701855063838404869903886409182176998881279 489184672927601825055648487104001628459114883178634541772323015225177569829326312934305042430050=2*5^2*29*31*149*4327*193319569303264600776220216900795409922047*87316066456008733385735251313831979484270079 42 Pedersen 2016 491182800278282386613919213124816234867105452822820841585354786720358997570827654770429484533696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*48752959479986190306522305173198590048011300606249 491184295648053528064083254933047446865800221760995309704903158614452328385456905497976915466304=2^6*151*1451*1811*396735172784559370196150715865403999*48752959479985396837384563326133146871246476006249 42 Pedersen 2016 494016004532658884997433163647069070794473001286105168072127243177706950821115262520356866821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*49034172690493327831097961723422958875118478871999 494017508527911201813770155542924263428012868284645499619264906256585432267928509090856957178304=2^6*151*1451*1811*396735172784559333165049553190707999*49034172690492534361960219876394546799516328967999 42 Pedersen 2016 533660076403552264666412320868162186708252372580131847933320393315351043052271980525497527621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*52969094329541571933025292626627217946366813446999 533661701092254448021589664895004488183363107160303123439239854850885518273382529169594696378304=2^6*151*1451*1811*396735172784558856245162202243227999*52969094329540778463887550780075725758115611022999 42 Pedersen 2016 534661907926907669435915784251636401611792534517376220216827778688652408989247352970086286487950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*95855162402572537365751148529520536343058039 534662308273782958511487194353644976105696375249099811667913270858686226958135640416838646632050=2*5^2*29*31*149*4327*193246796993922125747848578425714980984439*95469446567052208356610885072645419257384447 42 Pedersen 2016 543883175101074331221129614096676497270292433174099843602150931716098050356945691661093693441950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*97508368006772964441931181928663570693150719 543883582352697171319226726273970698815905577953450767378578681438236214813024462035338270718050=2*5^2*29*31*149*4327*193233534184563686596845797209241222043647*97122665434061993871941921253004927366417919 42 Pedersen 2016 551170452530922718050486612535117081350453939752578960559264504534171327017956550211680147501150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*98814844400835082525080425524287731044121183 551170865239150386640018431265825528424104498245792158699367175929637187918081818598743402450850=2*5^2*29*31*149*4327*193223368786207295868966445971221461421567*98429151993522468345819044199867107478010463 42 Pedersen 2016 552129040374974459671462249663792259772685518657675356167760297399616395882207482543405553067550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*98986701778565595966467374409451937717054271 552129453800978432064313395006645466554107590776798752746897723190633810101217310825518180948450=2*5^2*29*31*149*4327*193222051690719332150136880396568595353087*98601010688348469750924822650605967017012031 42 Pedersen 2016 554460517218029845010910585370809320207306160442738932203783361736687092185175201083065907585950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*99404693201024409045829022502194979581683199 554460932389808960699858947852556757414340664262210726163842071994089423572029566108373862014050=2*5^2*29*31*149*4327*193218867371877769977231749765248521358847*99019005295126124392459375873980328955635199 42 Pedersen 2016 565146083745983703193596337767783861766051868577419070563763106387909140977493313018861578773696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*56094277131713032876467587284176152691645709353749 565147804291510610733850520246389017876399239387593171426439259361084383444000981368916341226304=2^6*151*1451*1811*396735172784558525140674774942779999*56094277131712239407329845437955764990821807377749 42 Pedersen 2016 569593230351214028367930228321953393777633134408981748158510156786193146399881132924901317915550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*102117713622840606919191089722171842073554431 569593656854143404988623297990748972787079349083839266520638031161359770275505765371225252580450=2*5^2*29*31*149*4327*193198836512371359566628785062924897070591*101732045747801828676232046058659515071794687 42 Pedersen 2016 581018046673253542897324718528366494342382634280453871680500597208813147042722116756710133019550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*104165975538889377254195430305373752511770111 581018481730915260587346218959268759386895936454447466303924172446804512300006782074568012516450=2*5^2*29*31*149*4327*193184408828864094271757614344001424297471*103780322091534106276531257812580348982783487 42 Pedersen 2016 584256574328070244497289413037861294817461404130832876889200174385629168358335051954633170172992=2^6*151*1451*1811*328481*9085995379*132928044795118424699*57991112632596343411395380689619091984461896862023 584258353054074790800521101219857203546608466574627065799701004970176228933832072823395775235008=2^6*151*1451*1811*396735172784558341579674201568989023*57991112632595549942257638843582265284211368676999 42 Pedersen 2016 597156072495447510217060824116079961236211157212941901472511635058644004635119980512817920878450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*107059230253894783373768696072003017659031049 597156519637022660791870689597986966357277755435594650152710507022730452533094509996274533521550=2*5^2*29*31*149*4327*193164974911441867658552283844053600652799*106673596240456934622717728909709561953689097 42 Pedersen 2016 612421371514488615377656285499140384965316620634797234868860070331861392432514400331572255973150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*109796020915244936613550849559570021434175423 612421830086492363947843913782101624048779617974038127449818552397959060555363113075684860698850=2*5^2*29*31*149*4327*193147539589052128523973644992705830931967*109410404337129477601634461036127913498554303 42 Pedersen 2016 618529116282370239113761214273179465507506047135993572604608296838253503740678854461932221940032=2^6*151*1451*1811*328481*9085995379*132928044795118424699*61392876391888125245713525986753243584117620219283 618530999348598403999088301746665054618088867374008047323032918356402846795971857165094949387968=2^6*151*1451*1811*396735172784558040795161064172658783*61392876391887331776575784141017201397004488364499 42 Pedersen 2016 662329363810858774975981405686202013704900870978919638404795602652157238643225302858987438369950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*118743616836757455124019432629659765122724479 662329859753224001653443217979343019452097400610097684994701541962738208920200197357376143070050=2*5^2*29*31*149*4327*193096173543620289832562528007471702930047*118358051624687427950794455223202891315105279 42 Pedersen 2016 663223350545429577469268184534464127161255991608386889676122518776417338332534241958959888821150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*118903892409708398726178905535663441999235583 663223847157198759111543509810972202166720871985439823514999642928440952131652873208851744330850=2*5^2*29*31*149*4327*193095324263005974243800069011171977005567*118518328046918985868542690588202867917540863 42 Pedersen 2016 663793665325033486620032896723501162843982969765464117589548617638303252486315302082199391515550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*119006139483997808459769540855121810189266431 663794162363845882975140206479296886832600316075007301497901624788201654550529296466869514980450=2*5^2*29*31*149*4327*193094783669315935211375959448073884462591*118620575661802085641165750017224334200114687 42 Pedersen 2016 669798473198093177556324482414045449767364013319336525302318225929210131213466297011839150381950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*120082692395912136595386432873131644549985519 669798974733216294852735602907462414373103077840838593934523891525999657746398310107600148178050=2*5^2*29*31*149*4327*193089147938437277763748892948385186270719*119697134209447292434230269101733857259025647 42 Pedersen 2016 688214463263939080902460164573933770784106165524292785090605067843282582267177176918051170523968=2^6*151*1451*1811*328481*9085995379*132928044795118424699*68309582139354051036197717495974927015191544415467 688216558482061222333807486670537440289354725175421783855906768060450548044174983638368816932032=2^6*151*1451*1811*396735172784557521600241468534479967*68309582139353257567059975650758079747674050739499 42 Pedersen 2016 689754356336444447428474946051411458477928976641396743647094192264157994113229528227803546419550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*123660419536658666665601801756878122586598111 689754872814235706262054085852920544999154381144241100220818701180550575841054648484425383116450=2*5^2*29*31*149*4327*193071126859487034450709117555023409663487*123274879371272772747758677760873697072245471 42 Pedersen 2016 695847298376093197080011482324366474741000264922489687104241551392347491613456126117458760321950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*124752773302769558448890822142224373305080319 695847819416188728437701642863399361069083316188872764238310236750042089144250064009341152638050=2*5^2*29*31*149*4327*193065831587171926376476925457505767083519*124367238432655979639121930338317465433307647 42 Pedersen 2016 703149806545389813804105642047337850775217939775229549317659075004908848660546092791491126485150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*126061980291590113914741405202903776421006463 703150333053494724559210672127853572386636359124149083238990522245616953932319495924898667306850=2*5^2*29*31*149*4327*193059606564148098334445120015286405778943*125676451646499558933014545204439087910538367 42 Pedersen 2016 724197748304678656868168216896475007512802821260985748306217083897222857445565725593574503489950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*129835493694479356710945504836336112782234879 724198290573168943253398802562226884337329506800712383854103658352806371132798440716509449150050=2*5^2*29*31*149*4327*193042369788519137594012801243669108839679*129449982286164430689959077156643041568706047 42 Pedersen 2016 755257736282199561388328409774548388534049058107888943848931256236340589694794501820265996245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74964045550965949291479416268139555082026774746749 755260035608616563898264125432480540597903119315017852213106225487893585647323739551044979754304=2^6*151*1451*1811*396735172784557112519399515974594749*74964045550965155822341674423331788656461840955999 42 Pedersen 2016 755661304638485862920974324186237185911389325580999747720583153408828616657749913749176337019456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*75004102229885251067794384518189807614955065803439 755663605193536930463054332388908243612505705544534005851225613071182078212863888185686531460544=2^6*151*1451*1811*396735172784557110276717757957451999*75004102229884457598656642673384283871148149155439 42 Pedersen 2016 757263406357681639358198903434177090334368257095895650144102176341629643592459198362390444315550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*135763565202150383645927692087773054181842431 757263973385244312674163863863004615251348995322293287464886874216238991087662557891865790180450=2*5^2*29*31*149*4327*193017234651788354258961628936490213678591*135378078928972188408276315580387161863474687 42 Pedersen 2016 758392030935102410323461096274241133582256382642728937953598459816066815725328701208182581941150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*135965907075690012060999758399689725926505983 758392598807762361462758741642197497347824120641683335989513934811587639346238763856198702410850=2*5^2*29*31*149*4327*193016415566213274633940068680711592267263*135580421621597391902973403452559612229549567 42 Pedersen 2016 762986172310252119538406104997763173406396885391523681035851615903902704526080647765391820091550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*136789553123942911930367577522717789539636351 762986743622936723469842074146611649876561818740572959286711972797114144263904713135451028164450=2*5^2*29*31*149*4327*193013106537918869024657634153754547277311*136404070978878586177950505010114632887669887 42 Pedersen 2016 765446102147690261096080062572871136327889526244441548760569339910183568477599713251505363329950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*137230573833611277068296290958742340660487679 765446675302333697792083702584207530027748539851839467351921997997544896388366881649684227710050=2*5^2*29*31*149*4327*193011351118601783493499295088095283138047*136845093443966268401410376785204843272660479 42 Pedersen 2016 771168370173581754463018163639285470736214011669382935230801143898434587939147713073627827785550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*138256472486200274624524117453604573055359831 771168947612974281691629289861525583871035535199642972025190774975330391436501312794864873910450=2*5^2*29*31*149*4327*193007311185070862997902079810244785556991*137870996136488796878133800495344926165113687 42 Pedersen 2016 804793020197318708628399045853951261699947350729201382624131477237679190550087654603878818689950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*144284761094326799188307323321103481468218879 804793622814348486820702401250236525684806683066537630272608713805411121525957427054529485950050=2*5^2*29*31*149*4327*192984737406805536133724548602523961863679*143899307318393586768781183894051555401666047 42 Pedersen 2016 810387495826018090779694199103701246032121337601337026240699364578310274057859305171071222657950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*145287748892775915728333319514218505837309439 810388102632107915375887542249976869221487391622735974821081024332865980903922530767662529662050=2*5^2*29*31*149*4327*192981164069872040647285286064307841379839*144902298690179636804293619349704795891240447 42 Pedersen 2016 819390125063785101378844955760409219496548504164740027845298280566381433958968322320578750952896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*81329585528855938712010766112241053416849637776049 819392619636524818650906306564554842170878250722036022835469604844727962834190752322699610647104=2^6*151*1451*1811*396735172784556783846104092371976799*81329585528855145242873024267761960286708306603249 42 Pedersen 2016 831733793485078166302233827568500525275188191717358042291618211064536083705039879231800765050150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*149114752085759288131532512259170519128373763 831734416274957821617959776672270854002398046044744673440176335587171311060374762583336523141850=2*5^2*29*31*149*4327*192967972990634961537332402562521368186367*148729315074242246286602764978158595655498243 42 Pedersen 2016 858362309004707899545067889897973855937102262328823297651147327101458655680194775246776235916550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*153888760934772849710969422482934829304132851 858362951733623464873311140600398928708789529273430065444205537116505878198124808179760564339450=2*5^2*29*31*149*4327*192952440906902402114921729216654354822387*153503339455339540425462085875268772844621311 42 Pedersen 2016 884742320372600322818768388043676851694479594448102248806466990506047747786701823595460341144896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*87816198920069356259070287140255662476994241755299 884745013905273667993365296560993485980380323532638366021419979086491350832362174250185636455104=2^6*151*1451*1811*396735172784556497938593262842934499*87816198920068562789932545296062476857682439624799 42 Pedersen 2016 891782975926369468518495184308496269161729877245145525563445896050597954250075004333122949086272=2^6*151*1451*1811*328481*9085995379*132928044795118424699*88515027940000378039100952516463674337964442486343 891785690893798831535395230835500312599888274234228008032101707205362141974418036475196489761728=2^6*151*1451*1811*396735172784556469637055738748676999*88515027939999584569963210672298790256176734613343 42 Pedersen 2016 940913576882996531961370210773389478165508152585889057176864290653877904534253448886058244437150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*168688702863857105257664307015544105165682303 940914281425072257452654670823267703106893613625444774874250714166301537560235321805576840874850=2*5^2*29*31*149*4327*192909896272927058415590351255574179040767*168303323929057771315856301785839128881952383 42 Pedersen 2016 958611922351266477316906134126122593888358028959183719389922272855501444061978970649741994383550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*171861694531985762498769022911506920122094991 958612640145599752783271291950816155759970392819135951208510739258671182704178361665999623792450=2*5^2*29*31*149*4327*192901732139343258016367390533808004273551*171476323761320012357360240642523710013132287 42 Pedersen 2016 982775516824201899067275624575405012774449017072761813273926987595445891510219804426593212061950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*176193787838228502728246891294306119246131119 982776252711874908612017323496012239827433966649795082274497146976102614956377004508995283298050=2*5^2*29*31*149*4327*192891061984975532995728366083068690779647*175808427737717120311858748049773648450662319 42 Pedersen 2016 984805513369164243668478055969686657443645748329784023368521239460652333964777780939124653362496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*97748095539486092503780271274007071953032169129699 984808511536840944375869255912926278689475409222995872543462434760733144909569613566351289037504=2^6*151*1451*1811*396735172784556133705002792852731999*97748095539485299034642529430178119924190357201699 42 Pedersen 2016 986232593645569092734205500182410798872958196347852964603903687200920865466221696753717833674150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*176813578878579975775167379179225081916427843 986233332121849748623285302590696392453419826615533051928336531241388871479180183334826184757850=2*5^2*29*31*149*4327*192889578303828216723923049595464060505667*176428220261749740675051041251180215751233023 42 Pedersen 2016 989529813997714047625929221410131913764091696000645791119125148925655283851836348192943581109150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*177404710559453581706845564329545407019180543 989530554942904206043542335322815961365142019798618810048213609057953712060305501310660302922850=2*5^2*29*31*149*4327*192888172919206948406101933226109065716223*177019353348007967875047047517869895848775167 42 Pedersen 2016 997403891156731701192670133960089367267050004558447969757007836440525307169697414514388210328650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*178816389479641789816677873421275512488903733 997404637997913587580458384664997030095904961100497449503502836204353817225163368128630386023350=2*5^2*29*31*149*4327*192884854439143325871326341992338893131263*178431035586676239607414132200833771491083317 42 Pedersen 2016 1004903632053529482596552881260561309410065889108851071645521976763136674781362480389887126379550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*180160956711721550944362613388193952489461311 1004904384510405677846803355321245830992707547961827091406167160055453212222485723371660612756450=2*5^2*29*31*149*4327*192881742231737072419708410572052954535487*179775605930963406988550490099172497430236671 42 Pedersen 2016 1019982639284644823114927305336888653186293900742079604522822718066438507972164227870962169685950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*182864348641422523441229806668114494829565199 1019983403032457099533845596942064893210053207885744247988499216868725403858652767098529695914050=2*5^2*29*31*149*4327*192875623772222119898207636619328599037199*182479003979123894437939184153045764125838847 42 Pedersen 2016 1034715368280734427054077065440107702611103953822243697923061674382406484320955984742069762331550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*185505659177325369149836777625213397075697151 1034716143060194798499733411534517639968684931533669502851309003836476556733420001521898948324450=2*5^2*29*31*149*4327*192869818591519944057485526407138584677887*185120320320207442322386877220356856386330111 42 Pedersen 2016 1053501364785014467833051394720593739736506458918562626687968634456563148391322468147844947739550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*188873646907728817593060764144736163318912511 1053502153631149289384057575391825361718556252794345799312499288758557907099248425771973664996450=2*5^2*29*31*149*4327*192862652528891340617834356622433490687487*188488315216673519369050514909664327723535871 42 Pedersen 2016 1056454770344917734430084988837825836739573248495844904792555890585625050367411017681661903257950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*189403138845321443125384560256745410773961439 1056455561402518661642571537912952876400073508024054812753361852220206507077528287083638505062050=2*5^2*29*31*149*4327*192861549183510364437319877593913403951839*189017808257611525877554825500702095265320447 42 Pedersen 2016 1069824215572704001049080581883519252514427790573910118580283832874917206470481241211035358707550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*191800037379781739624888890077438157976943071 1069825016641146437517526252529861807329072056907713571757740628868712060791098315283437021708450=2*5^2*29*31*149*4327*192856631007151983495227145867499316792831*191414711710248180758001248053121256555461087 42 Pedersen 2016 1079774897683102018187052851435262741016061892397870582077427274308270851980829620111475617979550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*193584013824647473652398273614762888104733311 1079775706202467048597529607660724723708009861083890750174632469862681036874172403023214137156450=2*5^2*29*31*149*4327*192853049774737684520857998894541416655487*193198691736346329084485000737418944583388671 42 Pedersen 2016 1100925440756918064804075687996324935371490423775225187301952103398510739093519195081063999093150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*197375921778412532763714637306002311262445823 1100926265113494807380949430849485658862044286520997907905720124612775062425977880635690768778850=2*5^2*29*31*149*4327*192845653405647984025909858955537658355967*196990607086480477896296312568597371499400703 42 Pedersen 2016 1119897792762298216205945476509617232141031438942750909423282802028280660517838469408934644865950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*200777319663079310389060038431651806202380799 1119898631325089633191110218766640134998038813526715762657952957898887612710164623046712177534050=2*5^2*29*31*149*4327*192839257140975615651413900593736813068799*200392011367411927890016209652608667284622847 42 Pedersen 2016 1129954771022828944838747392549206687548513534374912610236517086160939862917831840071974491045696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*112155065557430500537683309221677768430710457665499 1129958211086704119800609755556361613709780926692345914712739370672549157877018849206046884954304=2^6*151*1451*1811*396735172784555720013883146524795999*112155065557429707068545567378262507521514973673499 42 Pedersen 2016 1156824727164556142539224380986451371403070496356212449152202508174498202164384374205652853322816=2^6*151*1451*1811*328481*9085995379*132928044795118424699*114822076459002074261422311316443748101441548306279 1156828249032028966830221409167961534758064216252726792815358669874760729687498235662693248437184=2^6*151*1451*1811*396735172784555654819340187840376999*114822076459001280792284569473093681735204748733279 42 Pedersen 2016 1180716841633184260758724454150989895173847685827858198955451100223887638195708502778317286785950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*211681069715693416220410725763093497186547199 1180717725736373848098418286731216101757257466364040313781849569241611675161760237619351474814050=2*5^2*29*31*149*4327*192820142296873714377336108476332594318847*211295780534870135622640974776167762487539199 42 Pedersen 2016 1192582550407883470627252203124618034606684028575252403742621280516935905499284707416885335336896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*118371263659137684298012670437826719657854879547049 1192586181137409138780904779305722187526002714388787643812273219211542863913089722395320258263104=2^6*151*1451*1811*396735172784555572616282829899272799*118371263659136890828874928594558856348976021078249 42 Pedersen 2016 1229955683578914625208076414942043320933474574753191272389701746621484766002818417860491246733150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*220508699141404845132860688054457362403974623 1229956604551415872058552688432692261892263652033040686007569406801630018431118179323526087538850=2*5^2*29*31*149*4327*192806055390818885501122792197790918401503*220123424047487619363967150383810169380883967 42 Pedersen 2016 1252855775947933520674276248164383971280884376266811116856286612526329212193640885891894195085376=2^6*151*1451*1811*328481*9085995379*132928044795118424699*124353757591778049886682434770781020841880541988919 1252859590174844338954443902510125484457828927226954121867438881577486647103651243103449021554624=2^6*151*1451*1811*396735172784555444675850401904940919*124353757591777256417544692927641097965429677851999 42 Pedersen 2016 1260453157734328876475180711521453949458231619312913892802947552183930009029071492555637249297550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*225976341953982274049251286485671026991610871 1260454101542884649204794496854816091426232915363667538757700508449747412601557848113305889518450=2*5^2*29*31*149*4327*192797883633957974257562544358978188037631*225591075031821909191601309062862646698884087 42 Pedersen 2016 1270278776532950233347306726638611339690941206466824782089546040294318191002240626341170283576896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*126083099175114946412154888603448857275574930700799 1270282643802899982658549746227519845194845599787829005125292090435623499645933540098198830023104=2^6*151*1451*1811*396735172784555409954569331083171999*126083099175114152943017146760343655680194888332799 42 Pedersen 2016 1295500615848581952752862214830827880860002608193320356548205960408603192602621706844636594593950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*232259714192646326393889021729428184564370559 1295501585900152488344802705886830836613813432437527720255624479776464194583648753921612693086050=2*5^2*29*31*149*4327*192788969028080141128015318245299788844159*231874456185091839369368591532733482670837247 42 Pedersen 2016 1317554717602084815297430625090281505320626667323797986515078930583436307167826226478443974209950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*236213613795147794285382583518753211952897279 1317555704167438347992699964646772408621331264256385169540451723337598014054314471924663005630050=2*5^2*29*31*149*4327*192783603101179688141773475004343387246079*235828361153520207713848395165299466460962047 42 Pedersen 2016 1324081328047554026197479004140240807980941898532498069294201360691037961906434006444347638821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*131423338313018907731543628168192501757796376559499 1324085359115399588711234893613883537867056775654043716088582206137626705927946052878322185178304=2^6*151*1451*1811*396735172784555308502226758978455499*131423338313018114262405886325188752504988438907999 42 Pedersen 2016 1332885365970284877677060349762518254855296805900673106507115871203898594725666043652388557686950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*238962120407052238008522880561016690137543619 1332886364014999627935473444069643949360455439106503270939450410462299830724446829763660737673050=2*5^2*29*31*149*4327*192779977914983260667476121357255118074819*238576871390610847864462989561210032914779647 42 Pedersen 2016 1344190763896011524487933900372344010424007885092755850164833542198747153114687645877501206733950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*240988972775118043418310193005014896459989359 1344191770406039898852534529740915735068974633849905717585463124786984699980808032186518167346050=2*5^2*29*31*149*4327*192777357667695511166074499459954645749247*240603726378923941023751703627105539709550959 42 Pedersen 2016 1368890592337565750151062204345554294071069516266213639914719621314746618259549865150833391011950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*245417203085672596922450800686016100292390119 1368891617342457869520485773783358455944924108943563698725758237389941570686280367001034656348050=2*5^2*29*31*149*4327*192771783927610442733795236617750523964647*245031962263218579596324590570948947663736319 42 Pedersen 2016 1383251238917725913649432768514202693957401854910247426490633454377638794974967458903417778049950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*247991806007142334612980259636589874859630079 1383252274675656355479328318450000211276798596545723692177200785049537121438938960179688280190050=2*5^2*29*31*149*4327*192768635040366604143421944109951033794047*247606568333575561125444422814030521721146879 42 Pedersen 2016 1405241035903939781757077226608901403117174994642534419271288075700237826092932076410185175475550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*251934176933633113421123921781016722689809631 1405242088127502768472449758116103273102052788967608054405504616225485155049168975543873580620450=2*5^2*29*31*149*4327*192763938309051428985912460609331560766687*251548943956797655108745594441957989024353791 42 Pedersen 2016 1444469364458034824680447235658107292624954317430813858893465929265117410836399609056761340187550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*258967103253209833371106453541981207235804671 1444470446055186104489919160108112553562488701705055035209987976618185586743468250078489485028450=2*5^2*29*31*149*4327*192755915545100239119280539566115525017087*258581878299138326248594758123965689606098431 42 Pedersen 2016 1453599348138443779567646616911007743195463945814295720246615887825772713283085828015601225434176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*144278810413918479137054356892448464799246273486119 1453603773514339119635848057903724816986718805820192855106018029876242705634825057238468493605824=2^6*151*1451*1811*396735172784555095077994960361313119*144278810413917685667916615049658139778236952976999 42 Pedersen 2016 1468943143097935961734782018210606036626286471922508515903390836949331959301998489284972740103550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*263354806942871304094063164354527948978257391 1468944243020688261058819698946512841787759979526247095287871400679769813785488463488335905272450=2*5^2*29*31*149*4327*192751127836068143327005453650166583741951*262969586776508829067343744022428380289826287 42 Pedersen 2016 1477395943707030701776942348388149059043940372968774463547902317072682556253707553616915239762150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*264870240459133896971088844504721589344568803 1477397049959114231025254887719711663607718213524467776339969967169938160265789896100719717549850=2*5^2*29*31*149*4327*192749511181929887135523736532712058080767*264485021909425560200560905889739475181798883 42 Pedersen 2016 1533844223892216443718107658779383315260656083551060051047039395973214071370420575197271774921950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*274990391126827624043010863768480847634012319 1533845372411931634264407478515102975644148295049680085204173071828894808679820893086434634038050=2*5^2*29*31*149*4327*192739172849218436678177413131108762687647*274605182915451998722940271476900336766635519 42 Pedersen 2016 1589414517894438724137334501484477616026521326435265441484320250326588848162244903110870803314496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*157759313933443350043886129744106719660627472392699 1589419356749591075027921668039329557881801316199212567345370418987722972399700805047793235085504=2^6*151*1451*1811*396735172784554908637908135679664699*157759313933442556574748387901502834726442833531999 42 Pedersen 2016 1598244688845763779223509515886456479626441854412950958948341719541001850785555820744402460831296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*158635763528883990546372860824702774199524846094399 1598249554583719654874772700849475100661209409588479787266512727154550182732668966052525743968704=2^6*151*1451*1811*396735172784554897613340227830391999*158635763528883197077235118982109913833248056506399 42 Pedersen 2016 1617175834647075393416252485129373778925936281944492764833336971758486215957322191088036467099550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*289930234350644782257908502530130336865523711 1617177045564259870429994126750593654230355722805524996698371872338484278733320479807865499236450=2*5^2*29*31*149*4327*192725232710087146155676626873395510595071*289545040079408288228360411024807539250239487 42 Pedersen 2016 1627074388402991665037949223718401765858609969825422266573414699781749142443750187547655836690496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*161497291199513732018140384297121773366544649874199 1627079341910839329538121159053948800020632765981170792819251198889656328312479897203285449709504=2^6*151*1451*1811*396735172784554862452248714590746199*161497291199512938549002642454564074091781099931999 42 Pedersen 2016 1663488357518545401415343086432074959546781879606309806191842532680326639616598594019093727628150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*298233227953331917755412982578044350797060523 1663489603113857389397321744387903914620323042813883306247668023462807472847762734828370441843850=2*5^2*29*31*149*4327*192718090280752402999050590867989145983403*297848040824524758469021517108726959546387967 42 Pedersen 2016 1699824772865934175867891269952161456813325099317174929716814142833097208479527452144526476981150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*304747686796596729425001049897643405113142783 1699826045669412909706418978209104678003433741299010031777278237095268062851779465109191997770850=2*5^2*29*31*149*4327*192712759381291436526203371683911608856063*304362504998689031105082431647510091399597567 42 Pedersen 2016 1703987706289858525045246669094770693054513950329675878929677472040806954331113407196350494121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*305494025096567628872784409787384804841676319 1703988982210479818687015498136238964745060100382843150978205570130870029079092963012023306838050=2*5^2*29*31*149*4327*192712163182438069363856449199262551039519*305108843894858783920028138459736140185947647 42 Pedersen 2016 1735759835771551639012058144169933803052744328566364740095236761125135889695951093902907572613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*172285000395807956211565438702645160454136543469999 1735765120164219508637975076417809968155364334280787361864174810385953789173407130251342667386304=2^6*151*1451*1811*396735172784554740399584345343563999*172285000395807162742427696860209513843742240709999 42 Pedersen 2016 1803620494554872822915976415378599847926249246184862663377885886589551056730900771622619373813150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*323356373167696102609597076719270428784788223 1803621845079042390450297158639269931463257696651373366546672496065813102283941868789741461258850=2*5^2*29*31*149*4327*192698716800363400330456007054105006899967*322971205412369332325874205833766921673199103 42 Pedersen 2016 1809680199032081709015530016970345143742133298793812515453771572398795448035376710035360215805950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*324442768042967188548517722045487381759095599 1809681554093667757241886804486484141622251037980509794536990883921080805231267719602766580994050=2*5^2*29*31*149*4327*192697946835081634036394285303131518094847*324057601057605700031088912881734848136311599 42 Pedersen 2016 1839302387848124288138919538458969019785618063921873198441606721841324551450854939004585632248384=2^6*151*1451*1811*328481*9085995379*132928044795118424699*182562245126249515113565780266478753802485358020271 1839307987468447349322487823361053670583092613799033474480608524258996640249902445882406010375616=2^6*151*1451*1811*396735172784554637538995451167051999*182562245126248721644428038424145967780985231772271 42 Pedersen 2016 1842189837230756059022978164071399605166500507833014934139750151897535042727865626296574926241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*330271155296634820227810823049092639801326719 1842191216635075106655222108937405151610036769010625072634685265545852469570313977634401165918050=2*5^2*29*31*149*4327*192693902693705610706517799430601470753919*329885992355414707733711890371212636225883647 42 Pedersen 2016 1853696744018392647575330271640275908940915471272014509457888905635700911718037782710906181484736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*183990974842990394906754807130039143475141012809509 1853702387461270325629995456169481316622477666405830482925237313379853426423526326798504076435264=2^6*151*1451*1811*396735172784554624149218774157617759*183990974842989601437617065287719747230317895995749 42 Pedersen 2016 1980554103302941134549912171074963021121960976042595865795738404915951274312586529143389695393950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*355077353378872615654058080029818909481106559 1980555586312362308212587779168452642103620988950915813630437961581087238055999497519555400286050=2*5^2*29*31*149*4327*192678177848213842976187944370570271477247*354692206162497994927689477206998937104940159 42 Pedersen 2016 2003461326127160021216344347181780001125533416332891148265618171876865019272957487244429742731550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*359184202083545245641226633755727344314665151 2003462826289168546361607162402038646741192113383793432022823384645556941474048028838363671924450=2*5^2*29*31*149*4327*192675784383589935068669166465721697618111*358799057260635248822765549710812220512357887 42 Pedersen 2016 2021879900070240747626064377007195441965892901920561557249040829651250202425609512826161024021150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*362486317626774020369746448484228470109619583 2021881414023803180144906712702283197748120888982151049274281269419827864498748307085738161130850=2*5^2*29*31*149*4327*192673899313699495231340404110560913245567*362101174688933913991122693201668507091684863 42 Pedersen 2016 2078268758270835512218449212196292481164057502378921029815993117740661887161672588769744348570950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*372595815012648332751265428454348678849626899 2078270314447535308794777507950631209410009274742519230128263632832949589715998627519061334629050=2*5^2*29*31*149*4327*192668336188762624784860411793430946598399*372210677637933163243088153164105845798339347 42 Pedersen 2016 2245110976181602987013791442308110300962556894683295855375676246621454965494563558422062582545950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*402507592261661431240694004059160443694446399 2245112657287271196290555318918389650412907306974375039946684116800943862002636437111803196654050=2*5^2*29*31*149*4327*192653515102000008697792853391925715750399*402122469708033024348603796327319115874006847 42 Pedersen 2016 2406819849819946412080403242290255604331439430513363984549410535961388014139275650130495550593950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*431499054183163315221632010411990102533890559 2406821652010811280770492430921440164916150385224685637465910059307358133500571912895404297086050=2*5^2*29*31*149*4327*192641113608863625163198995587488635637247*431113944031028044713076396537953211793564159 42 Pedersen 2016 2408562149359427875738759024420768241479786957676149709791090788957595396913456373696065190418496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*239064830458682800174141573377647361190374382906199 2408569482049066085807591943676191157651830344993543174625378518954535832515922382686600639981504=2^6*151*1451*1811*396735172784554229996964317823131999*239064830458682006705003831535722117200007600578199 42 Pedersen 2016 2510816732325589389847371897543304803052705009403142532433363047105744094186765227064141102005150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*450143805032521468316028337537027849290084863 2510818612387771316402541494600459816827770664831978094182384854530804086558372611307590566986850=2*5^2*29*31*149*4327*192633983155132045388071000171190775673343*449758702010839929387247851658407256409722367 42 Pedersen 2016 2553495197749714185692578053927695149004678087837368662368284779048706784734659072311466321020650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*457795278185311180680597017764482964059850373 2553497109768895519463840125137520353557077089283669704870717449646834981694409813892766309251350=2*5^2*29*31*149*4327*192631225241092046561653289075463916357253*457410177921543681750642949596958098038803967 42 Pedersen 2016 2583161884646406556207055063617752868894807703896723891199754787249473016249320436337976317559550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*463113975942282253087140947763402169770996911 2583163818879561287338474546715928847009512429597192562496997572595325157698015341515514538376450=2*5^2*29*31*149*4327*192629361915563178384267051116309784196271*462728877541840283025364265833836457882111487 42 Pedersen 2016 2590289917790048790530376015805182661841845391189539514411510530839180895987161228839845929781150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*464391902730154623223116637762685714233718783 2590291857360568599864178557067613030713006523110583528268007476225814509730474783108243872970850=2*5^2*29*31*149*4327*192628920580665736508890520445033494957567*464006804771047550603215332363791278634072063 42 Pedersen 2016 2592285909354824869070965990130330582170619012908486016955340887504833255378365130867791722805150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*464749747739793745703412668482801106525220863 2592287850419913440858474200346394227654867005294907860885444690492024197644235790661230954186850=2*5^2*29*31*149*4327*192628797433597895029358698245346353082367*464364649903833740924990894906106358067449343 42 Pedersen 2016 2593101372367820041265366659489833263567582022857215157651503556220679464629372644401538047003550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*464895945436665446689765735506123744831355391 2593103314043515174556902329239510275520555662628512983680937542519290313068488041195891942372450=2*5^2*29*31*149*4327*192628747176438847291696598891562682956287*464510847650962600959081624028782780043709951 42 Pedersen 2016 2631725446773369253124925401005996947666029838102068411264611904982236476958122901420363842092608=2^6*151*1451*1811*328481*9085995379*132928044795118424699*261215180980073082029782776731304421312421513968127 2631733458867190166640779059779560525792761131067442815013285722208668693633800421209165168083392=2^6*151*1451*1811*396735172784554118337061950148720127*261215180980072288560645034889490837224422406051999 42 Pedersen 2016 2662029538334098903805097246776290161947942297433299699071990637194240206424456844429100252277150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*477253512798117306419943629898304748390095103 2662031531622178339924161848979732341433645143578974669057342438056799585417703276078364951434850=2*5^2*29*31*149*4327*192624610550469154371578220965301898877183*476868419149040430382179636798890044386528767 42 Pedersen 2016 2746574534737672966509153207995964337756752233084170802870275175105596571511739448082571702145950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*492410894014991636658652495722039645277478399 2746576591331786794972086774130773145560900597998731398332565553611919721314382835548885373054050=2*5^2*29*31*149*4327*192619820552319638455552781115829419302399*492025805155912910136804528062474413753486847 42 Pedersen 2016 2909397457029315779959753257146327760230324610920224683082709189614691430306339334723307363509150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*521602084611761291418412364843797466290988543 2909399635542809310719600566841420861688518263101657238230355039021977766865584852949308744522850=2*5^2*29*31*149*4327*192611380832386495434248694877848528244223*521217004192402498039585701270470215658055167 42 Pedersen 2016 2965166312740486091950693533233556585995115960448769494212142330454305116373179116444885468892736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*294311268665261356682170212698767260315232127917759 2965175339970405313387691457143553389033029161030861478006476771642520279504620067759801973027264=2^6*151*1451*1811*396735172784553982817465800386151999*294311268665260563213032470857089195823382782569759 42 Pedersen 2016 3022830005967678817352759318640038825615282836537828467174584407366152478042267511577567557478464=2^6*151*1451*1811*328481*9085995379*132928044795118424699*300034750224018986122447015905734444067037348608791 3022839208750454725678442448703842037053852052073465931930709122762914468160077211379201144985536=2^6*151*1451*1811*396735172784553962413594132337051999*300034750224018192653309274064076783446856052360791 42 Pedersen 2016 3061190522464435960694411822661260330261198542563115128240826039720431807909830768984510079864896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*303842270978691537463962560976059966240766438247799 3061199842032972164625179119014677584292004326653115209610651479910562745699273306076338457735104=2^6*151*1451*1811*396735172784553949265788589229679799*303842270978690743994824819134415453426128249371999 42 Pedersen 2016 3138677212997514086111995190484449946681181969140097892451185699329315735224100649946313604078950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*562707777607863717162203045557171665964084259 3138679563192274802748401431005708505885916769833742248807057838998512459132835825595320157201050=2*5^2*29*31*149*4327*192600982607667350638977532547860667125247*562322707586729642928171653146174403192269859 42 Pedersen 2016 3449692803833614849151027101143601595088179999763364936233041174697711934875918211705497240449950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*618467220215101181447286627056885816957038079 3449695386912218815829869804250327916239100217524198964692820730834518104422443167158857841790050=2*5^2*29*31*149*4327*192589088746769789258908128376253983034879*618082162087828004774635304050060160869314047 42 Pedersen 2016 3496124904991083534479017259107230410973804930571148920181348781939581909453210284541154630881950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*626791652031085890128420225596098936200795519 3496127522837353452105139692331597370725218682100329229000241615840787207642484102001844347678050=2*5^2*29*31*149*4327*192587494802585148984297898729168785675647*626406595497756898096043512818920365310430719 42 Pedersen 2016 3627807095092693694252566098281657159296405157479945278052961635760720462312222440763727695489950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*650399875341136719078128688849785606578874879 3627809811540626750388061520232248570806051971502197633022263390139447258687143893045190177150050=2*5^2*29*31*149*4327*192583196488833054775359312448111290306047*650014823106121479139960914658888093183879679 42 Pedersen 2016 3661070087136151830926724458593100523179599716111211855981492851258993957352761151643080271345650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*656363325246674108306592707952647546349836873 3661072828490918027650096067546838616408299249697492722373700449661260637487427858680733030926350=2*5^2*29*31*149*4327*192582159693032909301316483358561230150217*655978274048454668513898976590839583014997503 42 Pedersen 2016 3738846792883598923469418337351091971600402422441577741375126467885927105876999033968963875973696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*371103886561293968580187175759902011010339983809999 3738858175526618670299271735043606739619872165937329579568128841221409107337507329588519644026304=2^6*151*1451*1811*396735172784553761483623254675179999*371103886561293175111049433918445280361036349433999 42 Pedersen 2016 3809361020178675108257054577253904934086719248755375500078082212655311493935790678306352561431744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*378102863854740916143340476608141244868793290211861 3809372617497053749400596628746803231901265479458204727978979254169159153106310675056516554472256=2^6*151*1451*1811*396735172784553745781446594028145749*378102863854740122674202734766700216396150302870111 42 Pedersen 2016 3830540063072169153125761570853478891113132644384227258914175424124954531937593945596760076603550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*686746211749087435754254506751113668216587391 3830542931323529843307105224049911055685816309712325970437186631524911855583736727767662808772450=2*5^2*29*31*149*4327*192577157177717618315519285816966681021951*686361165553383311252546572586847299430876287 42 Pedersen 2016 3936591662717711144903835471940674335523704097778022253460674930609708012255866234792028123131456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*390731299453063903021595114495545714347936586981439 3936603647380387485370066213826907734647160966375089703644826568464791719068866623633790521348544=2^6*151*1451*1811*396735172784553718872782988625333439*390731299453063109552457372654131594538899002451999 42 Pedersen 2016 4042775805812373552737003273922129731898124680880142195101944255378223629156172468182899714035150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*724796222954999008024906695248961272153677463 4042778832982698117024549930216651887985026184568689319263622691617118714229990139468081567756850=2*5^2*29*31*149*4327*192571484260487377867905269780082853498367*724411182432212113763646375100731787195489943 42 Pedersen 2016 4067816577932167708246957541235917239346567527525542821626010085904731225380660530865273791861150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*729285578270277643501677794694299896733232383 4067819623852649566994097540860753291661645858376460400564033643226598000898866551123473111690850=2*5^2*29*31*149*4327*192570854010339167617098274398032823053567*728900538377740897450668281541452461805489663 42 Pedersen 2016 4103983311032084603169895947254766647706102471987437403646533316123648964975811091959962138561950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*735769616170611779711059583495826561372261119 4103986384033677667514896139454172698880979509441607018995263223040932197138331243361658996798050=2*5^2*29*31*149*4327*192569957318067299195951411072846489979647*735384577174767305528471217206304312777592319 42 Pedersen 2016 4263443247466945161571948438426640948750994524581768555001857110242832591618078899500129615131550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*764357884526840059307799798079007784364273151 4263446439869764195092130149707518532011350070098435315453230420233344728319152349620514423524450=2*5^2*29*31*149*4327*192566185325658683799544261648182693146111*763972849302987993740607838938910199566437887 42 Pedersen 2016 4416383620625285961097809588929798258648928355357053018587470031665785332839599799325486433193150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*791777313683193859357370039817314490598567823 4416386927547579061690374343696751195695663363719636092980604116415635155705912888277639150678850=2*5^2*29*31*149*4327*192562823648328211683057976560545514925967*791392281821019124262294566962304542978952703 42 Pedersen 2016 4418935336016771080972640299708550432402510738225876348882886528086812931352614477141990346785950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*792234789874464601852409133893859814951747199 4418938644849750670470198196814255084904188167120423615500959958272590500211116535557144014814050=2*5^2*29*31*149*4327*192562769535853644465143879108105572318847*791849758066402341324551575136302307274739199 42 Pedersen 2016 4449944558756280803022519972911603171508840058429006150914883618218592802379265666043786970070150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*797794179906940224674670765885683974844842163 4449947890808504637993450386828759660186087991457136352057300051848256183780281975867222113321850=2*5^2*29*31*149*4327*192562116907645820508140407279633358782643*797409148751506171970770210599954939381370367 42 Pedersen 2016 4542061316096609348221161131210179881135792906076665580472124263207602301103652129830457668093632=2^6*151*1451*1811*328481*9085995379*132928044795118424699*450827942618946076736481714250613904756107041433933 4542075144066943231533171723259375380587454211536107929927980077678518047619138149161615596034368=2^6*151*1451*1811*396735172784553611475837258189185933*450827942618945283267343972409307181892799893051999 42 Pedersen 2016 4700727489045612586122555759608209116298650519516791908885244340541071389211415627681434616594496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*466576550868755873706117174557817842567220220150199 4700741800063395598795622436897161618075887646555199333472032692559454046391529995422922861805504=2^6*151*1451*1811*396735172784553587906943986024906999*466576550868755080236979432716534688597185236047199 42 Pedersen 2016 4859029061930858672442841201512866813090577177863436680378605922858904686836110162301237447345150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*871135596055733000516264584874435810911247663 4859032700299467024403795170845560818372316905099004507688781262542734295601650167073908340046850=2*5^2*29*31*149*4327*192554287526495733949119268916246057508143*870750572729680097898923050727070162749050367 42 Pedersen 2016 4889253466186176554280514541623849964468552381419901608624282021466652003901895060263818610971550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*876554282398375095845520856226300853107645951 4889257127186368757067340818996616678590289375562704483890970082897912727135081005680778426084450=2*5^2*29*31*149*4327*192553761077950080455308141436497291365887*876169259598770738881673133206414953711590911 42 Pedersen 2016 5068275664855429098098478583046346490018070626770239792355984031968106069549896370161840461211550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*908649708821483467514618175023093443429066751 5068279459904777939912830546101511823580703841375264838605232525802211105295477414092744518244450=2*5^2*29*31*149*4327*192550771688905980703351488271882074803711*908264689011268154650522408656372159249573887 42 Pedersen 2016 5145063103327607367297392362715785271463982518721647158355413285320053674034046421481338106641950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*922416300897899778678669004811587653984294719 5145066955874246736102734183037688953897842254786609530279300807958943308707421358251694689518050=2*5^2*29*31*149*4327*192549553251173015121956579563739652003647*922031282306122198780154633353574512227601919 42 Pedersen 2016 5226567155090523264964396356218254852476143867618467963069297595630943548632946690673107164481950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*937028496011059067525015246741826899469707519 5226571068666182960280831579730288447231766317384071201920208193937177166692978567558763750078050=2*5^2*29*31*149*4327*192548299164117687622841432293219729755647*936643478673368542953999990431084277635262719 42 Pedersen 2016 5230019654262548102344119492131752587845782722702430071819284807488387164107107224652380857045950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*937647466362084018403877358252995560810736399 5230023570423387768340682291304050333073853517616778283239943773762288654984302452661074042154050=2*5^2*29*31*149*4327*192548246904643802560560927820876851440399*937262449076652967717924382446725281854606847 42 Pedersen 2016 5296938380111822535713353305234551791885560939219177917612275115848247998398339506818251953284450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*949644777632914894757947799656121000381949569 5296942346380407666430401157199857223402881300924705993645890196803595563094540505113436023675550=2*5^2*29*31*149*4327*192547247440614315493774676765015114032769*949259761346947873559061610100906583163227647 42 Pedersen 2016 5396381302011368216044938732334355322938283632544561246023905749584592838832856023806041554465950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*967473086115610095336486650242316529077212799 5396385342741332513390876577348045664940719692931686583767304367840531383934513315848226963934050=2*5^2*29*31*149*4327*192545808026288012901080804154176059102847*967088071269057400440193154559712950913420799 42 Pedersen 2016 5694136165748836933034657374135862144941683928506729944495294600523683309767336335948318504443950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1020855121372950211872301282666966329193807559 5694140429433209487413815437227919866970985874377321034876724066535287875666740647561189919236050=2*5^2*29*31*149*4327*192541798902710996699445037214796615401159*1020470110535521093992209422751302130473717247 42 Pedersen 2016 5742065256047826932813392026042409608596013771514318718298840641004792889271398783771514252725150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1029447936133648142904695051342922346246347263 5742069555620788616440508133543367898095559764567162024598084940100068599506997769516357243466850=2*5^2*29*31*149*4327*192541192433649109379878928224000614111743*1029062925902688086911922757536248943527546367 42 Pedersen 2016 5811722336027184152682035311463597174196722470752432847531547510095431646612446657705989692097950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1041936184529348450731865418536677559084394239 5811726687758330098258201521460186484249505393724800485253335037134744993283963316236103394622050=2*5^2*29*31*149*4327*192540328873194269471124584227560153032447*1041551175161948849579001879074000596826672639 42 Pedersen 2016 5990232913233852893807764009308492364882329857618642465590320410456426356942015496823186697249150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1073939886523135187525279444633887294958479343 5990237398631060945512259030967696959282922550263552839896483834404754791201888211744546313182850=2*5^2*29*31*149*4327*192538207555328839530704881626355731933167*1073554879277053451802356324873811537121857023 42 Pedersen 2016 6013494141816445674862088908101482242527541948968089582385734335584421648982744209910078458261150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1078110202026091518014472559519613001088320383 6013498644631315318607754208177099559464169390892878838773607329230432040131195802428068509290850=2*5^2*29*31*149*4327*192537940412004236807068035367983112733567*1077725195047153106894273076605795615870897663 42 Pedersen 2016 6031291665265093880349219209318546776020101868575447944137067512084221540543938866257219479964096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*598643352336555055061202660745369135975036910618849 6031310027087275082597315888783349772526243881833457851657913938729083735158824399811653659235904=2^6*151*1451*1811*396735172784553439062258944337410849*598643352336554261592064918904234826690043614011999 42 Pedersen 2016 6112647398570605035389959738314729175825039752211653472103105732817313451380876415534641812327950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1095886578812995953041393034945709296569030839 6112651975629956898149121376012397689309952195491541991554527929824850928925018188759768919192050=2*5^2*29*31*149*4327*192536824504122847474104707453573632970239*1095501572949965423310526515359806320831371447 42 Pedersen 2016 6163796883686239878377887939397984085650725759330536097832370514864676224968444282104060980383296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*611795322521408614487324867555095612396831852382399 6163815648910775628092197854790912988108906405917338350383622702931407974493704239013716120416704=2^6*151*1451*1811*396735172784553427757866050773594399*611795322521407821018187125713972607504732119591999 42 Pedersen 2016 6565764324207907941203025500250176058391901918385825324591255443344241881506882282110754453531550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1177122208002902175459784515694500748287601151 6565769240554466597616783230847081527559179712965303856228650397518934398682699186937048369124450=2*5^2*29*31*149*4327*192532154108533258576100569970455575194111*1176737206810267235317816000246080890607717887 42 Pedersen 2016 6619134220303090431456993085718773835257790150741838030674884749201459552355510956291434064065650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1186690460354089882246285530651895628731739273 6619139176612232581157323422854626937248922492821371224935616665476870704275075227046264985406350=2*5^2*29*31*149*4327*192531646124136338963157270808910703062153*1186305459669439339023929958502637315923987967 42 Pedersen 2016 6660452627724561919822137687408013155711004026480483947147006458873264852463220397734260499525550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1194098099826588546849523250146611936208810631 6660457614972312296253360331543002622293226602216369348352034141581427803779173274404447984570450=2*5^2*29*31*149*4327*192531258441719416940679020932808095494791*1193713099529620420549190156247229726008626687 42 Pedersen 2016 6696412454382858151495156492629983047457090142044362643003819746840695952079734167449101513334650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1200545043162545378667639829305606833976274253 6696417468556791270972652153671164293393867305297106257654374052635786838587088354782317661577350=2*5^2*29*31*149*4327*192530924933400110225914454785214924803583*1200160043199085571674021499972372216946781517 42 Pedersen 2016 6736382163412074663713572767768673783134188518371737489394688377159488062514390749608250977817150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1207710885526432066500028033229053579894541903 6736387207514730736553103999944245319385665179122668173941213710420640165431041023016687096294850=2*5^2*29*31*149*4327*192530558415890976410367925438977584745983*1207325885929489768640225250425165200205106767 42 Pedersen 2016 7019653452208708022951596517520645390698779347977778756805356642854829062116790772373757567873950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1258496279041504286622960165439025793372188159 7019658708420687104351240690683579762359985651243297348229018219651467113585281849245962132606050=2*5^2*29*31*149*4327*192528080519201492025987773326967501237759*1258111281922458678247541762787249423766261247 42 Pedersen 2016 7056055847275386825734524474156749689322607574863666044307204869415283468321183061399307716891550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1265022566849230666817424452566884049158692351 7056061130744937284326122810171320523110031645331256144226575431015479349912308634536959899364450=2*5^2*29*31*149*4327*192527776524587455779835945690397168229887*1264637570034179672478252201742744249885773311 42 Pedersen 2016 7080150530238995989778417861453661699289882814083609239131937892859846761414135911891023844225950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1269342305574344770051129983942188615014591999 7080155831750286270389587868558565923591158786548746726108625368969742208407920574409263131774050=2*5^2*29*31*149*4327*192527577031145298250701705823020139711999*1268957308958787217869486867357916192770190847 42 Pedersen 2016 7207369992635225633521173969024939007606669382414708472118921284983999021855873151866185849696832=2^6*151*1451*1811*328481*9085995379*132928044795118424699*715376468820033704540671117597341935983037688855983 7207391934941043981670740602339315246178715173372197484019108917031339611354915054407725008031168=2^6*151*1451*1811*396735172784553353255398975999301999*715376468820032911071533375756293433558012730357983 42 Pedersen 2016 7391603121195219143244894317587852127750763682327713049949745033430981288232812017373522807481950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1325180094360472543361637232349577518613767519 7391608655917571856709382645098781113341536287835017145024121668074417921117549991432243787078050=2*5^2*29*31*149*4327*192525115452477736806991777581070628922719*1324795100206493658741437825693547045880155647 42 Pedersen 2016 7722306300870639007093911820232521014389866828377541141024635676618344088710107919344104510241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1384469163816993603185622638429449878738606719 7722312083218608336050672813040572853386985842128563326225574470534735321847613310610971421918050=2*5^2*29*31*149*4327*192522719163611557603457275040192612833919*1384084172059303584744626766275960284021083647 42 Pedersen 2016 7813556915264820555456828464450363930971813812955002952302268911781116053005582425639555531113950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1400828740462361343003435321426565052695068959 7813562765939891178327184740983684750952134443493403700194846097822041344595631193256034991766050=2*5^2*29*31*149*4327*192522093679574531421949986565989905026559*1400443749330155361588620956561549660685353247 42 Pedersen 2016 7970875902461431413699466152955982576962539702490762936312890975407648438970761177658486728667550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1429033175532758936038799967106197852571606271 7970881870934617095882001017996620021136172115188720937803013603155504336105548796781534861348450=2*5^2*29*31*149*4327*192521048966815439152045192515192103673087*1428648185445265713716255507035233258363244031 42 Pedersen 2016 8303002163030046520520891602193010516734300142196520664633241117933986260069998785016560060661150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1488577377528379594913865286207491770604528383 8303008380194430600678299458568454724255473316074651226117462679288841696541203003823322330890850=2*5^2*29*31*149*4327*192518973470139207925463335882246754225663*1488192389516383048822547407993160121745613567 42 Pedersen 2016 8349812684584081629011101139974315760921602276214606727690823230160816793167279833800480941961950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1496969653243530352401895356086324737130889119 8349818936799487218207522939580698664083365097380719360696598431174102933673723565804497377398050=2*5^2*29*31*149*4327*192518694226266526256720780573268017499647*1496584665510777678992246220427302067008700319 42 Pedersen 2016 8352405621007945397461882563349233112058760645175758678734311489222192838313759025708028168681950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1497434519616698244797885479562346756567071519 8352411875164903170807922662308453199377905442776616102208805105322082250548829013753111737878050=2*5^2*29*31*149*4327*192518678849868307154924377522480038366719*1497049531899321969607338140306374874424015647 42 Pedersen 2016 8658882099795634451767876525781416598139697243717418183521299942969699296390906369786134786690150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1552380181933787454990416850135833887046982563 8658888583437615962813142818651242015138429169189522669932537606814524763299002815504339307901850=2*5^2*29*31*149*4327*192516926306304745344905750074651838074367*1551995195968954743361679529507309833104219043 42 Pedersen 2016 8726186921337211095247045902649209140978354261097750343269935354143139195574509934780251214122950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1564446713144808312996054641627918589345094739 8726193455376040776262735114610250979663314240138557447509150526218929973161405124843440336597050=2*5^2*29*31*149*4327*192516557924867788724229867703601024552447*1564061727548357038323937996881765586215853139 42 Pedersen 2016 8815514048142964043682059545993185053818353536836958107418766580511545372016728876972176090821696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*874994806293842766382781984492837482980163600496999 8815540886324629193988176390489744596782162875978096651810587664888760260979782941806589733178304=2^6*151*1451*1811*396735172784553272981676729318107999*874994806293841972913644242651869254277385323192999 42 Pedersen 2016 8915070951803832908006824811452956502170496202916395810820689933304437037750571414131448864789150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1598310186766545459596085515914257881224566143 8915077627276212030618980497759027889384728304135711535622093930510398576740080563440110936042850=2*5^2*29*31*149*4327*192515553819752869927539194603962028871167*1597925202174199299842765561841204517091005823 42 Pedersen 2016 9011138163580360576256663097615024899106349174238070122492688914081097504514114914827655853851550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1615533291779031715723785565442123709201495551 9011144910986437391288934269997143344306849863579043792224736370008548384947815317690786892004450=2*5^2*29*31*149*4327*192515059282609940590181723300659394661887*1615148307681222698899802968840373647702144511 42 Pedersen 2016 9445163123258563503927331981484659720598156329002961702335565382338640483770758370080209328819776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*937491408024053795872778497619840371264903910627519 9445191878360350493993761900375762404966963019601479141329399877383803561412146597765900019020224=2^6*151*1451*1811*396735172784553248998076532482579519*937491408024053002403640755778896126162322468851999 42 Pedersen 2016 9542925242122600446332875076202519765925301727453606480983908514912854084380628830150823582287296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*947194908669751636471494072979968322024366922689649 9542954294853940485066945844269613398296189649574914440271649023152025271184048612308225710512704=2^6*151*1451*1811*396735172784553245558123348083523249*947194908669750843002356331139027516874969879970399 42 Pedersen 2016 9615564520115875947819064052805899693465085143603746781723215314236031582787444626264134763079744=2^6*151*1451*1811*328481*9085995379*132928044795118424699*954404810512110987039806867211725564696115792505111 9615593793992134837831779308962936644738918516539817935258826585763761411716050957876743056824256=2^6*151*1451*1811*396735172784553243047462086176257111*954404810512110193570669125370787270207980657051999 42 Pedersen 2016 9799526587126851159420220689645112152237929327685014093837446064242986383226956174888998639590976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*972664194174892570358564376352340643950075417160319 9799556421062041040207827196712373432534594885192761934876217219955494408301854508270981965849024=2^6*151*1451*1811*396735172784553236855599499126851999*972664194174891776889426634511408541324527331112319 42 Pedersen 2016 10032008611857094822228485897467920948221954843406838630371152810376754763737993133176944742251150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1798556808436461150632358948255806989629416183 10032016123675762067063915028556957998852147166367361084962031155918952166797049257174588567700850=2*5^2*29*31*149*4327*192510389315830937583853643867369135230463*1798171829008618912811382679733490218389496567 42 Pedersen 2016 10169413643156510290750189358556577843733729540889427839489159946227118756563971408584596442395550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1823191033158407501136248527380470665946476031 10169421257862018947221865278298742237690746853411471397743767862527305104825807245098364252900450=2*5^2*29*31*149*4327*192509832371431763490862080502928574770687*1822806054287509662489365250421518335267016191 42 Pedersen 2016 10440062962528655182223111107970978337920075887061210870556292834656777407115033548650495704008650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1871713536964886441438065281741050429402489333 10440070779892344089243017031869675178720536942830798074334486824140416539463509308751448409143350=2*5^2*29*31*149*4327*192508778238282311363298464774155823194613*1871328559148121752243309568397826871474605567 42 Pedersen 2016 10686870416325597972550116263307624648354169888340436381765789855840063070451966339209170723912896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1060738609087696381728691282496964271885073379578549 10686902951713562748837606145701482183453083534551905612945676680042200238086069132083401717687104=2^6*151*1451*1811*396735172784553209983029341248571999*1060738609087695588259553540656059041829683171810549 42 Pedersen 2016 10695273697422119143001215538338856820448184419443399022273455931968474494132751536987988514817950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*1917468183176632626910358835948519612918896639 10695281705883806130697446149659189964784237922271350592993109608773487241757687917359683119102050=2*5^2*29*31*149*4327*192507833123157106196990721836003811479039*1917083206304983062920769430348234207002728447 42 Pedersen 2016 11010781570079572071495505412669345205115815545737277186452363669369465324604015657298043831253696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1092888813339832735957091056921153684467535249098749 11010815091591129906869139070034897145843271923709757277277630618544666317575140976208349128746304=2^6*151*1451*1811*396735172784553201252710132046258749*1092888813339831942487953315080257184731354243643999 42 Pedersen 2016 11050462600014077290506733917223367243129338405087469282582589382391103761495774274359238825221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1096827403297431030930263174909372596968367223471999 11050496242331601088450575691496420167263778463953952668481678431691169279859304733577658198778304=2^6*151*1451*1811*396735172784553200218384611524687999*1096827403297430237461125433068477131557706739587999 42 Pedersen 2016 11337269124671350910566149600794691359015880269977328933458069010202785159524282240536028791233950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2032566294765118640393001217907971339066479359 11337277613849654209446600759124843396392067917519519656842593496580414698262373423557845302846050=2*5^2*29*31*149*4327*192505643840866245288635814902460783349247*2032181320082751367264320167214619476178440959 42 Pedersen 2016 11835148683084949283682677041902296540350386276481097786710642762377528913997665330712374390227950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2121827050433504219211600705794267104553948839 11835157545068052262509760340313464746857043576076520729659883915775480194522628401515062645292050=2*5^2*29*31*149*4327*192504109578233267055523853259462855841447*2121442077285399579061152767062558239593418239 42 Pedersen 2016 11928656552653247560108922838399695623296047130766882628606761539858692587255202755330633019333696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1183993635837189248038289959626430429047974868524999 11928692868567422608517384695881242419949575612280304843700923553565512764311162919614403780666304=2^6*151*1451*1811*396735172784553179088780538096628999*1183993635837188454569152217785556093241387812699999 42 Pedersen 2016 12115469839330006612199814079104777449016826170555417929506815839531635727673806832966360815489950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2172083538801888684206969907395300028649274879 12115478911213417273824334972824578074652561179650168055814953283821189928703384649226608257150050=2*5^2*29*31*149*4327*192503301242914048362196805582612278279679*2171698566462119363275215295711268014266306047 42 Pedersen 2016 12212156623657184691340802419049926914112674689908552858643357510795261553947595293630153574785950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2189417721911733786015043059797273729611507199 12212165767938219745586575982861841438312121794607906676600606479474460826164062173405206066814050=2*5^2*29*31*149*4327*192503031045929241365413735075829338099199*2189032749842161449890285231183748498168718847 42 Pedersen 2016 12338655644044893056803472640924675925472664474826667277862062326226681070736432994800377265820550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2212096697098213274176234306629888319138964531 12338664883046510947617168072935280698638674979613026326454638360528394644542376240901319557475450=2*5^2*29*31*149*4327*192502683932934878385269077457737316443187*2211711725375753932414456622673981179717832191 42 Pedersen 2016 12617101932368179023052862024496134695315414488229132499011781606744774608518078300018501643328150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2262017055724679906304711731818125228304254523 12617111379866231414504363386245738651953872278969393677825100266448105145826085915517697758143850=2*5^2*29*31*149*4327*192501944405620716959852011660102443027967*2261632084741747878704359464928015723756537403 42 Pedersen 2016 12703135464858862527251228021401936850253216463352093811419366012047286496921705917499322173781150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2277441304407248971132094725023940070648198783 12703144976777542968073611300495182665606843106159867162584177566615208828876661507668669068970850=2*5^2*29*31*149*4327*192501722466325984009174924203803145752063*2277056333646256238264693135221286865397757567 42 Pedersen 2016 13074216725485562351246539836581103650988028686012743257537001305217939498814592162987879446610496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1297697634951852871786748343694957191664616380729199 13074256528973106227896594073915698065164606740080551884743435844663729341488302404898321999789504=2^6*151*1451*1811*396735172784553155792660109243601199*1297697634951852078317610601854106151978458177931999 42 Pedersen 2016 13140804710998640406001450009574326715356938069662994320359262787940852858410539629682258546811550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2355907445430849207255237035730210974165818751 13140814550637535255925161323407127923156490335718969848853360342730674142497874949563065888644450=2*5^2*29*31*149*4327*192500638425326355979488618202095573093887*2355522475753897474015865132233559476488035711 42 Pedersen 2016 13260976335498302662964543888113831520864114857226248005303083546380637516398286764256900857136576=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1316234692223179585730555879272371646394472417497969 13261016707561690655070842964302158481192848103279133632742342565777548402417976914075431057103424=2^6*151*1451*1811*396735172784553152376291762622883249*1316234692223178792261418137431524023076660835418719 42 Pedersen 2016 13334790737572691142116019498749902036733681737625033912104725606722676575589838012220706167173150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2390685614223879068375866187686446067278479423 13334800722465434147763837601746309125023732192651306068568522676731055380320788963933572261498850=2*5^2*29*31*149*4327*192500180716137485906381727546068017171967*2390300645004636524006567391080450597156618303 42 Pedersen 2016 13502599438546339014023272150959097771194885262855703304544514719969857067756440924562638097025950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2420770664319859976487033593133361074351167999 13502609549091738558470230771746672806943553699863979087578287423959667192326473436261268206974050=2*5^2*29*31*149*4327*192499795383865581148374099097894419647999*2420385695485949704022492804155813777826830847 42 Pedersen 2016 13832729783581179951796388407701174461267667866926231076355138761206713484840272153801360060699550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2479957034936818262138092012410292615059635711 13832740141323266062646606897817596523003597269903529562180051500967477827190725682737359441636450=2*5^2*29*31*149*4327*192499064613567138731437268672236789759487*2479572066833678288115968160263170976165187071 42 Pedersen 2016 14134261386886816561181451562550824087299085695755622107138860548305057905303558828604991120027550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2534016170955016109111510780699806461220457471 14134271970411277280285353494610121434387377371701565542260538683923505710405878540655624543588450=2*5^2*29*31*149*4327*192498426984784092882741846368561266265087*2533631203489504918135235623974988497849503231 42 Pedersen 2016 14167838586088632858506850726833554351574913333929944783676658729985459710263962274362608605491550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2540035952493209456554526983202014004126704351 14167849194755200359685252314295970054805176021838536810892316398978233708127175614284175746764450=2*5^2*29*31*149*4327*192498357661130438424111149850557808665311*2539650985097021919232710457173714044213349887 42 Pedersen 2016 14846073982224952330546401583615454309659437830018345757005593765810189594638466071341563031835550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2661631231827580334874343840172376765563960831 14846085098744085215425163788859387404873264974238203769955155483488646404958014572319208197860450=2*5^2*29*31*149*4327*192497024525980143844009534170199713172991*2661246265764527947847107415759757163746098687 42 Pedersen 2016 15148548788862168098261675961532201202191670998630249129679044422347214109609460399180625277906496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1503588042711530393112661679697406041451328647003199 15148594907500529807807735310872756443471040569063255278217842037786740309350399533255737576493504=2^6*151*1451*1811*396735172784553122575348435043831999*1503588042711529599643523937856588219076844643975199 42 Pedersen 2016 15263067900811771339567090063651358380329503523853069606354184760728614399484471535020930133373150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2736390662403077753812121815379722646935883423 15263079329569741227216631351970417165951650588709108715493831942045288488065536036699006407298850=2*5^2*29*31*149*4327*192496263712626278804300497217135419411967*2736005697100838720649925100004056109411782303 42 Pedersen 2016 15411510913434580398847719895954186392148391621024984594697938470432861312890107261169688684182550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2763003796556692646304323045431039166707192571 15411522453344467752371343978877138776882230126947729440426201331684890682961125662684746832233450=2*5^2*29*31*149*4327*192496002814410215257603178447304304184831*2762618831515351829205673027374142460298318587 42 Pedersen 2016 15542917666611903553017047265841600727771148828237744738464189222598719049118328451753237801521650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*2786562639032392348525830183753378508471678793 15542929304917210977528931220337379894697822347875832518224615785919926202602928657040605058510350=2*5^2*29*31*149*4327*192495776017740083463720074400612343494473*2786177674217848201558974048800528494023495167 42 Pedersen 2016 15628783103479966802262030093809780596246071927358822771109392468888360039251746431605301617530176=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1551254296636129953828470086066381146316215544647619 15628830684156243392845094063764624248298262873366029001749895190500384461772074076130007909509824=2^6*151*1451*1811*396735172784553116142106182503914499*1551254296636129160359332344225569757183984081537119 42 Pedersen 2016 16028556002203378366690187141200554054947106182165200389793090325191186363406138996073175980120896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1590934252696514955325912391364012042537610732824299 16028604799958729659991701218626069083225258629218539504604546152837998303643381441554936045479104=2^6*151*1451*1811*396735172784553111080752376068168799*1590934252696514161856774649523205714759185705459499 42 Pedersen 2016 16211839168041668012629360783557175394351110520415274862072666959675863856768499360672252833295936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1609126251179391822149311864645822143477280105258559 16211888523789085800124647073739802240422934122622568839651626650789017751763905253531606602224064=2^6*151*1451*1811*396735172784553108843737855645651999*1609126251179391028680174122805018052713375500410559 42 Pedersen 2016 16690129073949963767861478185257854202180634756087657887764840722313290435957707368823515474833216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1656599510400241124358945748211682293173400194276379 16690179885815687677114038411361860873180669407500586810492731732673136306168533239176565206126784=2^6*151*1451*1811*396735172784553103237491936048251999*1656599510400240330889808006370883808655415186828379 42 Pedersen 2016 16865684036943234976710477462328262845134697042500175949483304097501484550741643773712482845612096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1674024436502035357331395066684717439798777824224599 16865735383273082396113980639308632918990166073281249587144210000024663495089308104463070997587904=2^6*151*1451*1811*396735172784553101259509790042216599*1674024436502034563862257324843920933262938822811999 42 Pedersen 2016 17358384516760165526255828855287788152492154359479122208600407587751643792818361368139838460370496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1722928035151408989126317717564762115176301872419199 17358437363080247391379457311474820218428188601992906353040078476541123598807670644621775466029504=2^6*151*1451*1811*396735172784553095921951490676291199*1722928035151408195657179975723970946198762236931999 42 Pedersen 2016 17434913372232480146421658100209774263860493680257316928655291000608906493010254604131676643675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3125763081290237174538723061457537031734053631 17434926427235999236121570695765499463406981651144554118392338981410143233516878845389939744420450=2*5^2*29*31*149*4327*192492889634305896686633243293852828257791*3125378119362076461758644013335793776801106687 42 Pedersen 2016 18320358985480162087598562977105293153892325335889529688424773650296786570114448499770873939841950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3284507386426156782723415459237008305231838719 18320372703492171676662044410678008423278764683694014633820807797123754129125878279449818888318050=2*5^2*29*31*149*4327*192491743644676590279357968326862759185919*3284122425643985699249743686390232040367963647 42 Pedersen 2016 18356391517971906074084864340340592777066104019722507342436028438779962890800930332587037609119050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3290967364596593915080254007633857018101022901 18356405262964539451656334792670486571434379575400401400062656968601196498215846420188755997536950=2*5^2*29*31*149*4327*192491699350968713501306084444778027335861*3290582403858716539483360286670962837968997887 42 Pedersen 2016 18879373103342308263475463532529583924502389424331103513299546649494787576720462692446504619649950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3384728457459203406386824189891003160081902079 18879387239935765325292738714025170687445596012906197521490772262043313911655755294442639454590050=2*5^2*29*31*149*4327*192491075504392109512101648856897857474047*3384343497345172607393919673363696860119738879 42 Pedersen 2016 18973582957328455736203670280037839491767745385251653997190998600548539657716781122325368263401536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*1883246564384413305339556639492567383158405115579959 18973640721000938891068640324544397015010560471260524871662591750261216806871715919167557360918464=2^6*151*1451*1811*396735172784553080368021403329731959*1883246564384412511870418897651791768110952826651999 42 Pedersen 2016 19362567422734296215128789027223255483336528697794861121125369142659944685111394391986031821087550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3471356416680961447241412607522295966393982671 19362581921136464647607974903288001494388329761649354689854740057437414985483469818029798588128450=2*5^2*29*31*149*4327*192490529075534228053619185365629550546431*3470971457113359506129966573458480934738747087 42 Pedersen 2016 20085839476224307785495102764141406199516040927673130318803697795204718767835203065568851265059550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3601025950120035320147219109057014733803946911 20085854516201820011166793596943879307283006542242734854620123240109610425201536264870777190876450=2*5^2*29*31*149*4327*192489760287487201589853189909497622646271*3600640991321221426062236840988655834076611487 42 Pedersen 2016 21870771976979834701454512192712371687389570106772698574707623877093936964028869023986855687665950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*3921031905661085276272538656104944826610756799 21870788353488225010703608575592015123044533484567251997171043550815710557449601131313280862734050=2*5^2*29*31*149*4327*192488080643348517614914322069677416262847*3920646948541915520871531326904425747089804799 42 Pedersen 2016 22445495186680445178280006276628997944529286584894794504472417784527111183929148958738743242766656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2227855528989378008428600912677685966933134275842739 22445563520333377338784218902416205773670480670563293667844393857209023464491223831657544931313344=2^6*151*1451*1811*396735172784553054511916160019451999*2227855528989377214959463170836936207990925297194739 42 Pedersen 2016 23249093733085331561903052361380250283960712793698139735048063428135179127651961056071907350561950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4168139944995267803834705813118920684177301119 23249111141660528985496183640189854144199301332674492918912283428849002080665586876129462904798050=2*5^2*29*31*149*4327*192486960120866344303074200210989023579647*4167754988996620530607010324040260293049032319 42 Pedersen 2016 24594247281239815948003841117367694663880129339737473226353375397224937516611702133181793253045150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4409301527488950598589258413184838922552241663 24594265697045960262396847937985773082739101506365101897782224379342697569598655558846094166346850=2*5^2*29*31*149*4327*192485987675259725139336753591515077062143*4408916572462748931980726661552798005370490367 42 Pedersen 2016 24744967549165930108899276285957731986010273518446947649032480968919746462751793275948386144117150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4436322932128444712418671903392215847957787903 24744986077829166750881610230417452423251731886931862906118678333886782013378358817372577017994850=2*5^2*29*31*149*4327*192485885303394409268584916400710463081983*4435937977204614911126010903597365735390016767 42 Pedersen 2016 25117094084890777522286008711641079446285832119970818013788298569389826435813914441723004613813150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4503038456438974710190658916875482364905588223 25117112892196822976370709678912161690280742324114494216087349382985535111147791554078898621258850=2*5^2*29*31*149*4327*192485637810600772025914660775108245999103*4502653501762637702535240587336257854554899967 42 Pedersen 2016 25955975694694609046325847719055865213032006596073205903102687254284781907777831211892648701398650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4653434682076336868793543295063281328604413133 25955995130142712580871110177696482578979706191301706804467993908253796853516103983712240538153350=2*5^2*29*31*149*4327*192485105923468537165814145565289146842317*4653049727931886993372985066039266637352881663 42 Pedersen 2016 26008167262170076355792236874267120051450751249565614590170194348260698941913585267367396234369950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4662791681522591915298395813237572491145044479 26008186736698448459047188688678604090570690606126708418042297665970787714026127265708656307070050=2*5^2*29*31*149*4327*192485073965667782863708088286162593730047*4662406727410099840632139690270836926446625279 42 Pedersen 2016 26482647277413247110555402508410588779408246316905934380638480335385682366520075125872787175563456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*2628568078741785013696178641332500256542765244833189 26482727901877654269819185840869943571847260741742682344861786747307824227536574808326034604916544=2^6*151*1451*1811*396735172784553032971334105538185189*2628568078741784220227040899491772038182610747451999 42 Pedersen 2016 27826297053188699557605349272614773228224156251232913447255064733696253611346086693642484357253050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*4988749307834115865924836816243933589495651181 27826317889105586370220956022810370158206265587663743788136668340009921966373242669693223397242950=2*5^2*29*31*149*4327*192484035529641770440799592247600923843437*4988364354760059817271003601773236586467118591 42 Pedersen 2016 27971035990087669630436231798588440738816230690824458159372698177733318432953447254930701391975950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5014698368533467487529157776230589233194146999 27971056934382917162340217763961792227594370598032410039919383278919967855846855424145736624024050=2*5^2*29*31*149*4327*192483958663043002501672611912772992191999*5014313415536278037643263688740227058097265847 42 Pedersen 2016 28846450206091125278052266259113807284433826356823643889816337217881669384382857991934112722869150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5171644226468054992074982765628311786770399743 28846471805883502425053378832468814787169506220737751142950684115455466089539196566979265138762850=2*5^2*29*31*149*4327*192483510199500810795034116733651284263423*5171259273919329084380795316633128733381447167 42 Pedersen 2016 29039018273890250198137830590975496543651939094461290000359717528892532280136167131465213804329950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5206168181024694464961062868032506131143707679 29039040017874729084269852954706542648166721234581492823946307249739525469422901322878499946710050=2*5^2*29*31*149*4327*192483415177842959037939447899164879080479*5205783228570990215118632513706157564159938047 42 Pedersen 2016 29183380612872696949596388574840834972236418929019149103772716358096724988670820224324539272951150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5232049724562427480265794114221286679584910183 29183402464953545642843747882501288938809685793106193646732943832471898271942108886139191669000850=2*5^2*29*31*149*4327*192483344765554651437729054992110459759463*5231664772179135518730963970287845167020461567 42 Pedersen 2016 29334202344114806919052496229417292920889248054076901951909617809010353356096690328810244601761150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5259089319730344298473823691118460144951590383 29334224309128722160070477433892011974956249958154185017861275088924004822001417091681952925790850=2*5^2*29*31*149*4327*192483271943046621407122090603193143217663*5258704367419874844969024154149407549703683567 42 Pedersen 2016 30939405093749851433710627853612658684266737443630916832750477635648540860996187204176736954241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5546872997553822152159350471473457972357086719 30939428260715683379585448844433459837118518633264925030265046808600214454255355131350752417918050=2*5^2*29*31*149*4327*192482540883883073421329526191413028113919*5546488045974411862202536727068817157224283647 42 Pedersen 2016 31076022288743468506072180383472519440593749356029480016695790715332385473833836944295425253505950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5571365977545371004492395580162681965453529599 31076045558006221769053538095102075797464632590549803881630909351014908630235569250670827495294050=2*5^2*29*31*149*4327*192482482151965521517869495292673651854847*5570981026024692632087485295788939889696985599 42 Pedersen 2016 31905661081551279863013471327930892933509006641884176652869993528092732803232636617132258084613696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3166836055761250637627467624539211191047132727719999 31905758215980829523974339456621307528979300537331833402583596159978808005500304333948968155386304=2^6*151*1451*1811*396735172784553012615707442515063999*3166836055761249844158329882698503328313641253459999 42 Pedersen 2016 32516916277121491553379787690630939465764467910992696547394313482595438382778968678103171535643550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*5829692080851289559572946061401402915932104191 32516940625304207726484664582444684134917040704524366076328177026046386903657051734154573180132450=2*5^2*29*31*149*4327*192481892764007967339206609808073211530751*5829307129919999144722214439913145440615884287 42 Pedersen 2016 32871021821407044388691813815768185977872502356845686172804956713746091025871538545034755563016896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3262654136131925452671050440457349507244333482779549 32871121894806093407513259185447347493451448732691838388334980492167781733198683449313914670583104=2^6*151*1451*1811*396735172784553009696388191569411549*3262654136131924659201912698616644563830092954171999 42 Pedersen 2016 34360617846882514673101934323415080806142820753058722169258934384714392720657845341422790134899950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6160234262314272873326225778004853764522807079 34360643575601512702096574435474009756283766737274588388116206994839937725761179414413717779340050=2*5^2*29*31*149*4327*192481210708044148954664122315254556299047*6159849312065038422293878699004089107861818879 42 Pedersen 2016 34546143274761504708393272977422169570875013337629554245430473452563517582608415872462473335479550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6193495599535959698884705028487845683561083311 34546169142399180572533591322653164370421617570321426516977929122330608091286749729252389219656450=2*5^2*29*31*149*4327*192481146106918869909206118537427424988671*6193110649351326373131403407490858854031405487 42 Pedersen 2016 34587980229207649738806429808855208167392281699285977710316658410008850209131050128147860927076416=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3433072977420545404360131438007748427818419880014679 34588085529759807289838779672574694124969033155428192862292195480658621062992312497777176067483584=2^6*151*1451*1811*396735172784553004906842961124566679*3433072977420544610890993696167048273949409796251999 42 Pedersen 2016 34910135218086750076872464176224574111104173483972613685224026326653279163626559473367731016117150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6258752739278630819042745605679730332500027903 34910161358276173092189509483794126601503586326170514463924536643520918177963186426270062865994850=2*5^2*29*31*149*4327*192481021357881047245492801281936354921983*6258367789218746531112107697999998994040416767 42 Pedersen 2016 36504020038978303012705747739561070933618844722830731654532977729058824211094629293069888953052736=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3623251890759664089593871568065301032869835860957759 36504131172772199100513125999991908993741174500050509048213864416504707234024951692638870168867264=2^6*151*1451*1811*396735172784553000093890823665609759*3623251890759663296124733826224605691952963236151999 42 Pedersen 2016 36525372005718629873339891894729046511937703298181938429511483682231007802551817384929977784165150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6548335337742386859263404856622793041535472063 36525399355373307834011784622837553080181420388913102552003126162082506001194566676874538166426850=2*5^2*29*31*149*4327*192480497776301922843561598329741021188543*6547950388206084150457168880146013898409594367 42 Pedersen 2016 36708569360281333704726027617468872053473859406707821104748078115449576028278757692320446209749150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6581179293732104159394635123248151827678729343 36708596847111462867412154397826433232784820765187754109549803463425950141794964188261878800682850=2*5^2*29*31*149*4327*192480441302182486359308491047070945857023*6580794344252275570024883399878655354628183167 42 Pedersen 2016 36873370041025580408283148490462061129325531675130765325734807831086147833807442907550886439621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3659912184388719946793126040470408078246065097696999 36873482299278288408100203695113306207546139932916898286561816530834614579999449346594381784378304=2^6*151*1451*1811*396735172784552999223613854307547999*3659912184388719153323988298629713607606161830952999 42 Pedersen 2016 37287920443541120103896508585612813878087997818247951033809261463778636420647102466564302933040150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6685046413028669118366306582015393564652749563 37287948364180713602135577515781285638132912566806645264979751390214040419711795680407808537551850=2*5^2*29*31*149*4327*192480266358689083078790456029870531628543*6684661463723784022399835376680914292016431867 42 Pedersen 2016 38027511425706691656323977490982620599911824664351351541173460353285870412639340299976660560641950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6817641633776377002560401540397284907586974719 38027539900140999743512472243880853470084895687457130466654636797979577164122742240688683275518050=2*5^2*29*31*149*4327*192480050775044203071422869047417424081919*6817256684687075551473937702649788088058203647 42 Pedersen 2016 38329977861529531957979397118010802015056673948397550081382535790139568851296858219066266809121856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3804489604467409180749863204723411321992417992884039 38330094554317207297425556568757102591503895796627844890815476023790085259695369818675277454558144=2^6*151*1451*1811*396735172784552995954996004647076999*3804489604467408387280725462882720119970364386611039 42 Pedersen 2016 38430870798392485688221749516351508909290715832572424291705843743934837777461462175933457824942650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*6889956638085010563113665575415529078764093613 38430899574856285832277288143661168880148922713785562236917388491661942078681415207551750964049350=2*5^2*29*31*149*4327*192479936696708024383802547944792000122367*6889571689109787448205889357989134884659282093 42 Pedersen 2016 38528446720611322240606689870233804127762098030028457724737889128395448292171892275757214364933696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3824188877812020698212972475741652192586501546799999 38528564017622785985706752491613728861954661654818666488955732877226386381105207313761531235066304=2^6*151*1451*1811*396735172784552995528764826186703999*3824188877812019904743834733900961416795626400899999 42 Pedersen 2016 39499168484341516989989689554868897017229106515782117442842088990324342641540031559838768236293696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*3920539073272175961295880278324032432226376041639999 39499288736643721471208403763364306756246710967349787558795468674085674208584059484480074643706304=2^6*151*1451*1811*396735172784552993505753922160723999*3920539073272175167826742536483343679446404921719999 42 Pedersen 2016 39647706747758255299823474236073046395884120228415507934682074589773771892020419483694453085755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7108113207338285197265062503543936955077167231 39647736435370695070922764988349061906146238318809550626999837147766678360298938672823161203140450=2*5^2*29*31*149*4327*192479606615053917687228382967474103602687*7107728258693143736463982860282520078868875391 42 Pedersen 2016 40325696791074801557193680235629088461583558812193512620331958683945184875252228669551645722992704=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4002577167896824183514234067537555638996406715255351 40325819559681412832459071446082233981164472585454928636634764930761325387839524009343130510991296=2^6*151*1451*1811*396735172784552991860015497697051999*4002577167896823390045096325696868531954860059007351 42 Pedersen 2016 40424687726297137822787952186797875877462594862428935404601185436684121016045990660413159902640950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7247411774857959646370014224648907834225596299 40424717995701364712588098715022587955963002429327592083138093953289793102806641326354951303759050=2*5^2*29*31*149*4327*192479406245607555129291642977797010364299*7247026826413187631931492518127480635110542847 42 Pedersen 2016 40586007261273544032214831868129452165464121613248666827058420256770758322225725769868868482869150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7276333435433758230247814771846888147869599743 40586037651471436588805012685701500071469042919864570419273804350523145610097611322771126978762850=2*5^2*29*31*149*4327*192479365606047223295817443425440453447167*7275948487029625776141126539525013305311463423 42 Pedersen 2016 40967735219655157912658876713850539463645495442319693345292011892578915016071564211307497889709150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7344770320317044623886338298262995669983592543 40967765895685261597051236111891171747822737146546519319590822707881571118168829259786801930322850=2*5^2*29*31*149*4327*192479270716086249580828668966005592195167*7344385372007802130753365054715580262286708223 42 Pedersen 2016 42195963048475090516741634367852540953590863539765018815018601160851096074009626889046803932459550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7564969246504598188685009846060267665337454911 42195994644183903533026546373722221961804616466352234494817380335192048164264322814677254347476450=2*5^2*29*31*149*4327*192478977053011255900846561271744966791487*7564584298489018770545716584620546518265974271 42 Pedersen 2016 42374462445246648589220834720209132562521271566744397466558568542597229786855552313472358710533696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4205929949926728245658968323338206072870849053199999 42374591451169032456041161351623029192732795016115774226815817054885769473052208254244095689466304=2^6*151*1451*1811*396735172784552988057428896431599999*4205929949926727452189830581497522768415903662403999 42 Pedersen 2016 42443295199467303431169371974287128930068127018442701869055889064421455888132715885500744914877150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7609311405819185516672801089662301929675187103 42443326980374748218683574762902345538881165969264354586593073454354762287586833490050431264834850=2*5^2*29*31*149*4327*192478919973182976255997257680650101149183*7608926457860685926813152677526171877469348767 42 Pedersen 2016 42522859531868385491172996355032462784883573006706949879782317191930273959952466534289572294728150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*7623575844505923989321312619266613537103042523 42522891372352417630388240487161851485516811321460115924873378061441718977731521811233940770743850=2*5^2*29*31*149*4327*192478901752330445374150987342038540307967*7623190896565645251992546053400822096458045403 42 Pedersen 2016 44629213119243850862399654120567557367457489784755762283128027318502166993089819186298027430541150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8001206758924308962187943169243964980637717983 44629246536934084635459471599659347775541334987226456986674174375735900862489031100684320189810850=2*5^2*29*31*149*4327*192478443008964292459782120625569639159263*8000821811442773591012090972244890008893869567 42 Pedersen 2016 44644474802414166861016371691838754931139632735093484619236285589889840131137581013074528802485150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8003942901329702164768795328981185246412926463 44644508231532121738387890689035981973565228092516133975883968468860990859431758819674618751306850=2*5^2*29*31*149*4327*192478439843086591468803474344690479738367*8003557953851332671293934110628391153828498943 42 Pedersen 2016 46879267278666662353021232862944014517285319828557896461919396495009377325612923117917158465679936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4653059954040356544944376392255953979236858005904559 46879409999134769261584870377528871971965781205506825995290030705278107255658677596019532201840064=2^6*151*1451*1811*396735172784552980865193812116901999*4653059954040355751475238650415277867016996929806559 42 Pedersen 2016 47915502610739982530629667929790135923786697969523909974307968112315950394826099815648651542523550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8590378735156236775880926269648785755738833791 47915538489154853144026162471727050300257218269852360677300460989030433583217196925468875522052450=2*5^2*29*31*149*4327*192477807843246308652104806182483458084351*8589993788309867122688881749964153870176060287 42 Pedersen 2016 48227468365045719648710297235174395332516833619162155805003853391746739646587810773419416722715550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8646308524803988365729414417121595772629970431 48227504477055901769833192604498011455503572985319912492460021619582780728234028442017652695780450=2*5^2*29*31*149*4327*192477752046280851464773024916423207726591*8645923578013415677994557229218229947317554687 42 Pedersen 2016 48475976252694527585870836828691010518429908069306930083860879211918166180676357725684226027525950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8690861472331630850366430502122208474530977999 48476012550783715579411078502920795536028114582095118450222551630545251139402270152765351956474050=2*5^2*29*31*149*4327*192477708113066222786221065887063866480847*8690476525584991377260251866177872008559807999 42 Pedersen 2016 48523254176758753541721747948836081422040585350788803892739066644950370881349430133839323018537550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*8699337544821635893229778214713739025701011671 48523290510248947084089297576011765273047243035491077358632302991078480985355675073045717502678450=2*5^2*29*31*149*4327*192477699805848896311163603810797194137087*8698952598083303637450074636231478826402185431 42 Pedersen 2016 48828389643215681951774871737304779623615007896070523471133002481163831256581836909956381372287936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*4846522517482227881469813277014855157662261997062809 48828538297642922915996248023041642179346035680543399203277559236289183146695899735893148079232064=2^6*151*1451*1811*396735172784552978164602918047214809*4846522517482227088000675535174181746033294990651999 42 Pedersen 2016 51023650837703434121658919240111174106667774159520574946087662400190847757292777026482959251805550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9147613220444422119683640739539285906705808231 51023689043453415300307531301384974257763387461222668955850333281137907581114248058299002685090450=2*5^2*29*31*149*4327*192477282398897928548731043808641899756391*9147228274123496814871699593617027862701362687 42 Pedersen 2016 51936121070329544759550114292181599753126939752670424084691942970123776351254238831683025885655616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5154984263811542220342646485194574462781752633474479 51936279186015669991395754426895302587755215900117076809598701926383650560197268425148538750504384=2^6*151*1451*1811*396735172784552974277961464200026479*5154984263811541426873508743353904937794239474251999 42 Pedersen 2016 54231753657276750426544626189916748484900356517012530102980459370068289942928679848304310405108050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9722767747473848129031917782456208073352140281 54231794265206352745944261607771553962267083190432595007176514802338140773350030557493416114187950=2*5^2*29*31*149*4327*192476803225960901455905627622088403144191*9722382801632095761247069461950136582844306937 42 Pedersen 2016 55627748831842467397844893129983708959534952440737185713043482468183452292605447179233756919050050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9973044309516674072619951731574141184160951921 55627790485072469409110769972510072467637830275412887020506369293307073609583312002321054354165950=2*5^2*29*31*149*4327*192476611974088501550889976705322101108337*9972659363866173577235008426718986459955154431 42 Pedersen 2016 55719771823961306792533278573809093526180333883326324117647717457693465695076443670728932033717150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*9989542359449806551888480636342277696844219903 55719813546096755036869941101970769566511533367878256143652731690024435804536906869404297624394850=2*5^2*29*31*149*4327*192476599703602655321823671209930034793983*9989157413811576542349766397792618364704736767 42 Pedersen 2016 56065630275015340567586073531252726397374479267548734917591129651519524465812377315349044666139550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10051548493611544450236231916963973596531840511 56065672256124446966621678220692200173564571349348748382291934379108598764058861204143961530596450=2*5^2*29*31*149*4327*192476553946514369513167089980023117567487*10051163548019071528983326334995544171309583871 42 Pedersen 2016 56243044975887639786476503955171565714246737301289459786474566833409995112718930728622268677709950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10083355724896558556568967782907941506491367279 56243087089842232410577180181455889817853836942691840631244296686794491400444490906064834462130050=2*5^2*29*31*149*4327*192476530692932315904649115302116525166079*10082970779327339217369670718914189987861512047 42 Pedersen 2016 56409865834650347567334238551333154949629918039200340546995035672541997679178508098055323898635584=2^6*151*1451*1811*328481*9085995379*132928044795118424699*5599031362152856251839006638601660696459708937469571 56410037570322108650959883227186787280363083063850453072009339182929509966935364944350531769588416=2^6*151*1451*1811*396735172784552969434904952972159071*5599031362152855458369868896760996014528707006114499 42 Pedersen 2016 56745249752168227413962524506605233659905092988597902233340178652983437629663293668384193042101150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10173391913515973520414950667578342817162653183 56745292242166278452288598037160885828109196304659708984647924803313842941722400722469165803850850=2*5^2*29*31*149*4327*192476465657804813304302963031675072941567*10173006968011789308718253949736861739985022463 42 Pedersen 2016 57544635576739258443066219121763187373166683165781005532459996817099721489666879864807230922958050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10316707262712396528750728078866448721140937281 57544678665305511690299509109017672351794593524267585171956950129400571409623834427070888812337950=2*5^2*29*31*149*4327*192476364479588604129842201727683339570687*10316322317309390533263205821786271635696677441 42 Pedersen 2016 58412033270412054029226724003899205838585059471069621190002016857307196142292480294392287624445150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10472215903896516896941160881853027936273429663 58412077008472784340136550282765931052520741493451331075867061007510484759924593968007220658946850=2*5^2*29*31*149*4327*192476257826036729406980412580063523370143*10471830958600164453328361486561998470645370367 42 Pedersen 2016 59512294688677195284161247775256947631781918234047629071982613181680759341876243793408560014209950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10669472778511021638405988593760091589409697279 59512339250597292183411835732421350494497318052763136395874875458396210090138883465188697365630050=2*5^2*29*31*149*4327*192476127013222584551166752731937152962047*10669087833345482008938045012128910250152046079 42 Pedersen 2016 61279535731427136259397402424268455841008045798565499752173345093433023772178145159334225092723550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*10986306977180819858576965971999812218733517791 61279581616631010921750547964273500500336753989864016108769111370875382756050329723296259923852450=2*5^2*29*31*149*4327*192475926733984544995424280203905251728351*10985922032215559467148578132841158911377100287 42 Pedersen 2016 62056322339334589038415948362548992170290473788258479532215307969028032132635482772281935195521950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11125570697579040995296026982086012512441464319 62056368806184708984925229196879434980189943912568846707187508746997817364507173949657880269438050=2*5^2*29*31*149*4327*192475842310831301828949216733118932907519*11125185752698203757110805617990829991403867647 42 Pedersen 2016 62184405212419025105010476816209272600266333748032884069855486527319873611372450917028732504428096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6172190446999558795470713105110810946251721820753599 62184594528249584275602553044003334237881152106860090196095068358075150356923928172726207706771904=2^6*151*1451*1811*396735172784552964213904792151411999*6172190446999558002001575363270151485320880710145599 42 Pedersen 2016 62467525879326698422947235740909759797634285169577077177694375007086066083837186770727161915085150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*11199292018514896480635435038692670684947018463 62467572654079906101961988640021201792307162111700161203998172082200349417968983971775968614706850=2*5^2*29*31*149*4327*192475798470138230295967616945708633158367*11198907073677899935521746656197275574209170943 42 Pedersen 2016 66368008709583991473543128225749890924027989787734461037419877725126189207556218810737430506245696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6587439213165751317422812644431859103626909765527999 66368210762086519934906044886876642608814903187805278996883850163075326585120844802432360469754304=2^6*151*1451*1811*396735172784552960998888662218375999*6587439213165750523953674902591202857712198587955999 42 Pedersen 2016 68191967327889590014831805240669636291674359625967246238032267929365142383710416463180269296527936=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6768478493370686019258593309287657330343553179716559 68192174933299468004399363018909038721718173935772030293799671937461258212641598524834471674992064=2^6*151*1451*1811*396735172784552959720697282079868559*6768478493370685225789455567447002362620222140651999 42 Pedersen 2016 68526124570235094239556530674680492579105275894990832050018169267256527060868520979982342816693150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12285488646400401836337749925541187708682637823 68526175881576786294476888756097793330028851199394139037287385532042400128957563891401175727178850=2*5^2*29*31*149*4327*192475213517791251904667228352702857875967*12285103702148357638202452843434385603720072703 42 Pedersen 2016 68808376887477636626494660538473768672592653053647105451936603387409043861685936851867061821893184=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6829660990527846567624256526873787847565207225291471 68808586369500908913156691542637518796233811664896048407226078957361879257465206579614161731130816=2^6*151*1451*1811*396735172784552959304050777399043471*6829660990527845774155118785033133296488380867051999 42 Pedersen 2016 69305388646592226744229257989911446363204326857405805839533037945412093686716294957085130955238976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*6878992510563691014896856280533708614368097884672319 69305599641731104994130962539031519054011286904368586127990473135398795041260055248681130354201024=2^6*151*1451*1811*396735172784552958973505270459351999*6878992510563690221427718538693054393836778466124319 42 Pedersen 2016 70392800613515460894208377863053585817900341070289901121477841311638560388653623122632407878876150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*12620149733395386014417370865629768672231048683 70392853322596378475616028559789577118204073690329121887280540067325226134278965616954366391075850=2*5^2*29*31*149*4327*192475053583792792230578337662769716350463*12619764789303275814741747872413656500410009067 42 Pedersen 2016 72878659784760931611493879575315311901134935621887459555257165519840589837949753497941921648667550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13065819101339649558694288006223594443798006271 72878714355216181012454697143520893549350688040994139843296731557802105631910955208479719141348450=2*5^2*29*31*149*4327*192474853319769270620907497068816865644031*13065434157447803382540274683848076224827673087 42 Pedersen 2016 72953072409418615730326723593441860111672655701405838677240293564463865796896231451614406204381150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13079159932462294445740280166736869093091850783 72953127035592930436076918535587262530239327496027671959419022912910183629621649720144247694370850=2*5^2*29*31*149*4327*192474847535386831059441947165560808684063*13078774988576232652025828309911254130178477567 42 Pedersen 2016 77291008971223137166552011229473911931625832554893864032950223248437669839274973259272709616683650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*13856873114304817650498745644700969339348962833 77291066845579755441407830342254331962352337908857110934995630691066193064883254508285616704468350=2*5^2*29*31*149*4327*192474529581690957964503493838920704708113*13856488170736709552657388726328681016539565567 42 Pedersen 2016 77690018188746844007563948704577743424609478304310780222982538767039020251766467942717772577621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*7711219339540123312604894771601306912241561884540749 77690254710271321374634621066702203216984106241072172698906628505160391853047071076189719646378304=2^6*151*1451*1811*396735172784552954034669745049147999*7711219339540122519135757029760657630545767876196749 42 Pedersen 2016 78244792807441736287691979974547828061544859033775237571449101991415271922383121476849298494033950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14027869220745564817308372222818436541792055359 78244851395977488834339983405252266569229916594620379914595893635334471004841227218768386928046050=2*5^2*29*31*149*4327*192474464401221459464785107961628268776959*14027484277242637188965515022832025511418589247 42 Pedersen 2016 81828193950178435270787201290150858819103919914683584269459390705545002533456315556164803156902550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14670307915924776343026173466244638460814694971 81828255221911604974861110606862414018071771502149266973988357226018015094558401709054954906713450=2*5^2*29*31*149*4327*192474233094655282911044632732887567702587*14669922972653155280859870006733456171142303231 42 Pedersen 2016 82064692044098259501760060739444481140476124323407519089776989487962268121640364488420155962241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14712707725719497506023755631398706678484446719 82064753492917680365450151025324236639819788657620761674454118094116827759954674663061171489918050=2*5^2*29*31*149*4327*192474218539446245233217594904526413073919*14712322782462431652895129998925352749966683647 42 Pedersen 2016 82876356731328660812562835327737696263694839218502998593113953757461076026076858720739894695768050=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14858224451817627388594521396673232165046097481 82876418787910513406472194562886577919851946222622271114904162143172626055585170618600865065127950=2*5^2*29*31*149*4327*192474169217574170360604114776699541165641*14857839508609883407540768377680006063400242687 42 Pedersen 2016 82930265625583600549263160540103158570159214487928303793363012368610121672392202389423779695043150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*14867889336742357779285122645134885208331844823 82930327722531630432549901951083202294085988561732345112204236123157857370440214740939480544828850=2*5^2*29*31*149*4327*192474165975921841123922309525977700170967*14867504393537855450560606307946909828526984703 42 Pedersen 2016 84283618629404766357864218753347275705824826103572267408624525340476261610695814739016089063451550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15110520932608771604903166237853882962522327551 84283681739723373441421042696749312757629123128942910244574414505972705590618008607247663378404450=2*5^2*29*31*149*4327*192474085954862259498282485855673206656511*15110135989484290335760275540489577887210981887 42 Pedersen 2016 87474410992040236905247997269072956217736952070099891940400503946159245160347523876624295047809950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15682572009333548677106016771801785326328609279 87474476491576652735320238102751137203770882493247254639645117957146190686071088758929034268030050=2*5^2*29*31*149*4327*192473907090876715257623453896372381678079*15682187066387931393507366733469439551842242047 42 Pedersen 2016 87681294239792699747590294470852154248277581683855728928661453207233038237756680270551561061531550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15719662415471842336627566147080276934006961151 87681359894240210906108822396986567268952257439915063824222596821730666167927655494257055841124450=2*5^2*29*31*149*4327*192473895943176947047001263708798561317887*15719277472537372752797126730938118733340954111 42 Pedersen 2016 88433192759366511731164331244638165632523755860364503083554106850435004673270726650176055998838150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*15854464153982554767521839364181696687442748723 88433258976824438224917844787761337891356608157999890542625190945641401811581100632692528580233850=2*5^2*29*31*149*4327*192473855867144767389740116179727984092467*15854079211088161215871057209187067557353967103 42 Pedersen 2016 89453692196276962135366628373334184852512901311772435772101013040259825016563540960718790554422336=2^6*151*1451*1811*328481*9085995379*132928044795118424699*8878837427754847164885933469613867706069640660145159 89453964531438436678711106691131552218658219034965828278331968764696045111226168077905508228297664=2^6*151*1451*1811*396735172784552948666176661855672159*8878837427754846371416795727773223792866929845276999 42 Pedersen 2016 89687958165160085745587612584127552350416718766157293724715844290891989781219889525825706992597650=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16079420785390669731616278341111517228287298713 89688025322167664052127744456233995458323952687306891515420390319257683811287531435237861809194350=2*5^2*29*31*149*4327*192473790484801519560334966894016465554943*16079035842561658523213325591266173809717054617 42 Pedersen 2016 90935675565966524526705999012611815256772784308870136468579327862016226079331753769834636535749150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*16303113837604831071276480731954869779483649343 90935743657246313459766020818517097072766862464568011665353838578541068186485847301761310234682850=2*5^2*29*31*149*4327*192473727258941043971247679889377645383167*16302728894839045723349117069396530999733577023 42 Pedersen 2016 96108632739451539094757550142815881319768434927255129645739828636882484857954021249979276198069150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*17230531038296348738944194911932038821183583743 96108704704164631774701032196052149251891910044541678287216134234703405023807607216854227615562850=2*5^2*29*31*149*4327*192473482641118603447184082622396324007423*17230146095775181213457355312970967022754887167 42 Pedersen 2016 99600647876569488000947602402246183640518728492816166782445574925123343758102510057552474236757056=2^6*151*1451*1811*328481*9085995379*132928044795118424699*9885986128495682303263289214813081955437609475932839 99600951103388375680232530468475854637018236659093424433318666747729393455989497388251923556522944=2^6*151*1451*1811*396735172784552945054172515653284839*9885986128495681509794151472972441654239044863451999 42 Pedersen 2016 104936556623992294802505614413602009013264644795466569214970704233539390783003711788606396566284864=2^6*151*1451*1811*328481*9085995379*132928044795118424699*10415608384821887988123780888756086756817360295165391 104936876095591410829909415320656556159051577996030222895241893883553273030828911789730156123379136=2^6*151*1451*1811*396735172784552943435002950148917391*10415608384821887194654643146915448074788361187051999 42 Pedersen 2016 108249097326032264011300972583099456380523699676660310347249079822954608484257227341360169885211550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*19407095680991010706015710637827669855419146751 108249178381344461910696460083849774541582792905569062826257367094737089241473463374238553334244450=2*5^2*29*31*149*4327*192473000369090874019531730655742524083711*19406710738952115208258298691218564710790373887 42 Pedersen 2016 115674671683149287568905489273941839541225732988882617109133499122325225398306399639378450270709150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*20738366200511799385985946002757339433841612543 115674758298620993792375482736344501364557647203539250786665391229197908005331183040186828109322850=2*5^2*29*31*149*4327*192472755288747815368844208684656199028223*20737981258717984231287184743670205375537895167 42 Pedersen 2016 119104068598669399689367288956566752519930754521855423179974181628331898100659133796995529925877150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21353194736837976058548948865093166520577807103 119104157782022450925662082613161246389306804141282218955105458425472307337576883511953293613834850=2*5^2*29*31*149*4327*192472652417812207433476280810559431069183*21352809795147031839458122973933906559042048767 42 Pedersen 2016 119293676462609781281080741726044700021608578783852497277754810577185615210438017499498927751393856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*11840642163172559854566073867081102802987599049477039 119294039643400251648063577877666944112785757638518447139437470297825367456846331056044299968286144=2^6*151*1451*1811*396735172784552939797561562788829039*11840642163172559061096936125240467758399987301451999 42 Pedersen 2016 120769878119838926980042753282066991066260815117337794406645687012950699607356542125926095071515550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*21651844107245874300143842895237025248614866431 120769968550525342982959256340000866652183904512626197378441099050248649524393934175912010634980450=2*5^2*29*31*149*4327*192472604557071653173126257759313016114687*21651459165602790821607277354100816533494062591 42 Pedersen 2016 127827367702377589826712162289994988809863346427551768462948446646551992138544603285568832308609216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12687664296259063995719198155106476297261837957326629 127827756863360992384227504750758355178996233568644765689932931698292548812166762701510024820350784=2^6*151*1451*1811*396735172784552938022683312865595749*12687664296259063202250060413265843027552476132534879 42 Pedersen 2016 129158611891437006782003699132721570191755557908920451098439878108786219851177182193337751635449536=2^6*151*1451*1811*328481*9085995379*132928044795118424699*12819798593246682826305878775933407677401811948285709 129159005105295056414543080128421341084074655197305957528760107983289849717148446211623441892870464=2^6*151*1451*1811*396735172784552937766952286714468959*12819798593246682032836741034092774663423476274620749 42 Pedersen 2016 135482829688258372490267814041621725151120918577473946886494129450003241460496633313015459935617950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*24289608909829922713915634654431868449290032639 135482931135783840175682376711239420756609459601703391288443057992352952317988199184212510706302050=2*5^2*29*31*149*4327*192472232940734550996762201371168161175039*24289223968558455572481245477352047879024168447 42 Pedersen 2016 135909547596128203394020265033489877278173932991139683196334753196226338045200275727180597600641950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*24366111674946566094650610156088728067863774719 135909649363173686462563439757398659038402751526744994419510134285259642824545284799511856635518050=2*5^2*29*31*149*4327*192472223363431430710737821745093370203647*24365726733684676256336507003388533572388881919 42 Pedersen 2016 145109675405571855979973828450354851680486961116099202734447401304720141908175175454602405507995550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*26015527375268356893408522866432836318534828031 145109784061536048541509588829791988039972666318322332690142188087738945857689928279936459443300450=2*5^2*29*31*149*4327*192472030573908906109213530424488552648191*26015142434199256577619021238023962427877490687 42 Pedersen 2016 145178171661138370038510708653097819585553177111586272888760038309343285206296243179257831508645696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14409839913702095711008071266519400255312360594565499 145178613645363405308933883162143845927979222560943783752972758305792590094956742712960554667354304=2^6*151*1451*1811*396735172784552935057392136715053499*14409839913702094917538933524678769950894174920315999 42 Pedersen 2016 148374666558960755065917594479190579429071713734356762682089677901640712954537120652992346612609950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*26600880946583260443097548602904294352952225279 148374777659701706035338704049628217512030107018241894680793289436794633933085691653341247151230050=2*5^2*29*31*149*4327*192471967903731779288273275939890950254079*26600496005576830304434867914749905059897282047 42 Pedersen 2016 149438042092561943486907411130059677036007485114351104049013570433785806516879965303537504667621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*14832658649243164658679136781208636836583032809384499 149438497045647998567254725074440689443877780357745350123274534479359626354714386993928307556378304=2^6*151*1451*1811*396735172784552934434652069753040499*14832658649243163865209999039368007154904914097147999 42 Pedersen 2016 158961534934151463063531360393167421961392955279153673153570292709005459382016840574662513652833950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*28498914025792816216820005525744313635817151359 158961653962181809939863717298543688583225752088771163971403091109316749000856685515932873657246050=2*5^2*29*31*149*4327*192471782401170723157721036578065488629247*28498529084971888639213455389829286168223832959 42 Pedersen 2016 162608088600118537450932545498915025344992357761599514365538539304264249825121797359768731249289950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*29152674820565491632740043455768153637839870879 162608210358633970508903237999219058029372707743093488711606328010609631626058206305155923711350050=2*5^2*29*31*149*4327*192471724099393771002692693807644946635679*29152289879802865832085648348195896590788546047 42 Pedersen 2016 167109559950506495520777576804150553025318213908040316542404779069899386146233291467909359884571550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*29959706817692455606670489301980415460967357951 167109685079656646729423033145944601398211373971044413130405570620800625199506148762869811488484450=2*5^2*29*31*149*4327*192471655638274417160581744049409310182911*29959321876998290925369936305357916649552485887 42 Pedersen 2016 192994277130943063027263805959013672926413453261926985201195454251091646565445102869808337326240550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*34600366143313616725268405899556710964671900931 192994421642184003366734220293011486698068303869442593297269971524215090583681801240721975996255450=2*5^2*29*31*149*4327*192471323950633943521238496440752249597187*34599981202951139684441492246181820810317614591 42 Pedersen 2016 194350781545959128068397793193972219153151826468070162389368646619936394323606822623247460747502656=2^6*151*1451*1811*328481*9085995379*132928044795118424699*19290528439199375284782659393029930234281733957539239 194351373232564515893290219225774123366827399501810276743278259038621775511899648512434001954577344=2^6*151*1451*1811*396735172784552929530149163332576999*19290528439199374491313521651189305457106521665766239 42 Pedersen 2016 197938584283410091095611949937697752059897841414151772924321724573724903714438814327334307148145450=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35486790551039926595213256616409194691572289189 197938732496874604149759079609965694743846952384564350619254074302409711723654506483238197612174550=2*5^2*29*31*149*4327*192471270462082182211121047197598300524197*35486405610730938106147653080483547691167075839 42 Pedersen 2016 200304469063199495818926674197735300544880540231513851244508282773543524010647620024484085831713950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*35910950691177478357600586350065871545432120959 200304619048203302845287678847714298101015420193321096819121776933061693202529637523683562547166050=2*5^2*29*31*149*4327*192471245801546018781053129722135321333247*35910565750893150404698412882057700008006098559 42 Pedersen 2016 204747601044350779509845334459381209421045938669782491440612287650103626532043762292274824829621150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*36707523499741097823915452823906002807008771583 204747754356305653703031418728549690046573109615045674668856897144575939673756303077794841011530850=2*5^2*29*31*149*4327*192471201029232009567126856383514881965567*36707138559501542185022493282171169890022116863 42 Pedersen 2016 215861355396845310053206743694735120890080108294838412246478873802851430876970448537425677764542016=2^6*151*1451*1811*328481*9085995379*132928044795118424699*21425587188710464218660252285230175180196335062926079 215862012570804648987452247611560467496653511989858313400420709757303156758869906215177450698817984=2^6*151*1451*1811*396735172784552927903987507958478079*21425587188710463425191114543389552029182778145251999 42 Pedersen 2016 218350641440788194719850674704296815542958535919617869241743508535423826784966478568038051531445150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39146301402257240991388014659367075494440369663 218350804938497162113346613743638993926536607666980159163870295124551864830777503488956969071946850=2*5^2*29*31*149*4327*192471075283890496929251044395611155910143*39145916462143430694007692993444230481179770367 42 Pedersen 2016 220793130544652556917261990829729373769497954019885674457420899976262225780198483108013442346873550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*39584195305387962969827596106900065600704960791 220793295871260995475983127994050833860411691477694654419992005954395468633441774988878184173702450=2*5^2*29*31*149*4327*192471054346559433179665842636909639716351*39583810365295090003511024026178979288960555287 42 Pedersen 2016 221660649360619014354300504403349011235478483811737111420115225413467936577517951360945295423583296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*22001203320765992376826242241731717233497833218807399 221661324190100660822638599499819350668356270220298755419493896531868047742401526339114395277216704=2^6*151*1451*1811*396735172784552927519586486080216999*22001203320765991583357104499891094466885298179394399 42 Pedersen 2016 259080674170563988877765885888350859007194671904183810586047384989651297411863141411451632891050048=2^6*151*1451*1811*328481*9085995379*132928044795118424699*25715374403844913079277508265069245509098443037590487 259081462922548427488210254947043629360741588980359930541759588048096948037289304085507797564245952=2^6*151*1451*1811*396735172784552925453001060241051999*25715374403844912285808370523228624809071333837342487 42 Pedersen 2016 260625405628558844186015759177818197997858808470036729145716237459593411297763552115828567070401950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*46725398260796089736145832218306220757656753919 260625600780981744314385264317004700175765622191305377297337693686136338500924137683541982423358050=2*5^2*29*31*149*4327*192470768284354021052258708887003944933119*46725013320989278975241387544718884351607131647 42 Pedersen 2016 263773740420473387638520629987257471579077446379369840768992572551590495042724323525257839809139950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*47289837466773513052939211582560183991362307879 263773937930322499770718156465974074311327501236534483997543064822722437580702199723065178287500050=2*5^2*29*31*149*4327*192470749358336150753153238188604956167679*47289452526985628309905066014443545984301451047 42 Pedersen 2016 272605441541182557676230988605594363559822784823815053050379617282835639427657648981306598997825856=2^6*151*1451*1811*328481*9085995379*132928044795118424699*27057792003203920114730019149420386392447847630047539 272606271468322714860129707339017497752312912276227296397516506526942332757529301425233743857854144=2^6*151*1451*1811*396735172784552924845659255571451999*27057792003203919321260881407579766299762543099399539 42 Pedersen 2016 274036904537997716749720042902358752990723779990898897517467308486996721224343128255567712843819550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49129836256034631362924413524481006125244706111 274037109732751296756474859908135075636584238054722153037543304620808386715177405842405854709716450=2*5^2*29*31*149*4327*192470690681452099659129443409592185343487*49129451316305423503941361980159147130954673471 42 Pedersen 2016 274612061103769441961534182863561767699913077024589938407601369599897385108497515528926774603297950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49232951374582578372447083559531333616348698239 274612266729191694067114566013616222554920438164312640905011318886220428584725028066216099795422050=2*5^2*29*31*149*4327*192470687522932383518996085391560800816639*49232566434856529033180172148567492653443192447 42 Pedersen 2016 278806119737630039483694967545655563193812868191855456765831964755880261129160531983005506838423550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*49984869858982216136460937228012792042189311791 278806328503500945123803961333549539243163291527477523343777386458956644039107314902370494210152450=2*5^2*29*31*149*4327*192470664884900269962155569841234689740287*49984484919278804829307582657564501405394882351 42 Pedersen 2016 284008377914447629520011623630665136841509147882749789732569183464377039839605233136010153267528256=2^6*151*1451*1811*328481*9085995379*132928044795118424699*28189604629060707471941778488082185322631646865590639 284009242556985689825160608368952579214841292891412786797426285562303325450397079329758675783351744=2^6*151*1451*1811*396735172784552924378544119780942639*28189604629060706678472640746241565697061478125451999 42 Pedersen 2016 292439663554079194161092604408344110247159259577066915741938312195721445320896554821854504493691456=2^6*151*1451*1811*328481*9085995379*132928044795118424699*29026462366995065822919493098446235263114570615371439 292440553865043897705738272681136592218999501460470445509751206295187820748844667436951213030788544=2^6*151*1451*1811*396735172784552924056586071022473439*29026462366995065029450355356605615959502450633701999 42 Pedersen 2016 300138287690183801946151675055717470295609440203604889506978475977420944277695173845300762156481950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*53809339852401933667023616303671417376422347519 300138512429264424471823491534234091696140629764808377638144882559669765493083664618619510678078050=2*5^2*29*31*149*4327*192470559534317510377766993490053710302719*53808954912803872942629846121799477920607355647 42 Pedersen 2016 315892322599372217182155284587581914065393225224148878638196569536970365502232135005100184639745950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*56633751975890064231002744973395690837188070399 315892559134839594738864153148891568432430225448424313507266681926246337822755670068843847411454050=2*5^2*29*31*149*4327*192470490866002038866929153762562356366847*56633367036360671822080485629363478872727014399 42 Pedersen 2016 338547840563350533181754875748841725839607760576584128458776021189873389917627999487494966730557550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*60695474573955572513893795528744162839696420071 338548094062932410876343108631935590587735221763542207175766271962330340626295330852066993905858450=2*5^2*29*31*149*4327*192470403319376749038849421375817616281087*60695089634513726730261364264444337619975449831 42 Pedersen 2016 340650955270515278407590534748576963385825533478819655372139638109232759084304094308732543844529950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*61072524816020086523143153330947792638684191679 340651210344878132462681634687026104274045192493112686307246524254589091916564986823672070258510050=2*5^2*29*31*149*4327*192470395783088301811533694116707624898047*61072139876585777027957949382375226528954604479 42 Pedersen 2016 345130988769901800967066949354075895032964670456500717280215981571268758535369771353058834963739550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*61875713396103796917352946323100398455413632511 345131247198847029562614766099258436651508794079701603844343053841223370864752984994572179808996450=2*5^2*29*31*149*4327*192470380035580687886120617131322647055871*61875328456685234929781667787604817730661887487 42 Pedersen 2016 351532849689759115813275365589380737191867685834504988922863468946918450125690104480075781116213150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*63023450702714942517150318194507128786479796223 351533112912322474486082714779118672101917060653140947771274720835981465214878411576312081542858850=2*5^2*29*31*149*4327*192470358229361671608106577984675415379967*63023065763318186748595317673050694708959727103 42 Pedersen 2016 353351109424920583147129843507382654475235256592194737386596409502057923574965800767601100110551616=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35072303652003521413109774817521706498231974674398479 353352185176285113742153491863505948552118514244134496912313030083847094870057601749622238733608384=2^6*151*1451*1811*396735172784552922187070508907200479*35072303652003520619640637075681089064135416808001999 42 Pedersen 2016 355497475097522304052729492026292080102139606901846777837002448150152527563024970125017974872725150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*63734235979713689786918036830809751570866747263 355497741288738132926677922993246340942879398150269289460025017578219245520569095886260347823466850=2*5^2*29*31*149*4327*192470345118730147457405535819590930511743*63733851040330044649887187010395482577831546367 42 Pedersen 2016 360841311504773107979645418803264886179617035814144243237444689072871513846375380998805068963686976=2^6*151*1451*1811*328481*9085995379*132928044795118424699*35815752971257105983359661008353952552297111016634319 360842410059504864801867232331153702723273738853557111507721299829852698968351141524579287449753024=2^6*151*1451*1811*396735172784552922000757262265586319*35815752971257105189890523266513335304513799791851999 42 Pedersen 2016 364942362627969024811996047331765112820625955373454175635162540189826166767117934144904119452033950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*65427532649407932693294476812646711221838415359 364942635891375997678983912570805005829476573225833483949809143406377794929235244728503436050046050=2*5^2*29*31*149*4327*192470315033057086844526674101907093736959*65427147710054373229324239871094159912639989247 42 Pedersen 2016 392496828895982827439196951988761107600106127562922414885045494235211582688138789303764898278683550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70367547638090737975327059600296488515178900991 392497122791763842867731438263467357471699116286774863963312997806252065190762096222676700107492450=2*5^2*29*31*149*4327*192470235535287985960693292274821580492287*70367162698816676280457706492125764291493719551 42 Pedersen 2016 393393248254429169355867795004447042854613130691011606695681632127856923782647906827921347452777950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*70528259336288678010684124877235417612916119839 393393542821435652284309182333662132728269203647726460737449979395339093107480274565236457070742050=2*5^2*29*31*149*4327*192470233136061399792515930177915670056447*70527874397017015542400939946426790295141374239 42 Pedersen 2016 399547584689634594972197846449483612089176394928250104108430474738828391640806260522381230208475550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*71631620001655795603695497811521485325197669631 399547883864916559626242257363382272088508458416048583348935863712056161964792059352460170627620450=2*5^2*29*31*149*4327*192470216954931208054436966455632790113791*71631235062400314265604050959676580290302866687 42 Pedersen 2016 401803176643839726781262775347016274585800754874169027091702869170092518303056536325853279234207296=2^6*151*1451*1811*328481*9085995379*132928044795118424699*39881473819418229010716821695324721311550663622638399 401804399903945661668527388916938094029078378530218891994865929623979287939036156226287446218592704=2^6*151*1451*1811*396735172784552921104726302595991999*39881473819418228217247683953484104959798312067450399 42 Pedersen 2016 407275433874908753218794383807056645428865997056717850734946583912732162140156612894566995359621696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*40424629513997149546628649445657912741255425780821999 407276673794897808228921191903202078830714323647163953643488057567032931521404150534590432864378304=2^6*151*1451*1811*396735172784552920998669670002797999*40424629513997148753159511703817296495559706818827999 42 Pedersen 2016 413063977965247949721911696013963238339258132498617831812543258215830330721112533074461711991253150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*74054863650253402508010344073206626037838033023 413064287261403933719480503442839173123137436122642917177210507527505508353160912799253612658218850=2*5^2*29*31*149*4327*192470183109671778632625558489046285987967*74054478711031766429348319032769687589447355903 42 Pedersen 2016 443888883673976030812389778767181122221287774913616931349867406967778140388503591181638684725221696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*44058742991637502046781372793121309378196527643784499 443890235060909807239720086873852537521281738699475667131307737373801880415484105478881412298778304=2^6*151*1451*1811*396735172784552920356350213076400499*44058742991637501253312235051280693774820265608187999 42 Pedersen 2016 448843755075488285441778946902791851510366824134815399036330871547617517971202874086297242708725150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*80469527374714576612110711218174732160405867263 448844091163008591923588907322826957716486823557463090451043021346480193375165263834906599347466850=2*5^2*29*31*149*4327*192470103356567442172021578237341402746367*80469142435572693637785146781718045416898431743 42 Pedersen 2016 457274746337793027732764827311646328647226138851479661460718551962561552361479419247223051342619550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*81981050871491107559078735537278600071192602111 457275088738314050013902735649308746852401721181784953030896323937865115560355817028055616498916450=2*5^2*29*31*149*4327*192470086380840404846272261082413109503487*81980665932366200311790496850139068255978409471 42 Pedersen 2016 478526136854540965576570036024200203635907183937390905736618078542973576117050332422734190007080896=2^6*151*1451*1811*328481*9085995379*132928044795118424699*47496706617101138671336889488083206873792225073283049 478527593692034762112136587583760096541602080416316070911695939564669799917683962163212608098519104=2^6*151*1451*1811*396735172784552919839176524179771999*47496706617101137877867751746242591787589651934315049 42 Pedersen 2016 497567750656091969621657106568874235468092782643329921180305609446036316666116593748713449736349950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*89204854204692294292687225805027890513831516079 497568123227414643711257412201534913613841979497425165393943467183158022130938960789606051329890050=2*5^2*29*31*149*4327*192470013195844619511087996854859281192879*89204469265640572041184322302152586252445634047 42 Pedersen 2016 511228137970852964943238918784089037103086766833971106215215261410438778122491424089941720229793216=2^6*151*1451*1811*328481*9085995379*132928044795118424699*50742584393022346525946286236363937095025245488610129 511229694367174752730644944354738282271900018020199786864627086899500709385879442661677590531166784=2^6*151*1451*1811*396735172784552919415214627081162129*50742584393022345732477148494523322432784569448251999 42 Pedersen 2016 530979680209180880212039608350975153304095953859298459886490886106087510765355298723661818902691550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*95195005898709150513657151313268210683001128351 530980077798858884351661875602463506173787774551353682007544593657336058743843583650465954121564450=2*5^2*29*31*149*4327*192469960933023364123450390259035968849311*95194620959709691083409635447999502244927589887 42 Pedersen 2016 535910443605924561174555348357017439153562790350360208777612373578274988821499348003073026724533150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*96079002157197307275440834875089773815705050623 535910844887684775416087454886614908765003971730249327427021029826840567794972007840737265937738850=2*5^2*29*31*149*4327*192469953772162110287108258506540216917503*96078617218205008706447155351952817873383443967 42 Pedersen 2016 537251506107651133048843308189650717406681425721064604064379301730392964743364740214174344010060224=2^6*151*1451*1811*328481*9085995379*132928044795118424699*53325566149686640316422621238270059580283833990092481 537253141730195893233329593904657230609709550839773610296306840963220418470091417930573704968883776=2^6*151*1451*1811*396735172784552919114714939153844481*53325566149686639522953483496429445218542845877051999 42 Pedersen 2016 547661443622999480391908031583044592295465758694344565168850013884151928461190321759049637250741150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*98185742881250040111217066081236638901725801983 547661853703733529517063637777938603240681577235383456325616011840122752760348161635845463521610850=2*5^2*29*31*149*4327*192469937226217081756344698294543560109567*98185357942274287487251917321659894956061003263 42 Pedersen 2016 549482192290965263907979645257884984636392681345436927045256107423319383391997597282795195150162496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*54539538111998255781999222952260098435818416795517199 549483865148931110668352961866090571615425849591389052267592870439898384286037648374393487192237504=2^6*151*1451*1811*396735172784552918983315815119839199*54539538111998254988530085210419484205476552716481999 42 Pedersen 2016 552130974230883486656834910296600745577110278475413653454495827769927052856035791100007569105243550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*98987048483781499055859921598075180992764136191 552131387658335501558343899257996976952903479045429729096334184782284595130299573090962038906532450=2*5^2*29*31*149*4327*192469931117799784885331435294476885642751*98986663544811854849191643851761437113773804287 42 Pedersen 2016 558837525925860715712094502316828844281268278336297620413571001085591521163979413976361959094563150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*100189411308497962513486155151957411517191003223 558837944375078776112097645573541980138416304755587829180542154567337797822801571742872781260508850=2*5^2*29*31*149*4327*192469922135395180589044958570303494639103*100189026369537300711422173692120391811591674967 42 Pedersen 2016 578653368733764701011355223376584604439984978285555033585342953074889160286452373497005286954348096=2^6*151*1451*1811*328481*9085995379*132928044795118424699*57434959495429401736272101275008799911714649027233599 578655130401223503310356724218477660983520360504373556833259384556518433414310491945933233416851904=2^6*151*1451*1811*396735172784552918692341438203411999*57434959495429400942802963533168185972347161864625599 42 Pedersen 2016 613082638067425647491448534741001580246833689686914575901153925673304570053454808320863365367250496=2^6*151*1451*1811*328481*9085995379*132928044795118424699*60852279425603103503016029390672287801035240765139199 613084504552253003565318465281763181467027696943722650884010471216351272209243091106091154799149504=2^6*151*1451*1811*396735172784552918384545266639511199*60852279425603102709546891648831674169463925166431999 42 Pedersen 2016 615854811835198204766207667248370999766258401160622591270001708468931894813522272650708069276521150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*110411574360631120107111118879943184572620669583 615855272978110939946900838317867803721099442705786277591707477192120360733252109308309724308630850=2*5^2*29*31*149*4327*192469853671218814172020915680367024734863*110411189421738922481413554444149054803491245567 42 Pedersen 2016 629328710132592903456903840382280921777190593720998459001458380263738883276057293261987757243675550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*112827199431996926314803937572778470636386053631 629329181364560051061149751288393022071435469424020125701494995651488514614907075640404515144420450=2*5^2*29*31*149*4327*192469839304491512189673845436815260257791*112826814493119095416408355484054584419021106687 42 Pedersen 2016 631021950017348088577875817129588732181472899516076440772295524158757474456233380943811625659432512=2^6*151*1451*1811*328481*9085995379*132928044795118424699*62632868135341910210633098051234050044871682477115903 631023871117086206576298280354456909803472690560248805910201054301068863196480586002349819646935488=2^6*151*1451*1811*396735172784552918237478274919867903*62632868135341909417163960309393436560367358598051999 42 Pedersen 2016 637755608677272913985916991650031235377031161114785210658667277700126977258479609437001675110553950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*114337989178890082055138804465262518660388353759 637756086219176211374576833862710654341028737193358453208351470955628214858989001755879508346726050=2*5^2*29*31*149*4327*192469830627756722685659722766772738805247*114337604240020927891532726390661302485544859359 42 Pedersen 2016 640610897609914941980952765942548936629094265468707567563997481077579627936625345659287338987905950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*114849890588522738472187742009347710206841177599 640611377289816075540479162213573589452738222117557151091091137848260424168793386332029537504894050=2*5^2*29*31*149*4327*192469827739593036163211482490281997913599*114849505649656472472268186382986770522738574847 42 Pedersen 2016 706474823068159584916831361374506225919845739328409297263291234760353512191700753197034298533107776=2^6*151*1451*1811*328481*9085995379*132928044795118424699*70122036852997844287679009753931004748370698682674519 706476973878598977537324739043903230391412312316726384758284415596747247360758861577286474238732224=2^6*151*1451*1811*396735172784552917700684418909626519*70122036852997843494209872012090391800660230813851999 42 Pedersen 2016 724655711900451544956776269393925670113651747061785548499709138591065007370607527857467972213121950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*129917598243534453193624387117755769355905656319 724656254511858152563995980267016676704899037533327350602625625359099175572975373726806639027838050=2*5^2*29*31*149*4327*192469752921787300601380167113524411819519*129917213304743004999440393322710206429389147647 42 Pedersen 2016 750174743265327768767141687278813190901954920936503035413520915303943262878739984072756932115333950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*134492696748907978631466599918294074786396401359 750175304985005072046920095021701666012553256376161648805139937365784061921995961139457399194746050=2*5^2*29*31*149*4327*192469733522320388229422082660093008629247*134492311810135929904194978081332965291283082959 42 Pedersen 2016 753601767406370751567776359577911850146654018708976525096178678285394473084497143956693942425813696=2^6*151*1451*1811*328481*9085995379*132928044795118424699*74799680301495364624678482169458538512126138977238749 753604061691312772741765140947727283070478341039366063176041827371047090303123044261903901414186304=2^6*151*1451*1811*396735172784552917419944871995963999*74799680301495363831209344427617925845155218022078749 42 Pedersen 2016 779368138794322855367570951315398307505029138289454928813205413973629883299498432292662365377048128=2^6*151*1451*1811*328481*9085995379*132928044795118424699*77357153526354632291067057315661784341697145665971007 779370511523080221293075723098595020766211309055603940071061168500536446394515887014777912602087872=2^6*151*1451*1811*396735172784552917280808198070723007*77357153526354631497597919573821171813862898636051999 42 Pedersen 2016 785692545625275930952516475664673832516714037267861010524662254722164501186199610579029233131513150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*140860393162135036106352758639281425959901622223 785693133940154764624667939875481834517548215202173890884645018469179971475909851346135560855558850=2*5^2*29*31*149*4327*192469708619379737861419518744853585939967*140860008223387890319731504804884231704210993103 42 Pedersen 2016 792523620712437124313110862011483352997982766191278495809120046559302991398844103413237019759701150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*142085080767808860941054090386801579626900845183 792524214142323265339391474876695570238235121546489639315156331765232887561914904707256606862250850=2*5^2*29*31*149*4327*192469704085774200041531384482788564094463*142084695829066248759970656440538647436232061567 42 Pedersen 2016 797021987868660307503989302108586139482880241731970944023997848414253297407363916389335258652175550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*142891556239342020518148896880311161560830623631 797022584666856792313268389233115442209682727185797192480632313420893175302385912283096350695920450=2*5^2*29*31*149*4327*192469701142763267707086360012767109627791*142891171300602351347997797379072699391616306687 42 Pedersen 2016 812679262708416312542436788833411718357054868909961546813750838409765262571446759389345569318427550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*145698621041032923234013792009176892926034985471 812679871230547053194583456481078355148830465034024380963024794036730336646603756869401398729188450=2*5^2*29*31*149*4327*192469691153208228110006463798861982745087*145698236102303243618902289587834644661947551231 42 Pedersen 2016 820379739640278500831934310531521234167691044261175080495574018953939659170936534445103059546241950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*147079176595743997920332211985530361506501726719 820380353928411704349053471449364234644673521571513537468737603642087398641443509775612607745918050=2*5^2*29*31*149*4327*192469686380082001096141515708880961883647*147078791657019091431447723429136203223435153919 42 Pedersen 2016 824949966957693012316218255508631958673177018987227522104897944594237320083726825157823187317505950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*147898535288092303877034865690060552766672409599 824950584667944378284896276309966653200529211024628830502379024916433914635010490190975370071294050=2*5^2*29*31*149*4327*192469683589372441197690149372414512665599*147898150349370188097710275585032730950055054847 42 Pedersen 2016 842781499698672371009047819790767321236815575720873518632188187323112146518729590987316368520065950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*151095405013487127600951037373144408261383564799 842782130760909933536652939548488115140631538434368756389298143317876857856982392390834508254334050=2*5^2*29*31*149*4327*192469672990360023589867380057268612492799*151095020074775610834044055090885901590666382847 42 Pedersen 2016 848031825205618199164111548106569469419429382059050296077145795904959038388632288717792070680757150=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*152036692950168530895122131466313798167362696703 848032460199221321483282393621433495230073881835874000206152187723456126855699498329693355687754850=2*5^2*29*31*149*4327*192469669954523598657161384822829092064767*152036308011460049964640081890050525936165942783 42 Pedersen 2016 861846156808258665078249338029626837466527006901681477703606770425894212021135337115059221157487808=2^6*151*1451*1811*328481*9085995379*132928044795118424699*85543611740984371932023511054998400627894372284550677 861848780635252475405673805243518031044412352791586858450633325383384721921637721952845325862288192=2^6*151*1451*1811*396735172784552916891369835873208927*85543611740984371138554373313157788489498487452145749 42 Pedersen 2016 871416832207669250240445234012418851518151413351396628096400222329645850487134531321966018925537950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*156229199674012675643274174489899939276604359039 871417484711617401972414788957188524622841356722345077029876805663291975811137430281233050135582050=2*5^2*29*31*149*4327*192469656877207031901544843625371054424447*156228814735317272029358880530177864503445245439 42 Pedersen 2016 883834826053461898205639054931340956368307654766820983788528792949569149149347371820544253166173950=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*158455520268681498658533407813850383412592874159 883835487855818931914103470440476003066730517590085820950313790497912800716033564552402587942306050=2*5^2*29*31*149*4327*192469650214149750850104018350419057283759*158455135329992758101899165294953583591430901247 42 Pedersen 2016 898565609888042529136151522379206033841941410128612487872812175762223885853370478243673567413653824=2^6*151*1451*1811*328481*9085995379*132928044795118424699*89188246706035507946497277202674308216306502643042131 898568345504700222739862787940382834608611370335420586254961451882672403961915521987292972778090176=2^6*151*1451*1811*396735172784552916740990011836481631*89188246706035507153028139460833696228290441847364499 42 Pedersen 2016 934095254310670637709630755817156031483044449715769563731548311953198318678937874242191373346203550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*167466301552311318289874113245982769218242619391 934095953747287949064530558733202375514837185236944144038151264258546179817921469095868144835172450=2*5^2*29*31*149*4327*192469625055752956242820681042943131133951*167465916613647736130034478010423276873006796287 42 Pedersen 2016 949271622637994847598932985325441841290440403862444207982665943873931278041458757421115348330043550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*170187148556986641671373028907693741862884952191 949272333438450779211312092501985236151923643231860440016852238716697661869603768406712885729732450=2*5^2*29*31*149*4327*192469617982728842426930164354279759498751*170186763618330132535647209562650938181020764287 42 Pedersen 2016 958900050930594434276332484773747469416778576939290421222738722077366685104818930553790855701885550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*171913350749409951042348873397689576868596281831 958900768940674099573778537542601668946743996162910055796379231201200853019869703239082702215810450=2*5^2*29*31*149*4327*192469613611430320776918909132223100308991*171912965810757813205144704063901995243391283687 42 Pedersen 2016 984850464474203090680614260652089534888772369238254731805157663875737634997709635077826040617755550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*176565788238890842112459918215291952009416607231 984851201915566003602482841516557083652108143841554391494373675115349305371426056610933165991140450=2*5^2*29*31*149*4327*192469602255584175771389537310629329915391*176565403300250060121400754410876191977982002687 42 Pedersen 2016 995872675004179572457289687879040317287908512910277624059019925553534562821665038154825109431961550=2*5^2*29*31*149*4327*1335497*4993948668383*28858508792100859080103*178541870253940018230671653431850632558620281751 995873420698809604340774360598473815706835305282711466424779207821588834257153936770096335067494450=2*5^2*29*31*149*4327*192469597611357699292301241119454287973887*178541485315303880466088968715731063702227618711